Enabling Emerging Scientific Workflows with Converged Cloud and HPC Environments

SOS26 March 13, 2024

Daniel Milroy Computer Scientist LLNL

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

HPC and cloud computing are merging into a seamless, environment that can benefit scientific workflows.

Scheduling and resource management are key components to ensuring the environment is efficient and high-performance.

We are teaming up with experts at major cloud providers to make the environment a force multiplier for scientific workflows and the broader computing community.

Pre-exascale scientific workflows strain the capabilities of traditional HPC resource managers and schedulers.

Continuum CG AA model model model Application Co-scheduling: Backmapping CG, analysis bound to cores Createsim MI ML nearest PCIe buses DDFT Sim. and Sim. and Job comms/coordination: Analysis Analysis 36,000 concurrent tasks; 176,000 cores, 16,000 GPUs Coordination MuMMI Workflow Portability: Monitoring, profiling, Maestro adapt tasks to different GPFS Database schedulers/managers etc. Flux

MuMMI: SC'19 best paper, SC'21 paper

MPI-based simulation with in-situ analysis plus AI/ML

Autonomous MultiScale (AMS) integrates ensemble techniques, ML surrogate models, services, and databases.

State-of-the-art, composite workflows run across clusters and integrate the cloud

Single-cluster, composite scientific workflows like MuMMI challenge current computing environments

Multi-cluster, cloud enabled workflows emerging at LLNL and beyond

- Coupled MPI-based tasks and deeplearning models (AHA MoleS)
- HPC simulation with AI/ML surrogates (AMS)

2020 RADIUSS survey found 73% of LLNL workflows interested in cloud, <10% use it

Challenges: resource management, scheduling converged environment

Lawrence Livermore National Laboratory

LLNL-PRES-861497

The what and why of movement to the cloud; it's eating everyone's lunch.

The cloud is an environment (public, private, both) supporting:

- Portability, reproducibility
- Resiliency, efficiency, elasticity
- Reduced complexity via automation

Companies rent this environment; hugely profitable

- projected >\$1.1T by 2027, 20%
 CAGR (22-27)¹
 - exceed traditional computing in 2025
- vs HPC: \$40B by 2026, 21-26
 CAGR 6%²

Lawrence Livermore National Laboratory

LINI_PRES-861497

Thompson, Spanuth, 2021³:

Computing areas become more distinct, provide fewer benefits to others. **Areas that get left behind:**

- See little performance benefit
- Market too small to justify NRE costs
- Cannot coordinate demand
- Reed, Gannon, Dongarra, 2023⁴

Few HPC vendors build large systems

- HPC endothermic, cloud is exothermic
- \$500M system/5 yrs little incentive for hyperscalers

¹Gartner 2023, ²Hyperion 2023, ³*The Decline of Computers as a General Purpose Technology,* CACM March 2021 ⁴HPC Forecast: Cloudy and Uncertain, CACM February 2023

A key to best-of-both-worlds converged computing is combining HPC with Kubernetes.

Kubernetes (K8s):

- cloud "OS" with 77K contributors (second largest OSS project ever)
- designed for loosely coupled apps
- not focused on performance (scheduling limitations, throughput...)

Converged Computing project:

how to create a converged environment composed of the best of both worlds?

HPC:

- performance is in the name
- very difficult to manage modern workflows
- not designed for dynamism/elasticity

Flux addresses key technical problems that emerge from exascale and converged computing.

☐ flux-framework / flux-accounting

Lawrence Livermore National Laboratory

- Open-source project in active development at flux-framework GitHub organization
 - Multiple projects: flux-core, -sched,
 -security, -accounting, -k8s, -operator etc.
 - Over 15 contributors, including some principal engineers behind Slurm
- Single-user and System instance modes
 - Single-user mode in production for about 5 years
 - System instance on several LLNL Linux clusters
- Deploying on LLNL El Capitan exascale system

Flux hierarchical management and graph-based scheduling address converged computing challenges.

Modular, hierarchical design

- Hierarchical resource management and scheduling (separate modules)
- Sub-manager with specialized scheduler
- Schedules cloud resources

Manages resources nearly anywhere

- Bare metal resources, virtual machines in the cloud, HPC resources in another workload manager, pods in Kubernetes
- Workflows only need to program to Flux
- Directed graph resource model expresses complex, dynamic resources

Rich, well-defined interfaces

- Facilitate communications and coordination among tasks within a workflow
- CLI, Python, C, C++, Rust, Go, etc.

LUNI_PRES-861497

The converged computing project advances convergence with representative, Flux-based models.

L1: Fluence project enables portable converged workflows

L2: Flux Operator. Enables portable converged workflows

L3: Flux + Usernetes reduces software complexity, increases automation, performance

L4: Elastic cloud nesting model enables autoscaling and dynamism

Portability is a component of performance and means of cost control

The scheduler is a big contributor to converged workload performance variability.

Fluence

- Plug Fluxion into K8s Scheduling Framework
- Enable cloud-native MPI to scale three orders of magnitude higher

 Compare CORAL-2 benchmarks scheduled by Fluence, kube-scheduler: up to 3x shorter workflow runtimes, much less variability, deterministic placement¹

https://github.com/flux-framework/flux-k8s

¹One Step Closer to Converged Computing: Achieving Scalability with Cloud-Native HPC, 2022

We are improving converged workflow portability and efficiency.

Flux Operator¹

- Bootstrap Flux in K8s; hierarchically manage, schedule pods
- Ported 15 proxy apps; MuMMI in progress
- Addresses major limitations of K8s: throughput, multiple users, fairness, allocation usage
- Scalable MPI bootstrap
- Autoscaling in progress
- RESTful interface in progress

https://flux-framework.org/flux-operator/

¹The Flux Operator, F1000Research, in press 2024

We are porting updated MuMMI to Kubernetes.

Testing Flux + Usernetes enables cloud on HPC and further enhances portability.

Lawrence Livermore National Laboratory

LLNL-PRES-861497

Flux + Usernetes

- Bootstrap K8s in Flux
- K8s is restricted to user scope
- Accounts for usage/fairshare
- Solves resource conflict for multiple managers/schedulers
- No measured performance impact (e.g., noisy neighbor)
- Networking bottleneck: order of magnitude lower bandwidth
- Tested simulation + ML model

https://aithub.com/converged-computing/flux-usernetes

We are collaborating with industry to tackle converged computing, contribute to community, and advocate for HPC.

IBM T.J. Watson Research Center:

Expertise in K8s Scheduling

Red Hat:

Developers of OpenShift K8s platform

AWS:

Largest cloud platform, deep HPC expertise

Starting collaboration with Google!

Starting collaboration with Microsoft!

Meet the converged computing team!

- Daniel Milroy | scheduling, cloud systems
- Giorgis Georgakoudis | HPC runtimes, network-aware scheduling
- Aniruddha Marathe | instance scheduling, application performance
- Zeke Morton | software development
- Tapasya Patki | graph-based scheduling
- Abhik Sarkar | co-management challenges, performance profiling
- Vanessa Sochat | containers (a creator of Singularity), runtimes, cloud systems, software
- Jae-Seung Yeom | scheduling cloud resources

Doctoral student:

• Md Rajib Hossen | Flux-Kubernetes co-management performance

Next-generation workflows will run on a continuum from sensors to converged clusters.

Full computing continuum already used by industry, e.g,. autonomous vehicle control and fleet management

Scientific workflows on the continuum: from sensors on a source beamline to converged compute clusters in another region

Major challenges:

- Resilience of distributed system
- Resource dynamism and elasticity
- Distributed resource management and scheduling

Thank you! Questions?

