
Scientific application deployment
using CI/CD pipelines
SOS26
A. Fink, B. Cumming, T-I. Manitaras
March, 2024

async-encfs-dvc
Standalone pip-package extending DVC with
● support for asynchronous stages with SLURM
● transparent encryption with EncFS
● seamless Docker and Sarus integration
● YAML-based stage policies to guarantee

consistency across devs and clean project
structure…

● …while preserving the full power of DVC

+

Encourages a style, where application is agnostic to configuration
● simplifies portability between systems and reasoning
● enables inexperienced people to orchestrate workflows
● no assumptions on particular data layout

Performance benchmark results on Daint (TBD on Alps)

+ +

https://github.com/eth-cscs/async-encfs-dvc

Not part of this talk, but fits
the session.
Get in touch with Lukas
Drescher if you are
interested in more details.

https://github.com/eth-cscs/async-encfs-dvc

Application deployment using CI
On Alps we want to support different application lifecycles:

▪ Relevance: provide the latest releases of software for users

that need them

▪ Stability: don’t force users to update

▪ Support software for a full project lifecycle (3-4 years)

The Situation today on Piz Daint:

▪ Regular updates every 6 months – expect to break users’

code

▪ Provided software is often at least 6-12 months out of date

▪ Supported application upgrades is a manual process

Application deployment using CI - Objectives

▪ Fix all of the problems and have happy users

▪ System updates should not break user’s workflows

▪ Easy to maintain and easy upgrade/downgrade

▪ Easy artifact overview

▪ Easy (and maybe automated) artifact deprecation/deletion

▪ Extendible and customizable by users

▪ Not reinventing the wheel

Application deployment using CI - Key components

▪ Three key components
▪ CI targeting HPC infrastructure

▪ User environments providing scientific applications to users

▪ Regression testing framework

CI/CD setup at CSCS

Middleware: https://gitlab.com/cscs-ci/ci-testing/webhook-ci/middleware-go

https://gitlab.com/cscs-ci/ci-testing/webhook-ci/middleware-go

CI/CD setup at CSCS

Middleware: https://gitlab.com/cscs-ci/ci-testing/webhook-ci/middleware-go

▪ Middleware is the orchestrator, gatekeeper and source of truth
▪ Gitlab runners (custom executors) communicate with

middleware via REST API
▪ Middleware can be deployed on a server or kubernetes cluster
▪ At CSCS inside a kubernetes cluster (not Alps hardware)
▪ Zero downtime upgrades possible

▪ Different deployment strategies of runners
▪ Container-builder → kubernetes executor on Alps

hardware
▪ Container-runner (custom executor):
▪ Login node of slurm cluster
▪ Firecrest dispatcher

▪ Baremetal-runner (custom executor):
▪ Firecrest dispatcher

https://gitlab.com/cscs-ci/ci-testing/webhook-ci/middleware-go

User environments

User environments

▪ Provide workflow-specific software
stacks

▪ Deployed independently
▪ Deployed by users and user-support
▪ Built using spack in memory
▪ One environment is packaged to a

single squashfs-file
▪ A few yaml files define the recipe for a

user environment
▪ Building a uenv is done by the

opinionated tool stackinator:
https://github.com/eth-cscs/stackinator

https://github.com/eth-cscs/stackinator

User environments

uenv.sqfs cray-mpich

Operating system libraries - most prominent glibc, slurm, xpmem, libfabric

PETSc

Trilinos

p4est

Reframe

ReFrame is a powerful framework for writing system regression
tests and benchmarks, specifically targeted to HPC systems
▪ Composable tests written in python
▪ Portable tests in a declarative way
▪ Multi-dimensional test parameterization
▪ Parallel test execution
▪ Support for multiple HPC schedulers, module systems and

container runtimes
▪ Integration with Elastic and Graylog

Reframe: https://github.com/reframe-hpc/reframe
Tests: https://github.com/eth-cscs/cscs-reframe-tests

https://github.com/reframe-hpc/reframe
https://github.com/eth-cscs/cscs-reframe-tests

Application deployment via CI/CD pipelines

Build user environment

Open PR with
updated/new recipe

PR comment or API trigger pipeline

Push to OCI registry
(staging area, unique

naming scheme)

promoteReFrame testing of
new uenv

Push to OCI registry
(deployment area)

Users run their jobs

User environments: https://github.com/eth-cscs/alps-uenv

single file

attach metadata

https://github.com/eth-cscs/alps-uenv

Application deployment via CI/CD pipelines

User environments: https://github.com/eth-cscs/alps-uenv

Build user environment

https://github.com/eth-cscs/alps-uenv

Application deployment via CI/CD pipelines

User environments: https://github.com/eth-cscs/alps-uenv

Build user environment

https://github.com/eth-cscs/alps-uenv

Application deployment via CI/CD pipelines

User environments: https://github.com/eth-cscs/alps-uenv

Build user environment

https://github.com/eth-cscs/alps-uenv

Image Management in Pipelines

The pipeline needs to store images and associated meta data
● Images can be in large (>1GB)
● Meta data is usually small, in the order of kB:

○ JSON descriptions of the image contents, recipe, when and where it was
built, etc.

○ ReFrame test results.

We use ORAS to manage artifacts:
● ORAS provides a CLI to distribute artifacts across OCI-compliant registries.
● We leverage the artifact versioning and lifetime management features provided

by robust OCI implementations without rolling our own.

We use a JFrog registry, however any DockerHub compliant provider would work:
● OCI-compliant == DockerHub API
● Workflows are not tied to a specific artifact storage service or provider,
● And can directly use services such as GitHub Container Registry (ghcr.io)

Image Management in Pipelines

The CI pipeline stores the squashfs image in the build namespace of the
registry
● and attaches the image meta data and ReFrame test results

the full spec of the uenv: cluster/micro-architecture/uenv-name/version
$ uenv=eiger/zen2/prgenv-gnu/23.11

push the image and meta data to OCI registry (JFrog)
$ oras push jfrog.svc.cscs.ch/uenv/build/$uenv:1153388082 \
 --artifact-type application/x-squashfs store.squashfs

attach meta data to the image
$ oras attach jfrog.svc.cscs.ch/uenv/build/$uenv:1153388082 \
 --artifact-type uenv/meta ${rego}/${repo} ./meta

attach reframe test results to the image
$ oras attach jfrog.svc.cscs.ch/uenv/build/$uenv:1153388082 \
 --artifact-type uenv/reframe ./reframe_results

Image Management in Pipelines

Deployment by copying from built to the deploy namespace of the registry
● the attached meta data and test results
A simple CLI tool that wraps oras for end users, e.g:
● uenv image pull prgenv-gnu/23.11:latest
the full spec of the uenv: cluster/micro-architecture/uenv-name/version
$ uenv=eiger/zen2/prgenv-gnu/23.11

deploy by shallow-copying to the deploy namespace with tag :latest
$ oras copy --recursive jfrog.svc.cscs.ch/uenv/build/$uenv:1153388082 \
 jfrog.svc.cscs.ch/uenv/deploy/$uenv:latest

the meta data and test results are still attached to the deployed artifact
$ oras discover jfrog.svc.cscs.ch/uenv/deploy/$uenv:latest
Discovered 1 artifact referencing latest
Digest: sha256:1e2d418fe383f793449e61e64c3700de4a07822ee16a89573d78f5e59a781519

Artifact Type Digest
uenv/meta sha256:ebaedae79ce2581c0213ec6a2126fb6d9c88c1f6cfcc0ba9200730fea891f55e
uenv/reframe sha256:f0b94dcaddec23bbd27da328dc23b48c48e8483bca8a0907fd7910aa0458a159

copy the image to the local file system
$ oras pull -o ./store.squashfs jfrog.svc.cscs.ch/uenv/deploy/$uenv:latest

Application deployment via CI/CD pipelines

Reframe: https://github.com/reframe-hpc/reframe
Tests: https://github.com/eth-cscs/cscs-reframe-tests

▪ ReFrame inspects metadata
▪ Runs every test that matches metadata
▪ Tests are platform independent, the same

test can be run in a container, baremetal or
with a uenv ReFrame testing of

new uenv

https://github.com/reframe-hpc/reframe
https://github.com/eth-cscs/cscs-reframe-tests

Application deployment via CI/CD pipelines

User environments: https://github.com/eth-cscs/alps-uenv

▪ Pushing technically means to retag in the
OCI registry

▪ No additional storage requirement, same
artifact with a different name

▪ Allows all CSCS users to see the new
artifact, when they list available user
environments

▪ Upgrade / downgrade from a user
perspective means to pull a newer / older
version of the user environment

▪ Eager users can upgrade quickly,
conservative stick with the old one for their
project runtime

Push to OCI registry
(deployment area)

https://github.com/eth-cscs/alps-uenv

Application deployment via CI/CD pipelines

Application deployment via CI/CD pipelines

Application deployment via CI/CD pipelines

Thank you for your attention.
Slides inspired by presentations by Ben Cumming
and Theofilos Manitaras

Application deployment via CI/CD pipelines

User environments: https://github.com/eth-cscs/alps-uenv

Push to OCI registry
(staging area, unique

naming scheme)

▪ Leverage oras (OCI registry as storage), to
push squashfs image to JFrog

▪ Metadata is attached to the same OCI object
▪ Metadata describes software that is

supposed to be inside uenv
▪ Naming scheme in staging area is unique,

i.e. every built is kept, and can be
reproducibly tested again

▪ Allows early-access users to test potential
bugfixes without the need of deploying it

https://github.com/eth-cscs/alps-uenv

