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Scheduling and resource 
management are key components to 
ensuring the environment is efficient 
and high-performance.

HPC and cloud computing are merging into a seamless,  
environment that can benefit scientific workflows.

We are teaming up with experts at major 
cloud providers to make the environment 
a force multiplier for scientific workflows 
and the broader computing community.
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Pre-exascale scientific workflows strain the capabilities of 
traditional HPC resource managers and schedulers.

Co-scheduling:

CG, analysis bound to cores 
nearest PCIe buses

Job comms/coordination:

36,000 concurrent tasks; 
176,000 cores, 16,000 GPUs

Portability:

adapt tasks to different 
schedulers/managers 

MuMMI: SC’19 best paper, SC’21 paper

MPI-based simulation with in-situ analysis plus AI/ML 

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

limitation resulted in a need to explicitly throttle the rate of certain
I/O operations, most prominently, during feedback. Furthermore,
scaling in job scheduling was obtained by bundling jobs of similar
kind to alleviate the load on the scheduler. Nevertheless, such
an approach is undesirable since it prevents explicit control over
individual jobs. Broadly, all components of M�MMI, including job
and data management, data and control communication, as well as
the exposed API, were tightly integrated with the speci�c problem,
preventing utilizing M�MMI for our new application.

4 GENERALIZABLE AND SCALABLE MUMMI
In this work, we present a new design that expands the
generalizability and scalability of M�MMI and demonstrates these
innovations by extending the M�MMI work�ow to support a third
scale of resolution. Hereafter, unless explicitly noted,M�MMI refers
to our new, improved, and generalizable framework.

Broadly, a multiscale model can be developed through pairwise
coupling of scales. For any two scales, some basic building blocks
are needed: (1) simulation and analysis at the two (coarse/�ne or
macro/micro) scales, (2) a method to couple the two representations,
(3) an automated approach to decide which coarse representations
to promote to the �ne scale, and (4) a method to perform feedback.

In this context, we design M�MMI as comprising two parts —
the application and the coordination (see Figure 2). The former
de�nes the application scope (in terms of the building blocks listed
above), e.g., what scales are relevant, what codes and/or simulation
tools to use, what ML techniques are suitable, and how is the
feedback performed? These components are typically designed
by computational scientists who are experts in the corresponding
domains; the actual details may vary across applications or even
across simulations. The role of the generalizedM�MMI work�ow
(the coordination part) is to tie together the di�erent application
components to facilitate the multiscale simulations.

We �rst discuss the speci�c details of our three-scale application,
followed by generic and tailored strategies for coordination.

Figure 2:We present a generalizable and scalable framework
to couple diverse models at di�erent resolution scales. The
“application” components (top) de�ne the three scales and
may be swapped to support other applications, whereas the
“coordination” components (bottom) provide an interface
to couple the associated tools, software components, and
technologies to facilitate scalable simulation campaigns.

4.1 The Three-Scale M�MMI
This work uses three scales of resolution: continuum, coarse grained
(CG), and all atomistic (AA), along with two types of ML-based
selection and two types of in situ feedback. Although every
application component used in this work has notable innovations
in itself, whether modeling, development, or performance, we
describe these components only brie�y, focusing largely on
their considerable computational versatility that challenges the
work�ow.

(1) The Continuum Simulation. The coarsest of the three scales
is a macro model that provides speed at the cost of accuracy.
Our macro model is a continuum description of lipids that uses
DDFT [50] for representing lipid dynamics in terms of their
density �elds. Proteins (positions and con�gurational states) are
represented as particles that interact with each other and with the
lipids This model comprises a 1 �m ⇥ 1 �m bilayer discretized
as a 2400⇥2400 grid, with 8 lipid types in the inner and 6 types
in the outer lea�et [34]. We use a custom simulation package,
GridSim2D — a parallel CPU code written in C++ that uses MPI for
communication. Using a total of 3600 MPI ranks (24 CPU cores per
node at 150 nodes), GridSim2D can simulate v0.96 ms per day of
walltime. With an I/O rate of 1 �s, a new snapshot is delivered every
90 seconds and, when stored in a custom binary format, consumes
v374 MB of disk space.

(2) Createsim: Mapping Continuum-to-CG. Compared to the
continuum scale, the CG and AA simulations are restricted in
the spatial extent due to high computational cost. To couple
continuum with these scales, 30 nm ⇥ 30 nm “patches” are cut out
of continuum snapshots in regions that may be of interest for CG
and AA simulations. The createsimmodule transforms a patch from
continuum representation into a particle-based one. The insane
tool [74] is used to create a CG representation of the membrane
and proteins. Once constructed, GROMACS [1] is used to relax the
membrane and proteins into a more natural, equilibrated, state in
preparation for simulation. Createsim is a custom Python-based
code that uses 24 CPU cores and, on average, takes v1.5 hours to
complete.

(3) CG Simulations and Analyses. Given the particle
representation of lipids and proteins, CG simulations with the
Martini force �eld [51] are performed using the CUDA®-enabled
version [78] of ddcMD [68]. Custom, Python-based analysis
is executed simultaneously on the same computational node
and accesses the local on-node RAM disk for analysis of the
MD trajectories generated by the corresponding simulation.
Each ddcMD simulation uses one GPU and one CPU core; the
corresponding analysis is allocated 3 CPU cores. With this setup
and an average of v140,000 particles, ddcMD delivers v1.04 �s
of MD trajectories per day per GPU [78], and produces about 4.6
MB new data every 41.5 seconds. The analysis module is tuned
to �nish inspecting each snapshot within this time period and
generates 17 KB additional data every 41.5 seconds.

(4) Backmapping: Mapping CG-to-AA. To overcome the
limitations of the CG model [4], it is further re�ned using a
backmapping scheme that translates a CG representation in time
into AA using the CHARMM36 force �eld [10]. This procedure
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Autonomous MultiScale (AMS) integrates ensemble 
techniques, ML surrogate models, services, and databases.
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State-of-the-art, composite workflows run across clusters 
and integrate the cloud

Cluster 
A

Single-cluster, composite scientific 
workflows like MuMMI challenge 
current computing environments

Multi-cluster, cloud enabled workflows 
emerging at LLNL and beyond
§ Coupled MPI-based tasks and deep-

learning models (AHA MoleS)
§ HPC simulation with AI/ML surrogates 

(AMS)

2020 RADIUSS survey found 73% of 
LLNL workflows interested in cloud, 
<10% use it

Challenges: resource management, 
scheduling converged environment
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The what and why of movement to the cloud; it’s eating 
everyone’s lunch.
The cloud is an environment 
(public, private, both) 
supporting:
§ Portability, reproducibility
§ Resiliency, efficiency, elasticity 
§ Reduced complexity via 

automation

Reed, Gannon, Dongarra, 20234
§ Few HPC vendors build large 
systems
§ HPC endothermic, cloud is 
exothermic
§ $500M system/5 yrs little 
incentive for hyperscalers

Companies rent this 
environment; hugely profitable
§ projected >$1.1T by 2027, 20% 

CAGR (22-27)1 
— exceed traditional computing in 2025

§ vs HPC: $40B by 2026, 21-26 
CAGR 6%2 1Gartner 2023, 2Hyperion 2023, 3The Decline of Computers as a 

General Purpose Technology, CACM March 2021 4HPC 
Forecast: Cloudy and Uncertain, CACM February 2023

Thompson, Spanuth, 20213: 
Computing areas become more 
distinct, provide fewer benefits to 
others. Areas that get left behind:
§ See little performance benefit
§ Market too small to justify NRE 

costs
§ Cannot coordinate demand
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Kubernetes (K8s):
§ cloud “OS” with 

77K contributors 
(second largest 
OSS project ever)

§ designed for 
loosely coupled 
apps

§ not focused on 
performance 
(scheduling 
limitations, 
throughput…)

A key to best-of-both-worlds converged computing is 
combining HPC with Kubernetes.

HPC:
§ performance is in the 

name
§ very difficult to 

manage modern 
workflows

§ not designed for 
dynamism/elasticity

Converged Computing project:
how to create a converged environment 
composed of the best of both worlds?

Automation, declarative mgmt

Loosely-coupled apps

Schedule software resources

Lifecycle, network orchestration

Tightly-coupled apps (MPI)

Schedule complex hardware

Sophisticated queueing

HPCKubernetes



8LLNL-PRES-861497

Flux addresses key technical problems that emerge from 
exascale and converged computing.

§ Open-source project in active development 
at flux-framework GitHub organization
— Multiple projects: flux-core, -sched, 
    -security, -accounting, -k8s, -operator etc.
— Over 15 contributors, including some principal 

engineers behind Slurm

§ Single-user and System instance modes
— Single-user mode in production for about 5 years
— System instance on several LLNL Linux clusters

§ Deploying on LLNL El Capitan exascale 
system
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Flux hierarchical management and graph-based scheduling 
address converged computing challenges.

Modular, hierarchical design
§ Hierarchical resource management and 

scheduling (separate modules)
§ Sub-manager with specialized scheduler
§ Schedules cloud resources

Manages resources nearly anywhere
§ Bare metal resources, virtual machines in the 

cloud, HPC resources in another workload 
manager, pods in Kubernetes

§ Workflows only need to program to Flux
§ Directed graph resource model expresses 

complex, dynamic resources

Rich, well-defined interfaces 
§ Facilitate communications and coordination 

among tasks within a workflow
§ CLI, Python, C, C++, Rust, Go, etc.
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The converged computing project advances convergence 
with representative, Flux-based models.
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L1: Fluence project 
enables portable 
converged workflows

L3: Flux + Usernetes 
reduces software 
complexity, increases 
automation, 
performance

L4: Elastic cloud 
nesting model 
enables autoscaling 
and dynamism

L2: Flux Operator. 
Enables portable 
converged 
workflows

Portability is a component of performance and means of cost control
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The scheduler is a big contributor to converged workload 
performance variability.

Fluence
§ Plug Fluxion into K8s 

Scheduling Framework
§ Enable cloud-native MPI to 

scale three orders of 
magnitude higher

§ Compare CORAL-2 
benchmarks scheduled by 
Fluence, kube-scheduler: 
up to 3x shorter workflow 
runtimes, much less 
variability, deterministic 
placement1
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Fig. 3: The placement diagram specifies nodes as columns and jobs as rows. The top half were scheduled by Kube-scheduler
and the bottom by HPKube. Each cell represents a job on one node and is colored by the number of pods the node ran during
that job. The value inside each cell denotes the number of unique applications that ran during the job. Red cell borders indicate
that the node ran an application that experienced a startup delay waiting for resources. Boxplots on the right show end-to-end
time distributions for AMG and QMCPACK per scheduler (orange is HPKube, blue is Kube-scheduler); outliers are not plotted.

free resources on the node where the pods were placed, thus
resource utilization was not maximized. In the large configu-
ration, we again achieved a lower execution time. The cluster
did not offer a low-latency interconnect (e.g., Infiniband) and
bandwidth was limited at 16Gbps. As LAMMPS scales better
with low-latency interconnect, it could not scale beyond a
certain number of ranks. We decided to use up to 250 ranks
for the multi-application scenario, so we could run more ranks
for LAMMPS but also leave more resources for AMG.

c) QMCPACK: When using the default scheduler, QMC-
PACK rarely ran to completion in the smallest configuration,
and it always failed for the medium and large setup due to
MPI ranks aborting. Setting the affinity to two zones out of
three (tor-1 and tor-2) allowed all the jobs scheduled by the
default scheduler to succeed. QMCPACK achieved shortest
execution time with the medium setup. With HPKube we
obtained an end-to-end execution time about 1.5⇥ lower in
all three scenarios. QMCPACK obtained the lowest execution
time with both schedulers with 250 MPI ranks, so we conclude
that using 250 MPI ranks will yield the best performance in
the multi-app scenario.

2) Three-App Workflow: We ran the three workloads si-
multaneously in the cluster, occupying the largest number of
resources as possible and pushing AMG to its limits. We ran
the apps with the three configurations reported in Table I (see
row AMG, LAMMPS, QMCPACK), for a total of 420, 675, and
1650 ranks per configuration. The large test case fully occu-
pied all 60 nodes in the cluster. The workflow creation order
was AMG, LAMMPS, and then QMCPACK. We tested the
workflow with and without zone affinity for QMCPACK and
LAMMPS. Because of the allocation order, QMCPACK was
less spread over three zones as fewer resources were available
after AMG and LAMMPS were allocated. This let QMCPACK
run to completion even without zone affinity. Furthermore,
zone affinity only reduced median execution times by about
one tenth of a second. Therefore, we concluded that forcing
affinity with the default scheduler would not produce a major
performance improvement. Figure 4 shows the execution times
for each experiment. Small, medium and large setup denoted
by S, M and L (see Table I). Default scheduler in blue, HP-
Kube in orange. Since we used a packing policy with HPKube,
AMG did not perform well in the smallest setup in comparison
to the default scheduler (Fig. 4a, 140-S), because the pods

kube-scheduler

Fluence

https://github.com/flux-framework/flux-k8s
1One Step Closer to Converged Computing: Achieving Scalability with Cloud-Native HPC, 2022

https://github.com/flux-framework/flux-k8s
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We are improving converged workflow portability and 
efficiency.

Flux Operator1

§ Bootstrap Flux in K8s; 
hierarchically manage, 
schedule pods

§ Ported 15 proxy apps; MuMMI 
in progress

§ Addresses major limitations of 
K8s: throughput, multiple 
users, fairness, allocation 
usage

§ Scalable MPI bootstrap
§ Autoscaling in progress
§ RESTful interface in progress

https://flux-framework.org/flux-operator/
1The Flux Operator, F1000Research, in press 2024

https://flux-framework.org/flux-operator/
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We are porting updated MuMMI to Kubernetes.
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Testing Flux + Usernetes enables cloud on HPC and 
further enhances portability.

Star Trek Cluster (taking HPC where no one’s gone before?)

u2204-02 u2204-01 u2204-03

u2204-04 u2204-05 u2204-06

u2204-07

control planekubelet

kubelet kubelet kubelet

kubelet

kubeletAdapted from V. Sochat, Kubernetes and HPC: Bare-metal bros, FOSDEM ‘24: 
https://fosdem.org/2024/schedule/event/fosdem-2024-2590-kubernetes-and-hpc-
bare-metal-bros/
https://github.com/converged-computing/flux-usernetes
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Usernetes

Flux + Usernetes
§ Bootstrap K8s in Flux
§ K8s is restricted to user scope
§ Accounts for usage/fairshare
§ Solves resource conflict for 

multiple managers/schedulers
§ No measured performance 

impact (e.g., noisy neighbor)
§ Networking bottleneck: order of 

magnitude lower bandwidth
§ Tested simulation + ML model

https://github.com/converged-computing/flux-usernetes
https://github.com/converged-computing/flux-usernetes
https://github.com/converged-computing/flux-usernetes
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We are collaborating with industry to tackle converged 
computing, contribute to community, and advocate for HPC.

IBM T.J. Watson Research Center: 
§ Expertise in K8s Scheduling

Red Hat: 
§ Developers of OpenShift K8s platform

AWS: 
§ Largest cloud platform, deep HPC expertise

Starting collaboration with Google!

Starting collaboration with Microsoft!
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§ Daniel Milroy | scheduling, cloud systems
§ Giorgis Georgakoudis | HPC runtimes, network-aware scheduling
§ Aniruddha Marathe | instance scheduling, application performance
§ Zeke Morton | software development
§ Tapasya Patki | graph-based scheduling
§ Abhik Sarkar | co-management challenges, performance profiling
§ Vanessa Sochat | containers (a creator of Singularity), runtimes, cloud systems, 

software
§ Jae-Seung Yeom | scheduling cloud resources

Doctoral student:
§ Md Rajib Hossen | Flux-Kubernetes co-management performance

Meet the converged computing team!
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Next-generation workflows will run on a continuum from 
sensors to converged clusters.
Full computing continuum already 
used by industry, e.g,. autonomous 
vehicle control and fleet management

Scientific workflows on the 
continuum: from sensors on a 
source beamline to converged 
compute clusters in another region

Major challenges:
§ Resilience of distributed system
§ Resource dynamism and elasticity
§ Distributed resource management and 

scheduling
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Thank you!
Questions?


