
LLNL-PRES-861497
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Enabling Emerging Scientific Workflows with
Converged Cloud and HPC Environments

Daniel Milroy
Computer Scientist

LLNL

SOS26
March 13, 2024

2LLNL-PRES-861497

Scheduling and resource
management are key components to
ensuring the environment is efficient
and high-performance.

HPC and cloud computing are merging into a seamless,
environment that can benefit scientific workflows.

We are teaming up with experts at major
cloud providers to make the environment
a force multiplier for scientific workflows
and the broader computing community.

3LLNL-PRES-861497

Pre-exascale scientific workflows strain the capabilities of
traditional HPC resource managers and schedulers.

Co-scheduling:

CG, analysis bound to cores
nearest PCIe buses

Job comms/coordination:

36,000 concurrent tasks;
176,000 cores, 16,000 GPUs

Portability:

adapt tasks to different
schedulers/managers

MuMMI: SC’19 best paper, SC’21 paper

MPI-based simulation with in-situ analysis plus AI/ML

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

limitation resulted in a need to explicitly throttle the rate of certain
I/O operations, most prominently, during feedback. Furthermore,
scaling in job scheduling was obtained by bundling jobs of similar
kind to alleviate the load on the scheduler. Nevertheless, such
an approach is undesirable since it prevents explicit control over
individual jobs. Broadly, all components of M�MMI, including job
and data management, data and control communication, as well as
the exposed API, were tightly integrated with the speci�c problem,
preventing utilizing M�MMI for our new application.

4 GENERALIZABLE AND SCALABLE MUMMI
In this work, we present a new design that expands the
generalizability and scalability of M�MMI and demonstrates these
innovations by extending the M�MMI work�ow to support a third
scale of resolution. Hereafter, unless explicitly noted,M�MMI refers
to our new, improved, and generalizable framework.

Broadly, a multiscale model can be developed through pairwise
coupling of scales. For any two scales, some basic building blocks
are needed: (1) simulation and analysis at the two (coarse/�ne or
macro/micro) scales, (2) a method to couple the two representations,
(3) an automated approach to decide which coarse representations
to promote to the �ne scale, and (4) a method to perform feedback.

In this context, we design M�MMI as comprising two parts —
the application and the coordination (see Figure 2). The former
de�nes the application scope (in terms of the building blocks listed
above), e.g., what scales are relevant, what codes and/or simulation
tools to use, what ML techniques are suitable, and how is the
feedback performed? These components are typically designed
by computational scientists who are experts in the corresponding
domains; the actual details may vary across applications or even
across simulations. The role of the generalizedM�MMI work�ow
(the coordination part) is to tie together the di�erent application
components to facilitate the multiscale simulations.

We �rst discuss the speci�c details of our three-scale application,
followed by generic and tailored strategies for coordination.

Figure 2:We present a generalizable and scalable framework
to couple diverse models at di�erent resolution scales. The
“application” components (top) de�ne the three scales and
may be swapped to support other applications, whereas the
“coordination” components (bottom) provide an interface
to couple the associated tools, software components, and
technologies to facilitate scalable simulation campaigns.

4.1 The Three-Scale M�MMI
This work uses three scales of resolution: continuum, coarse grained
(CG), and all atomistic (AA), along with two types of ML-based
selection and two types of in situ feedback. Although every
application component used in this work has notable innovations
in itself, whether modeling, development, or performance, we
describe these components only brie�y, focusing largely on
their considerable computational versatility that challenges the
work�ow.

(1) The Continuum Simulation. The coarsest of the three scales
is a macro model that provides speed at the cost of accuracy.
Our macro model is a continuum description of lipids that uses
DDFT [50] for representing lipid dynamics in terms of their
density �elds. Proteins (positions and con�gurational states) are
represented as particles that interact with each other and with the
lipids This model comprises a 1 �m ⇥ 1 �m bilayer discretized
as a 2400⇥2400 grid, with 8 lipid types in the inner and 6 types
in the outer lea�et [34]. We use a custom simulation package,
GridSim2D — a parallel CPU code written in C++ that uses MPI for
communication. Using a total of 3600 MPI ranks (24 CPU cores per
node at 150 nodes), GridSim2D can simulate v0.96 ms per day of
walltime. With an I/O rate of 1 �s, a new snapshot is delivered every
90 seconds and, when stored in a custom binary format, consumes
v374 MB of disk space.

(2) Createsim: Mapping Continuum-to-CG. Compared to the
continuum scale, the CG and AA simulations are restricted in
the spatial extent due to high computational cost. To couple
continuum with these scales, 30 nm ⇥ 30 nm “patches” are cut out
of continuum snapshots in regions that may be of interest for CG
and AA simulations. The createsimmodule transforms a patch from
continuum representation into a particle-based one. The insane
tool [74] is used to create a CG representation of the membrane
and proteins. Once constructed, GROMACS [1] is used to relax the
membrane and proteins into a more natural, equilibrated, state in
preparation for simulation. Createsim is a custom Python-based
code that uses 24 CPU cores and, on average, takes v1.5 hours to
complete.

(3) CG Simulations and Analyses. Given the particle
representation of lipids and proteins, CG simulations with the
Martini force �eld [51] are performed using the CUDA®-enabled
version [78] of ddcMD [68]. Custom, Python-based analysis
is executed simultaneously on the same computational node
and accesses the local on-node RAM disk for analysis of the
MD trajectories generated by the corresponding simulation.
Each ddcMD simulation uses one GPU and one CPU core; the
corresponding analysis is allocated 3 CPU cores. With this setup
and an average of v140,000 particles, ddcMD delivers v1.04 �s
of MD trajectories per day per GPU [78], and produces about 4.6
MB new data every 41.5 seconds. The analysis module is tuned
to �nish inspecting each snapshot within this time period and
generates 17 KB additional data every 41.5 seconds.

(4) Backmapping: Mapping CG-to-AA. To overcome the
limitations of the CG model [4], it is further re�ned using a
backmapping scheme that translates a CG representation in time
into AA using the CHARMM36 force �eld [10]. This procedure

4LLNL-PRES-861497

Autonomous MultiScale (AMS) integrates ensemble
techniques, ML surrogate models, services, and databases.

5LLNL-PRES-861497

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

C
onveyorLC

(Flux Job 1)

…

…

Docking Flux Instance
(CPU Cluster)

Kubernetes

RabbitMQ

Vast
Filesystem

Docking
Adapter

Fusion Flux Instance
(GPU Cluster)

Docking n

…

Docking n

…
……

Docking n

…

Fusion Worker
(Flux Job 1)

Fu
sio

n
Ad

ap
te

r

Docked Ligand Data
Fusion Scoring Data

GMD Structural Core

M
aestro M

ae
st

ro

RabbitMQ Messages

State-of-the-art, composite workflows run across clusters
and integrate the cloud

Cluster
A

Single-cluster, composite scientific
workflows like MuMMI challenge
current computing environments

Multi-cluster, cloud enabled workflows
emerging at LLNL and beyond
§ Coupled MPI-based tasks and deep-

learning models (AHA MoleS)
§ HPC simulation with AI/ML surrogates

(AMS)

2020 RADIUSS survey found 73% of
LLNL workflows interested in cloud,
<10% use it

Challenges: resource management,
scheduling converged environment

6LLNL-PRES-861497

The what and why of movement to the cloud; it’s eating
everyone’s lunch.
The cloud is an environment
(public, private, both)
supporting:
§ Portability, reproducibility
§ Resiliency, efficiency, elasticity
§ Reduced complexity via

automation

Reed, Gannon, Dongarra, 20234
§ Few HPC vendors build large
systems
§ HPC endothermic, cloud is
exothermic
§ $500M system/5 yrs little
incentive for hyperscalers

Companies rent this
environment; hugely profitable
§ projected >$1.1T by 2027, 20%

CAGR (22-27)1
— exceed traditional computing in 2025

§ vs HPC: $40B by 2026, 21-26
CAGR 6%2 1Gartner 2023, 2Hyperion 2023, 3The Decline of Computers as a

General Purpose Technology, CACM March 2021 4HPC
Forecast: Cloudy and Uncertain, CACM February 2023

Thompson, Spanuth, 20213:
Computing areas become more
distinct, provide fewer benefits to
others. Areas that get left behind:
§ See little performance benefit
§ Market too small to justify NRE

costs
§ Cannot coordinate demand

7LLNL-PRES-861497

Kubernetes (K8s):
§ cloud “OS” with

77K contributors
(second largest
OSS project ever)

§ designed for
loosely coupled
apps

§ not focused on
performance
(scheduling
limitations,
throughput…)

A key to best-of-both-worlds converged computing is
combining HPC with Kubernetes.

HPC:
§ performance is in the

name
§ very difficult to

manage modern
workflows

§ not designed for
dynamism/elasticity

Converged Computing project:
how to create a converged environment
composed of the best of both worlds?

Automation, declarative mgmt

Loosely-coupled apps

Schedule software resources

Lifecycle, network orchestration

Tightly-coupled apps (MPI)

Schedule complex hardware

Sophisticated queueing

HPCKubernetes

8LLNL-PRES-861497

Flux addresses key technical problems that emerge from
exascale and converged computing.

§ Open-source project in active development
at flux-framework GitHub organization
— Multiple projects: flux-core, -sched,
 -security, -accounting, -k8s, -operator etc.
— Over 15 contributors, including some principal

engineers behind Slurm

§ Single-user and System instance modes
— Single-user mode in production for about 5 years
— System instance on several LLNL Linux clusters

§ Deploying on LLNL El Capitan exascale
system

9LLNL-PRES-861497

Flux hierarchical management and graph-based scheduling
address converged computing challenges.

Modular, hierarchical design
§ Hierarchical resource management and

scheduling (separate modules)
§ Sub-manager with specialized scheduler
§ Schedules cloud resources

Manages resources nearly anywhere
§ Bare metal resources, virtual machines in the

cloud, HPC resources in another workload
manager, pods in Kubernetes

§ Workflows only need to program to Flux
§ Directed graph resource model expresses

complex, dynamic resources

Rich, well-defined interfaces
§ Facilitate communications and coordination

among tasks within a workflow
§ CLI, Python, C, C++, Rust, Go, etc.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Depth-1

Depth-2

Depth-3

Network subsystem

Containment subsystem

10LLNL-PRES-861497

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

The converged computing project advances convergence
with representative, Flux-based models.

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

L1: Fluence project
enables portable
converged workflows

L3: Flux + Usernetes
reduces software
complexity, increases
automation,
performance

L4: Elastic cloud
nesting model
enables autoscaling
and dynamism

L2: Flux Operator.
Enables portable
converged
workflows

Portability is a component of performance and means of cost control

11LLNL-PRES-861497

The scheduler is a big contributor to converged workload
performance variability.

Fluence
§ Plug Fluxion into K8s

Scheduling Framework
§ Enable cloud-native MPI to

scale three orders of
magnitude higher

§ Compare CORAL-2
benchmarks scheduled by
Fluence, kube-scheduler:
up to 3x shorter workflow
runtimes, much less
variability, deterministic
placement1

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

Fig. 3: The placement diagram specifies nodes as columns and jobs as rows. The top half were scheduled by Kube-scheduler
and the bottom by HPKube. Each cell represents a job on one node and is colored by the number of pods the node ran during
that job. The value inside each cell denotes the number of unique applications that ran during the job. Red cell borders indicate
that the node ran an application that experienced a startup delay waiting for resources. Boxplots on the right show end-to-end
time distributions for AMG and QMCPACK per scheduler (orange is HPKube, blue is Kube-scheduler); outliers are not plotted.

free resources on the node where the pods were placed, thus
resource utilization was not maximized. In the large configu-
ration, we again achieved a lower execution time. The cluster
did not offer a low-latency interconnect (e.g., Infiniband) and
bandwidth was limited at 16Gbps. As LAMMPS scales better
with low-latency interconnect, it could not scale beyond a
certain number of ranks. We decided to use up to 250 ranks
for the multi-application scenario, so we could run more ranks
for LAMMPS but also leave more resources for AMG.

c) QMCPACK: When using the default scheduler, QMC-
PACK rarely ran to completion in the smallest configuration,
and it always failed for the medium and large setup due to
MPI ranks aborting. Setting the affinity to two zones out of
three (tor-1 and tor-2) allowed all the jobs scheduled by the
default scheduler to succeed. QMCPACK achieved shortest
execution time with the medium setup. With HPKube we
obtained an end-to-end execution time about 1.5⇥ lower in
all three scenarios. QMCPACK obtained the lowest execution
time with both schedulers with 250 MPI ranks, so we conclude
that using 250 MPI ranks will yield the best performance in
the multi-app scenario.

2) Three-App Workflow: We ran the three workloads si-
multaneously in the cluster, occupying the largest number of
resources as possible and pushing AMG to its limits. We ran
the apps with the three configurations reported in Table I (see
row AMG, LAMMPS, QMCPACK), for a total of 420, 675, and
1650 ranks per configuration. The large test case fully occu-
pied all 60 nodes in the cluster. The workflow creation order
was AMG, LAMMPS, and then QMCPACK. We tested the
workflow with and without zone affinity for QMCPACK and
LAMMPS. Because of the allocation order, QMCPACK was
less spread over three zones as fewer resources were available
after AMG and LAMMPS were allocated. This let QMCPACK
run to completion even without zone affinity. Furthermore,
zone affinity only reduced median execution times by about
one tenth of a second. Therefore, we concluded that forcing
affinity with the default scheduler would not produce a major
performance improvement. Figure 4 shows the execution times
for each experiment. Small, medium and large setup denoted
by S, M and L (see Table I). Default scheduler in blue, HP-
Kube in orange. Since we used a packing policy with HPKube,
AMG did not perform well in the smallest setup in comparison
to the default scheduler (Fig. 4a, 140-S), because the pods

kube-scheduler

Fluence

https://github.com/flux-framework/flux-k8s
1One Step Closer to Converged Computing: Achieving Scalability with Cloud-Native HPC, 2022

https://github.com/flux-framework/flux-k8s

12LLNL-PRES-861497

We are improving converged workflow portability and
efficiency.

Flux Operator1

§ Bootstrap Flux in K8s;
hierarchically manage,
schedule pods

§ Ported 15 proxy apps; MuMMI
in progress

§ Addresses major limitations of
K8s: throughput, multiple
users, fairness, allocation
usage

§ Scalable MPI bootstrap
§ Autoscaling in progress
§ RESTful interface in progress

https://flux-framework.org/flux-operator/
1The Flux Operator, F1000Research, in press 2024

https://flux-framework.org/flux-operator/

13LLNL-PRES-861497

We are porting updated MuMMI to Kubernetes.

14LLNL-PRES-861497

Testing Flux + Usernetes enables cloud on HPC and
further enhances portability.

Star Trek Cluster (taking HPC where no one’s gone before?)

u2204-02 u2204-01 u2204-03

u2204-04 u2204-05 u2204-06

u2204-07

control planekubelet

kubelet kubelet kubelet

kubelet

kubeletAdapted from V. Sochat, Kubernetes and HPC: Bare-metal bros, FOSDEM ‘24:
https://fosdem.org/2024/schedule/event/fosdem-2024-2590-kubernetes-and-hpc-
bare-metal-bros/
https://github.com/converged-computing/flux-usernetes

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

Flux

Usernetes

Flux + Usernetes
§ Bootstrap K8s in Flux
§ K8s is restricted to user scope
§ Accounts for usage/fairshare
§ Solves resource conflict for

multiple managers/schedulers
§ No measured performance

impact (e.g., noisy neighbor)
§ Networking bottleneck: order of

magnitude lower bandwidth
§ Tested simulation + ML model

https://github.com/converged-computing/flux-usernetes
https://github.com/converged-computing/flux-usernetes
https://github.com/converged-computing/flux-usernetes

15LLNL-PRES-861497

We are collaborating with industry to tackle converged
computing, contribute to community, and advocate for HPC.

IBM T.J. Watson Research Center:
§ Expertise in K8s Scheduling

Red Hat:
§ Developers of OpenShift K8s platform

AWS:
§ Largest cloud platform, deep HPC expertise

Starting collaboration with Google!

Starting collaboration with Microsoft!

16LLNL-PRES-861497

§ Daniel Milroy | scheduling, cloud systems
§ Giorgis Georgakoudis | HPC runtimes, network-aware scheduling
§ Aniruddha Marathe | instance scheduling, application performance
§ Zeke Morton | software development
§ Tapasya Patki | graph-based scheduling
§ Abhik Sarkar | co-management challenges, performance profiling
§ Vanessa Sochat | containers (a creator of Singularity), runtimes, cloud systems,

software
§ Jae-Seung Yeom | scheduling cloud resources

Doctoral student:
§ Md Rajib Hossen | Flux-Kubernetes co-management performance

Meet the converged computing team!

17LLNL-PRES-861497

Next-generation workflows will run on a continuum from
sensors to converged clusters.
Full computing continuum already
used by industry, e.g,. autonomous
vehicle control and fleet management

Scientific workflows on the
continuum: from sensors on a
source beamline to converged
compute clusters in another region

Major challenges:
§ Resilience of distributed system
§ Resource dynamism and elasticity
§ Distributed resource management and

scheduling

La
rg

e-
Sc

al
e

C
om

pu
tin

g
Ed

ge

C
om

pu
tin

g
D

at
a

Ac
qu

is
iti

on

Cloud providers

Private cloud

Local (HPC) cluster

Edge servers, storage (near data)

Embedded systems

Operations, Engineering

Experimental Facility Devices, IoT

Leadership-class supercomputers

On Premises
Cluster

Edge Compute

Edge Device

People

Public/Hybrid
Cloud

On Premises
Hybrid Cloud

Data Sources

Thank you!
Questions?

