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Achievement: Analyzed 1.2 billion node hours of system logs from the Jaguar, Titan, and Eos 
supercomputers at the Oak Ridge Leadership Computing Facility (OLCF).  
 
Significance and Impact: This work offers an understanding of failures in today’s supercomputers with a 
catalog of faults, errors and failures. 
 
Research Details:	 

• Analyzed 1.2 billion node hours of logs 
from 5 different OLCF 
supercomputers. 

• Combined information from different 
logs and created a consistent log format 
for analysis. 

• Used standard and created new 
methods to model the temporal and 
spatial behavior of failures. 

• Analyzed the evolution of temporal and 
spatial behavior over the years. 

• Analyzed the correlation of different 
failure types.	 

• Compared the mean-time between 
failures of the 5 systems. 
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Overview: 
Resilience is one of the key challenges in maintaining high efficiency of future extreme scale 
supercomputers. Researchers and system practitioners rely on field-data studies to understand reliability 
characteristics and plan for future HPC systems. In this work, we compare and contrast the reliability 
characteristics of multiple large-scale HPC production systems. Our study covers more than one billion 
compute node hours across five different systems over a period of 8 years. We confirm previous findings 
which continue to be valid, discover new findings, and discuss their implications. The lessons learned are: 
 
• System MTBF: The MTBF can change significantly over time, with often a non-monotonic trend, 

which makes it averaged over lifetime an unattractive choice as metric. As the optimal checkpointing 
interval depends on the MTBF, it needs to be adjusted accordingly. 

• Dominant failure types: A set of dominant failure types is common across systems. Only very few types 
contribute most of the failures for each system. The set of major contributors can change significantly 
over time, which makes monitoring, diagnostics and mitigation a continuously evolving effort. 

Scale-normalized	MTBF	of	each	system	over	time	
(averaged	quarterly):	MTBF	can	change	significantly	over	
time,	with	often	a	non-monotonic	trend,	which	makes	it	
averaged	over	lifetime	an	unattractive	choice	as	metric.		
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Table 3: Overall system MTBF for di�erent systems. Scale-
Normalized MTBF is calculated assuming same system contains
18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)
Jaguar XT4 36.91 15.47
Jaguar XT5 22.67 22.67
Jaguar XK6 8.93 8.93

Eos 189.04 7.45
Titan 14.51 14.51

middle part of the bath tub curve) [8, 10]. Therefore, we investi-
gate if the reliability of the system changes during the stable period?

RQ1: Are newer generations of HPC systems becoming less reli-
able?
RQ2: During the stable operational period, does the reliability of
the system changes signi�cantly? If so, by how much?

We use the mean time between failure (MTBF) as the �rst metric
to study a system’s reliability. System MTBF has been a commonly
used measure of a system’s reliability to represent how often the
system is expected to experience a failure on average. It is a simple,
and hence most prevalent, measure of temporal behavior of failure
events on a system. Therefore, we start our analysis by comparing
the MTBF of di�erent systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized
MTBF metric. As shown in Table 1, all systems in our study are
not of the same scale (in terms of number of nodes), therefore, sim-
ply comparing the system MTBF is not a fair comparison for sys-
tem with higher number of nodes. Therefore, the scale-normalized
MTBF metric is presented to compare systemMTBF as if all systems
were deployed with the same number of compute nodes, as de�ne
below.

Scale-Normalized MTBF = MTBF⇥Num of Nodes in the System
Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled
MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar
XT4 and Jaguar XT5 are two consecutive generations of Cray sys-
tems that shared several design features. Similarly, Jaguar XK6 and
Titan XK7 are also two consecutive generations of Cray systems.
We found that it is possible that newer generation of systems may
have higher scale-normalized MTBF than previous generation of
systems. While one metric may not always capture the full relia-
bility characteristics of a system as we discuss later, we observe
the reliability doesn’t necessarily decrease monotonically over dif-
ferent generations of the HPC systems, as projected by previous
studies [11, 26].

Next, we show that comparison across systems based on scale-
normalized MTBF averaged over the whole time may lead to in-
complete and inaccurate characterization. Fig. 1 shows how the
scale-normalized MTBF of the system changes over time. The plot
shows the scale-normalized MTBF metric averaged over each quar-
ter. We point out that we experimented with di�erent granularities
(e.g., week, month, quarter) and were able to ensure statistical sig-
ni�cance for comparison with quarter granularity.

Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of
the systems. For example, Jaguar XT5 systems shows approximately
4x change in scale-normalized MTBF and Titan system shows ap-
proximately 2.5x change in scale-normalized MTBF over time. We
also observe that during some time periods newer generation of
systems have higher scale-normalized MTBF, while during some
time periods previous generation of systems are more reliable –
indicating that there is not necessarily a monotonic trend at the
system level as projected by technology trends and other stud-
ies [8, 10]. We also con�rmed that these changes in MTBF are not
due to software upgrades, as also discussed later di�erent failure
types also exhibit this behavior. This also indicates that improved
operational practices and acceptance tests (e.g., better benchmark
suites for inducing GPU speci�c failures, new memory errors, etc.)
have been able to balance the e�ects of decreasing reliability at
the device level, and we should continue to focus on investing into
improved system maintenance and operational cost in the future.

Summary Our �eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di�erent generations of the HPC systems. Even during the
stable operational period the system MTBF may change by
up to 4x , contrary to conventional wisdom that MTBF of
HPC system during stable operational period doesn’t vary
signi�cantly.

Given the signi�cant variance in system reliability, HPC system
acquisition teams should also consider adding upper bound
on the variance in MTBF as a key metric in the request for
proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility
and support available should the reliability drops below a
certain threshold, instead of only system administrators trying
to improve the user experience during such period.

As optimal checkpointing intervals employed by applications
depend on the MTBF [2], this information should be exposed to
the HPC users easily and systematically to reduce the impact
of failures (i.e., wasted work). Unfortunately, exposing failure
frequency to users is not a widely-adopted practice yet because
of the conventional wisdom that systemMTBF is fairly constant
over time for a stable system.
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• Temporal failure locality: 
o The degree of temporal locality, which is very high in all studied systems, captures temporal 

characteristics better than auto-correlation, which is a measure of periodicity. 
o Different failure types can have a significantly different degree of temporal locality. Some types 

common between different systems also show a similar degree, such as voltage faults, operating 
system kernel panic, and Lustre parallel file system error. 

o While the MTBF may vary across systems, the degree of temporal locality may be very similar. 
The degree of temporal locality varies significantly over time for different systems, while a higher 
degree is not indicative of a lower MTBF. 

• Spatial failure locality: 
o Spatial locality exists in all systems at all granularities (node, blade, cage, and cabinet). Jaguar 

XT4, Jaguar XK6 and Titan show similar trends, while Eos and Jaguar XT5 are significantly 
different. 

o Titan is the only system where spatial locality may be an artifact of the power/cooling 
infrastructure, i.e., hotter parts of the system experience more failures. 

o Spatial locality varies significantly over time and between systems. Some failure types have more 
locality than others. Though, the same types can have significantly different locality in different 
systems. 

• Capturing system reliability better: The failure probability density function can be fitted into a 
parametric model to define the distribution under standard probability density models. The studied 
systems best fit the Weibull distribution. This methodology characterizes a system's spatio-temporal 
behavior and permits comparison. 

 
 
 


