
	
Havens: Explicit Reliable Memory Regions for HPC Applications

Achievement: Developed a memory management method based on the notion of memory regions that
prioritizes resilience and locality for high-performance computing (HPC) applications. Defined an abstract
interface and developed a library-based proof-of-concept prototype implementation. Demonstrated its
viability with a conjugate gradient solver and memory regions with different resilience against memory
errors. Created programming language annotations to make a program's Havens more explicit and to easily
incorporate resilience capabilities in HPC application codes.

Significance and Impact: Future HPC systems will contain more complex and denser memory
hierarchies, and utilize more diverse memory technologies. Efficiently managing resilience against
memory errors is a key challenge for the next generation of systems. Through language constructs for
Haven-based memory management, HPC applications are able to explicitly manage the locality and
resilience of program objects and computations.

Research Details:

• Developed a model for memory management for HPC
applications that prioritizes resilience and locality of
program objects.

• Havens extend the notion of region-based memory
allocation method to permit HPC applications to explicitly
manage the resilience and locality of reference of their
application's data.

• Developed specification of Havens and designed an initial
abstract interface (Figure 1).

• Prototyped a library implementation with a lightweight
parity-based memory error detection and correction
technique for each Haven.

• Developed a realistic proposal for adding language support
for Havens to mainstream HPC languages.

• Defined type annotations, which enable static encoding of
the program object's allocation and deallocation into the
robust regions.

• Specified application-driven models of resilience that are made possible by the structured use of
Havens (Figure 2).

• Demonstrated the model of selective reliability for program objects in a
conjugate gradient solver.

• Created optimizations for parity-based protection scheme based on
static type annotations.

• Investigated how the specification of the resilience of the individual
program objects using these static annotations affects their fault
coverage and performance during application execution.

Sponsor/Facility: This work was sponsored by the US Department of Energy,
Office of Science, Early Career Research Program.

PI and affiliation: Christian Engelmann, CSMD – Oak Ridge National
Laboratory

Team: S. Hukerikar (ORNL), and C. Engelmann (ORNL)

Publications:

Figure	1:	Havens	prototype	architecture

Figure	2:	Application	reliability	
models	using	Havens

• S. Hukerikar and C. Engelmann, "Havens: Explicit Reliable Memory Regions for HPC
Applications”, 20th IEEE High Performance Extreme Computing Conference (HPEC) 2016,
Waltham, MA, September 13-15, 2016.

• S. Hukerikar and C. Engelmann, " Language Support for Reliable Memory Regions”, 29th
International Workshop on Languages and Compilers for Parallel Computing (LCPC) 2016,
Rochester, NY, September, 28-30, 2016.

Overview:
Havens provide robust memory regions in which program objects may be allocated. A memory region is
protected by a predefined error detection and/or correction scheme that is agnostic to the algorithm
features or structure of the data. This approach to memory management enables separation between the
memory allocation and the implementation of the robustness scheme. Havens enable applications to exert
fine-grained control on the resilience properties of individual program objects. Since different Havens may
have varying guarantees of reliability, based on the strength of the protection mechanism and its
performance overhead, object placement in Havens may be driven by the trade-off between criticality of
the object to program correctness and the associated overhead.
The language support for Havens offers explicit, convenient, sound and scalable control over Havens. The
typing system enables application programmers to statically encode memory management decisions on the
basis of their understanding of their application resilience requirements. This enables 3 different
application-level reliability models: (1) selective reliability with Havens providing selective regions of
program memory with comprehensive error protection, (2) specialized reliability with Havens providing
different protection schemes based on application resilience and performance needs, and (3) dynamic
reliability with Havens being enabled/disabled on demand during application execution.
Through accelerated fault injection experiments on a preconditioned conjugate gradient (PCG) solver
(Figure 3(a)), we observed that the allocation of the static state into Havens yields the highest rate of
successful completion. Also, providing the highest fault protection coverage does not yield a comparable
increase in application resilience. Therefore, imposing the selective reliability model using Havens on the
PCG solver provides the right balance between application resilience and performance overhead (Figure
3(b)).

Figure	3:	Fault	injection	campaign	results	using	Havens	with	a	preconditioned	conjugate	gradient	solver	

