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(a)  The Communication architecture of SHMEMCache (b) KV operation throughput with varying 

number of clients on Titan 

 
 
Overview: 
SHMEMCache is an implementation of Memcached using OpenSHMEM and MPI. This can leverage the 
OpenSHMEM one-sided operations (SHMEM_PUT and SHMEM_GET) for the KV operations such as 
SET and GET. Using OpenSHMEM’s one-sided operations will take advantage of RDMA capabilities to 
transfer data, avoiding multiple copies between the user buffer and system buffer, and also the need for 
server involvement. SHMEMCache also provides novel solutions for data consistency issue, carries out 
cache management in a coarse-grained and lightweight manner, and scales well to more than one 
thousand machines. Further, SHMEMCache was extended to use MPI one-sided operations, in addition to 
OpenSHMEM operations.Our experimental results show that SHMEMCache can deliver very low latency 
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Fig. 2: The communication architecture of portable SHMEMCache.

They have similar input parameters such as the address of local buffer to copy from or
copy to. But the direct interfaces in portable SHMEMCache abstract the information
of remote memory using an ID (dst mem) and offset (offset). The ID indicates which
region of exposed remote memory that the client wants to access. The offset indicates
the position in the memory region to access. We find that such abstraction is well suited
for most one-sided communication libraries we have studied. The direct interfaces do
not include synchronization calls since they can be called inside shmemcache put or
shmemcache get.

Additionally, the messaging interfaces include shmemcache send, shmemcache recv
and shmemcache send buffered. They are constructed around the Message structure.
No dst mem is needed here since the target memory region is certain, which is an ex-
posed memory buffer on the receiving process dedicated for a specific sending process.
The client can choose to use shmemcache send to directly send the message, which is
written to the remote memory and return immediately. The client can also choose to
buffer the messages for the same server and use shmemcache send buffered to send
those buffered messages at once. This option is often used when the client does not
request the response from the server before its next KV operation. A window size (e.g.
8) is predetermined as a parameter to indicate how many buffered messages to send
at once. Note that, for direct interfaces we do not enable the buffering because unlike
messaging, the client needs to indicate further actions according to the return value of
the direct interfaces. For example, when a SET does not succeed because it fails to lock
the target memory (see Section 2), it is up to the client to choose to either wait longer
or abort the operation.

3.3 Comparison of Memory Semantics and Synchronization of One-sided
Operations

There can be many differences in the memory semantics and synchronization methods
between different one-sided communication libraries. Here we only discuss OpenSH-
MEM and MPI regarding their suitability for SHMEMCache, but similar principles can
be followed when trying to use other one-sided communication libraries. Essentially
being a PGAS model, OpenSHMEM allows a PE to use non-blocking one-sided op-
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 10

 100

 1000

 10000

 1  2  4  8  16

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/S

)

Num of Clients

OpenSHMEM
MPI
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(c) 32 Byte (Titan).

 100

 1000

 10000

 100000

 1x106

 1  4  16  64  256  1024

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/S

)

Num of Clients

OpenSHMEM
MPI

(d) 4 KB (Titan).

Fig. 8: KV operation throughput with varying number of clients.
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and high throughput KV operations at scale while still ensuring data consistency. The details of the 
design, implementation, and evaluation can be found in the publication. 

 
	


