
	
Generic	Library	Interception	for	

Improved	Performance	Measurement	and	Insight	
 

Achievement: Develop the extension user library wrapping for the performance analysis 
framework Score-P that lets users create wrapper libraries for any C/C++ library. Score-P then 
uses these wrappers to give insight into library usage and performance of an application. 
 
Significance and Impact: Because software and hardware systems become increasingly 
complicated, and applications aim to achieve more and more, the overall complexity of the 
software stack rises steadily. To simplify development and improve performance of common 
routines, functionality is encapsulated into submodules, e.g. libraries in C/C++. 
These developments necessitate performance optimization, but at the same time make debugging 
and reasoning about an application’s performance increasingly difficult. 
User library wrapping is one puzzle piece in performance analysis that enables highly improved 
insight in the use and performance of libraries in C/C++. 
 
Research Details: 

• Develop a libclang-based wrapper library generator 
• Develop a workflow to guide users through the otherwise tedious and error-prone process 

of wrapper creation 
• Demonstrate the usefulness of our implementation using two scientific applications and 

the robustness using various difficult to wrap libraries. 
 

Sponsor/Facility: Oak Ridge Leadership Computing Facility 
 
Team: Ronny Brendel1, Bert Wesarg2, Ronny Tschüter2, Matthias Weber2, Thomas Ilsche2 and 
Sebastian Oeste2 (1ORNL, 2TU Dresden) 
 
Publication: Ronny Brendel, Bert Wesarg, Ronny Tschüter, Matthias Weber, Thomas Ilsche and 
Sebastian Oeste, “Generic Library Interception for Improved Performance Measurement and 
Insight”, 6th Workshop on Extreme-Scale Programming Tools, Springer, 2017 (accepted 
preprint), (presentation), (github/examples) 
 
Overview: Modern performance analysis tools like Arm MAP, Intel VTune Amplifier and 
HPCToolkit all use fixed library wrappers to intercept calls to important libraries like for example 
MPI, PThreads and OpenMP. This is needed to gain insight into the use of these libraries, and to 
e.g. extract information like which rank sends how many bytes to which other rank. Which 
libraries are intercepted depends on what the specific performance tool supports. 
Generic library wrapping is popular for providing bindings for higher-level languages to libraries 
e.g. via SWIG or CLIF. None of the popular tools provide C/C++ wrappers for C/C++ libraries. 
In performance analysis, generic library wrapping has been achieved before, but all of the 
solutions lack one or multiple desirable properties like robustness, usability, genericity or support 
for C++. 
With the inception of LLVM/Clang, tools development in general became a lot easier. Developers 
can now use a fully-featured compiler to investigate source code. Before tools, like e.g. SWIG 
and TAU, relied on custom parsers or commercial ones, both of which have their shortcomings 
and cannot keep up with new language standards. Parsing C/C++ is very difficult. 



Specifically, libclang enables us to achieve robust C/C++ library wrapping that supports the 
newest language standards. 
 
With this feature, which we implemented in the performance analysis framework Score-P, we can 
now: 

• Record all interaction of an application with any C/C++ library. 
• Record interaction of a library with itself and other libraries. 
• Gain insight into closed-source libraries, since this technique requires only header files 

and library files (.a/.so) even without debugging information (no source code). 
Technically library wrapping is a way of instrumenting. The popular alternative to 
instrumentation is sampling. While you can get insight into library usage through sampling, the 
usual limits apply: Since sampling interrupts and investigates in intervals, it attributes a time slice 
to the one function it hits, it does not capture all interactions, and cannot count the number of 
function calls. It also requires debugging information to be present in the application and libraries. 
Compiler-based instrumentation cannot provide what library wrapping does, since the compiler 
only instruments only what it compiles, i.e. the application sans libraries. Another upside of 
library wrapping over compiler-based instrumentation is that it only requires link time changes or 
preloading via LD_PRELOAD. Recompiling is not necessary. 
 
To create a wrapper library, you have to mimic the target library. For this you need the list of 
exported functions, including their names and signatures and all involved data type declarations. 
Library wrapping uses the linker to achieve interception. That means you can only intercept 
functions that are present as a symbol in the library file. On top of that some language restrictions 
as to which data types can be forwarded apply. 
Therefore, the process of creating a wrapper is tedious and error-prone. To make creation and 
usage of the wrappers simple and robust, we conceived a workflow. It contains checks for many 
pitfalls and e.g. makes sure the list of functions from the header file analysis matches the symbol 
table of the library file. 
 
We demonstrate the usefulness of the approach using GROMACS and PERMON, wrapping 
FFTW and PetSC. Furthermore, we provide other examples. To demonstrate the robustness, we 
wrapped Qt’s QtGui and QtWidgets modules. Qt is a large and the most popular C++ GUI 
framework. It surprised even us that our implementation is able to wrap it. 
 

 
Figure	 1:	 Example	 application	 without	 (white	 background)	 and	 with	 (blue)	 user	 library	
wrapping.	Although	a	substantial	amount	of	time	is	spent	in	the	GNU	Multi-Precision	library	
(orange),	 traditional	performance	analysis	and	visualization	does	not	 show	 it	but	 instead	
attributes	the	time	to	the	outer	functions	in	OpenMP	and	other	application	functions. 

9 Generic Library Interception for Improved Performance Measurement and Insight

Workflow (Live)


