
	
Language-Based Optimizations for Persistence on
Nonvolatile Main Memory Systems

Achievement: Designed several novel language-based optimization techniques for programming NVM as
persistent memory and demonstrated them as an extension of our NVL-C programming system.

Significance and Impact: This work enhances our ability to
efficiently utilize NVM as high-performance, persistent
memory in HPC systems.

Research Details:

• We designed language-based techniques to automate
shadow updates within NVM transactions to improve
their performance and reduce their memory footprint

• We created an abstract cost model for reasoning about
the performance benefit of shadow updates

• We designed an auto-tuned concrete cost model that
enables the runtime to dynamically decide whether to
perform a particular shadow update

• We described our compiler-based approach to automate
undo log aggregation, a key building block of shadow
updates

• We evaluated our NVL-C extensions on several
applications with both real and emulated NVM hardware

Sponsor/Facility: Work was performed on ExCL in CSMD.

PI and affiliation: Jeffrey S. Vetter from CSMD – Oak Ridge National Laboratory

Team: Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter.

Publication: Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. “Language-Based Optimizations for
Persistence on Nonvolatile Main Memory Systems.” The 31st IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2017), to appear, Orlando, Florida, USA, May 2017. (accepted)

Overview:
Substantial advances in nonvolatile memory (NVM) technologies have motivated widespread integration
of NVM into mobile, enterprise, and HPC systems. Recently, considerable research has focused on
architectural integration of NVM and respective programming systems, exploiting NVM’s trait of
persistence correctly and efficiently. In this regard, we design several novel language-based optimization
techniques for programming NVM and demonstrate them as an extension of our NVL-C system.
Specifically, we focus on optimizing the performance of atomic updates to complex data structures
residing in NVM. We build on two variants of automatic undo logging: canonical undo logging, and
shadow updates. We show these techniques can be implemented transparently and efficiently, using
dynamic selection and other logging optimizations. Our empirical results on several applications gathered
on an NVM test bed illustrate that our cost-model-based dynamic selection technique can accurately
choose the best logging variant across different NVM modes and input sizes. In comparison to statically
choosing canonical undo logging, this improvement reduces execution time to as little as 53% for block-
addressable NVM and 73% for emulated byte-addressable NVM on a Fusion-io ioScale device.

We	extended	NVL-C	to	support	our	techniques.		
As	such,	our	compiler	extensions	are	built	on	
LLVM,	encouraging	reuse	among	compiler	front	
ends,	high-level	languages,	and	system	
architectures.		Our	compiler	extensions	target	
Intel’s	pmemobj	library	for	programming	NVM.	

