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Significance and Impact: We have developed a new scalable startup scheme with three internal 
techniques, namely Delayed Initialization, Module Sharing and Prediction-based Topology Setup (DISP). 
The DISP scheme greatly benefits the collective initialization of the Cheetah module and helps boost the 
performance of non-collective initialization in the Tuned module. Evaluation of our implementation on 
Titan with up to 4096 processes show that our delayed initialization can speed up the startup of Tuned and 
Cheetah by an average of 32.0% and 29.2%, respectively. The module sharing can reduce the memory 
consumption of Tuned and Cheetah by up to 24.1% and 83.5%, respectively, and our prediction-based 
topology setup can speed up the startup of Cheetah by up to 80%.  
 
 
Research Details: 

• We have examined and analyzed the performance and scalability issues of the MPI startup.   
• We have proposed a hybrid solution (Delayed Initialization, Module Sharing and Prediction-

based Topology Setup) that includes a suite of optimizations to address the startup problem.   
• We have implemented our solution and conducted experiments on Titan and demonstrate the 

performance benefits.   
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Overview: 
DISP is a suite of optimizations towards scalable MPI startup. In contrast to the conventional full-fledged, 
non-reusable, and communication-intensive initialization that has been revealed to be extremely costly in 
terms of both execution time and memory consumption, DISP initializes the communicators only partially, 
offloads the laborious part of initialization to where they are needed, reuse collective modules whenever 
possible, and only resort to collective communication for initialization when necessary. Our solution 
features a combination of three techniques. Firstly, we design a delayed initialization scheme that 
postpones the completion of communicator initialization to the point where the communicator is actually 
used. This replaces existing communicator creation routines where the communicators are fully initialized 
at the beginning; the delayed initialization only initializes a shadow communicator on top of a full- fledged 
communicator. The shadow communicator abstracts the essential subset of the communicator’s 
information. The communicators are then initialized on an on-demand basis, only to be fully initialized 
when it is used for the first time by a collective operation. Secondly, we have both temporal and spatial 
module sharing mechanisms that realize the sharing of communicator modules between either different 
communicator objects of one process, or several processes that reside on the same node. The eligibility 
criteria of two communicators for module sharing are that their shadow communicators must be identical. 
Lastly, we improve the MPI startup with a mechanism called prediction-based topology setup that can 
locally compute most of the predictable hierarchical topology needed by Cheetah initialization without 
communicating back and forth over the network. Our design requires no changes to MPI APIs or the user 
application.  
 


