
Evaluating OpenSHMEM Explicit Remote Memory Access
Operations and Merged Requests

Achievement: Implemented and evaluated merged handle approach for aggregating related
RMA operations.

Significance and Impact: As we often see in scientific code, a series of updates are made during
the computation phase and are written during the communication phase. Most updates need to
happen together to enable the next set of computations. Such updates can be merged together to
enable easy checking for the user. This has many performance as well as productivity
implications. This approach may greatly simplify how users write their code, replacing multiple
request handles by a single request handle. The performance advantage comes from the fact that
testing completion of a single handle is much more cost efficient than using either checking
individual handles or executing mass memory updates via quiet or barrier that will only return
after all pending local and remote memory updates are processed.

Research Details:
• Designed OpenSHMEM Extensions to provide explicit RMA with requests and

functionality to merge said requests.
• Implementation uses UCX underneath with minimal overhead.
• Evaluation of approach with modified OSU benchmarks and SSCA#1 benchmark.

Sponser/Facility: Work was supported by the DoD and the Extreme Scale Systems Center at
ORNL

ORNL PI and affiliation: Manjunath Gorentla Venkata, CSMD

Team: Swen Boehm, Swaroop Pophale and Manjunath Gorentla Venkata

Publication: Swen Boehm, Swaroop Pophale and Manjunath Gorentla Venkata, “Evaluating
OpenSHMEM Explicit Remote Memory Access Operations and Merged Requests” In
Proceedings of Third OpenSHMEM Workshop, Baltimore, MD, USA, August 2016.

Overview:
We introduce non-blocking RMA operations with requests, where each operation has an explicit
request to track and complete the operation. Second, we introduce interfaces to merge multiple
requests into a single request handle. The merged request tracks multiple user-selected RMA
operations, which provides the flexibility of tracking related communication operations with one
request handle. Lastly, we explore the implications in terms of performance, productivity,
usability and the possibility of defining different patterns of communication via merging of
requests. Our experimental results show that a well-designed and implemented OpenSHMEM
stack can hide the overhead of allocating and managing the requests. The latency of RMA
operations with requests is similar to blocking and implicit non-blocking RMA operations. We
test our implementation with the Scalable Synthetic Compact Applications (SSCA #1)

benchmark and observe that using RMA operations with requests and merging of these requests
outperform the implementation using blocking RMA operations and implicit non-blocking
operations by 49% and 74% respectively.

