
	
Havens: Explicit Reliable Memory Regions for HPC Applications  
 
Achievement: Developed a memory management method based on the notion of memory regions that 
prioritizes resilience and locality for high-performance computing (HPC) applications. Defined an abstract 
interface and developed a library-based proof-of-concept prototype implementation. Demonstrated its 
viability with a conjugate gradient solver and memory regions with different resilience against memory 
errors. Created programming language annotations to make a program's Havens more explicit and to easily 
incorporate resilience capabilities in HPC application codes. 
 
Significance and Impact: Future HPC systems will contain more complex and denser memory 
hierarchies, and utilize more diverse memory technologies. Efficiently managing resilience against 
memory errors is a key challenge for the next generation of systems. Through language constructs for 
Haven-based memory management, HPC applications are able to explicitly manage the locality and 
resilience of program objects and computations.  
 
Research Details: 

• Developed a model for memory management for HPC 
applications that prioritizes resilience and locality of 
program objects. 

• Havens extend the notion of region-based memory 
allocation method to permit HPC applications to explicitly 
manage the resilience and locality of reference of their 
application's data. 

• Developed specification of Havens and designed an initial 
abstract interface (Figure 1). 

• Prototyped a library implementation with a lightweight 
parity-based memory error detection and correction 
technique for each Haven. 

• Developed a realistic proposal for adding language support 
for Havens to mainstream HPC languages. 

• Defined type annotations, which enable static encoding of 
the program object's allocation and deallocation into the 
robust regions. 

• Specified application-driven models of resilience that are made possible by the structured use of 
Havens (Figure 2). 

• Demonstrated the model of selective reliability for program objects in a 
conjugate gradient solver. 

• Created optimizations for parity-based protection scheme based on 
static type annotations. 

• Investigated how the specification of the resilience of the individual 
program objects using these static annotations affects their fault 
coverage and performance during application execution. 
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Figure	1:	Havens	prototype	architecture 

Figure	2:	Application	reliability	
models	using	Havens 
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Overview: 
Havens provide robust memory regions in which program objects may be allocated. A memory region is 
protected by a predefined error detection and/or correction scheme that is agnostic to the algorithm 
features or structure of the data. This approach to memory management enables separation between the 
memory allocation and the implementation of the robustness scheme. Havens enable applications to exert 
fine-grained control on the resilience properties of individual program objects. Since different Havens may 
have varying guarantees of reliability, based on the strength of the protection mechanism and its 
performance overhead, object placement in Havens may be driven by the trade-off  between criticality of 
the object to program correctness and the associated overhead. 
The language support for Havens offers explicit, convenient, sound and scalable control over Havens. The 
typing system enables application programmers to statically encode memory management decisions on the 
basis of their understanding of their application resilience requirements. This enables 3 different 
application-level reliability models: (1) selective reliability with Havens providing selective regions of 
program memory with comprehensive error protection, (2) specialized reliability with Havens providing 
different protection schemes based on application resilience and performance needs, and (3) dynamic 
reliability with Havens being enabled/disabled on demand during application execution. 
Through accelerated fault injection experiments on a preconditioned conjugate gradient (PCG) solver 
(Figure 3(a)), we observed that the allocation of the static state into Havens yields the highest rate of 
successful completion. Also, providing the highest fault protection coverage does not yield a comparable 
increase in application resilience. Therefore, imposing the selective reliability model using Havens on the 
PCG solver provides the right balance between application resilience and performance overhead (Figure 
3(b)). 
 

 
Figure	3:	Fault	injection	campaign	results	using	Havens	with	a	preconditioned	conjugate	gradient	solver	


