Petascale Simulations Expose a Rational Tunability of Bulk Heterostructure Morphology and the Molecular Interfaces

Achievement: Petascale molecular dynamics, atomistic, and density functional computation reveal the evolution of internal mixing of poly(3-hexylthiophene) (P3HT) and phenyl-C_{61}-butyric acid methyl ester (PCBM) allowing comparison with neutron-reflectivity-derived density profiles.

Significance and Impact: Controlling nanoscale mixing of organic photovoltaic (OPV) donor and acceptor materials is key to optimizing their performance. This work serves as a roadmap for rational design of conjugated-polymer based composite materials.

Research Details:

- High performance computing enables description of structure on multiple length scales.
- Neutron reflectivity measurements provide nanoscale view of interfacial mixing.

Sponsor/Facility: We thank C. Rycroft for assistance with radical Voronoi analysis using MPI and Voro++, A.V. Dobrynin for assistance with the development of the substrate–BHJ interactions, T.D. Nguyen and W.M. Brown for assistance with LAMMPS MD code, and M. Chen for assistance with NWChem code. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of the U.S. Department of Energy (DoE) under Contract No. DEAC05-00OR22725. This research was conducted in part at the Center for Nanophase Materials Sciences (CNMS) and at the Spallation Neutron Source (SNS), which are sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences (BES), U.S. DoE. Experimental work of Z.S. and S.M.K. was sponsored by National Science Foundation under Award No. EPS 1004083 and Award No. 1512221. M.G. and J.-M.Y.C. acknowledge support by the U.S. DoE, BES, Materials Science and Engineering Division (MSED). The computational work conducted by K.B.-N. and W.A.S. is supported by the U.S. DoE under EPSCoR Grant No. DESC0012432 with additional support from the Louisiana Board of Regents.

PI and affiliation: ???

Team: Jan-Michael Y. Carrillo, Zach Seibers, Rajeev Kumar, Michael A. Matheson, John F. Ankner, Monojoy Goswami, Kiran Bhaskaran-Nair, William A. Shelton, Bobby G. Sumpter, and S. Michael KilbeyII

Publication: “Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions” Jan-Michael Y. Carrillo*†‡, Zach Seibers¶, Rajeev Kumar†‡, Michael A. Matheson§, John F. Ankner∥, Monojoy Goswami†‡, Kiran Bhaskaran-Nair⊥#, William A. Shelton⊥#, Bobby G. Sumpter†‡, and S. Michael KilbeyII*∥ACS Nano (2016) DOI: 10.1021/acsnano.6b03009

† Center for Nanophase Materials Sciences, ‡ Computer Science and Mathematics Division, § National Center for Computational Sciences, and ∥ Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
¶Department of Energy Science and Engineering and @Departments of Chemistry and Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
⊥ Center for Computation and Technology and #Cain Department of Chemical Engineering Louisiana State University, Baton Rouge, Louisiana 70803, United States
Overview:
Understanding how additives interact and segregate within bulk heterojunction (BHJ) thin films is critical for exercising control over structure at multiple length scales and delivering improvements in photovoltaic performance. The morphological evolution of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blends that are commensurate with the size of a BHJ thin film was examined using petascale computational simulations. Comparisons between two-component and three-component systems containing short P3HT chains as additives undergoing thermal annealing demonstrated that short chains alter the morphology in useful ways: they efficiently migrate to the P3HT/PCBM interface, increasing the P3HT domain size and interfacial area. Simulation results agree with depth profiles determined from neutron reflectometry measurements that reveal PCBM enrichment near substrate and air interfaces but a decrease in that PCBM enrichment when a small amount of short P3HT chains are integrated into the BHJ blend. Atomistic simulations of the P3HT/PCBM blend interfaces show a non-monotonic dependence of the interfacial thickness as a function of number of repeat units in the oligomeric P3HT additive, and the thiophene rings orient parallel to the interfacial plane as they approach the PCBM domain. Using the nanoscale geometries of the P3HT oligomers, LUMO and HOMO energy levels calculated by density functional theory are found to be invariant across the donor/acceptor interface. These connections between additives, processing, and morphology at all length scales are generally useful for efforts to improve device performance.