
	
	
Exploring the Effect of Compiler Optimizations on the Reliability of HPC
Applications

Achievement: Demonstrated that compiler optimizations have an impact on the vulnerability of HPC
applications in addition to performance, and therefore the need to consider tradeoffs between performance
and vulnerability for critical application components.

Significance and Impact: The aim of this work is to quantify the resiliency of HPC applications to
different compiler optimizations using accelerated fault-injection experiments.

Research Details:

• Utilized a compiler-level fault injection tool to analyze the effect of soft errors on parallel
distributed HPC applications compiled using optimizations levels ranging from O0 to O3.

• Identified software attributes such as number of memory stores per
instruction which are distinguishable with the use of different
compiler optimizations and can affect application vulnerability.

Sponsor/Facility: Work was performed partially at Oak Ridge National
Laboratory (ORNL) and was sponsored in part by the ORNL Postdoctoral
Professional Development Program.

PI and affiliation: Christian Engelmann, ORNL

Publication: R. A. Ashraf, R. Gioiosa, G. Kestor, and R. F. DeMara,
“Exploring the Effect of Compiler Optimizations on the Reliability of
HPC Applications,” 22nd IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, May 29-June 2, 2017,
Orlando, FL (PTS # 74150).

Team: R. A. Ashraf, R. Gioiosa (Pacific Northwest National Laboratory
- PNNL), G. Kestor (PNNL), and R. F. DeMara (University of Central
Florida).

Overview:
The strict power efficiency required to achieve exascale systems will result in an increase in the number of
detected and undetected transient errors, which would directly affect the vulnerability of High-
Performance Computing applications executed on these systems. Among the various hardware and
software components that affect system resiliency, the impact of compiler optimizations on application
vulnerability has not been widely investigated. This is significant since compiler optimizations are one of
the most successful ways to improve performance with relatively low effort from the programmer. We
analyze the tradeoffs between performance and vulnerability for multiple HPC applications compiled using
standardized optimization levels. Results for these applications demonstrate that highly-optimized code is
generally more vulnerable than un-optimized code. Increasing optimization levels can drastically improve
performance as expected, however, it is observed that certain cases of optimization only provide marginal
benefits in application performance yet considerably increase application vulnerability. In this work, we
also define software attributes which are effected by changing compiler optimization levels, and contribute
to increase in application vulnerability. For example, one of the attribute captures the probability of a
faulty value to propagate to memory and corrupt the memory state of other processes in a parallel
environment. Overall, our work shows that compiler cost functions should account for vulnerability in
addition to standard metrics of code size and performance, and the importance of identifying important
software attributes for this purpose.

The	impact	of	soft	error	injection	on	
the	outcome	of	multiple	HPC	
applications	(LULESH,	miniFE,	
LAMMPS,	and	MCB)	compiled	using	
different	optimization	levels.	Higher	
crash	rate	is	observed	at	higher	
optimization	levels	for	most	
applications.		

O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3
0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 O
u

tc
o

m
e

Masked��� SDC��� Prolonged execution��� Crashed���

LULESH MINIFE LAMMPS MCB

