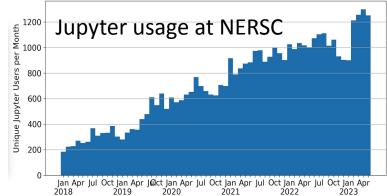

How complex HPC workflows are driving the architecture of the NERSC-10 system

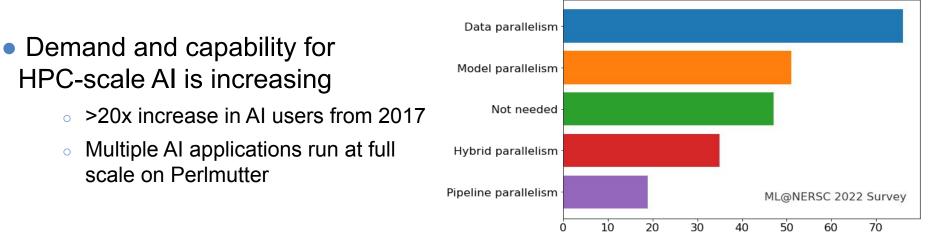
Debbie Bard Data Department Head, NERSC March 13th, 2024

As the Mission HPC Center, NERSC is Highly Connected to the Office of Science

>80% of time at NERSC is allocated by DOE program managers

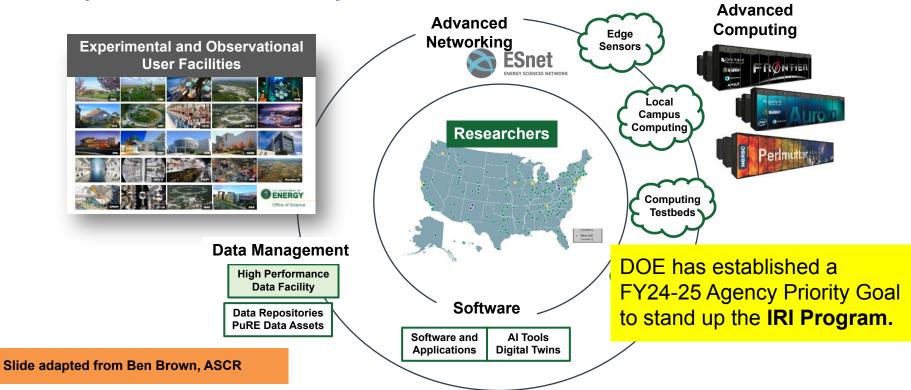

incl. 551 users from 34 HBCU+MSI

User community needs are diversifying


- Users interact with the system in new ways
 - > 2.5k Jupyter users as popular as ssh

0

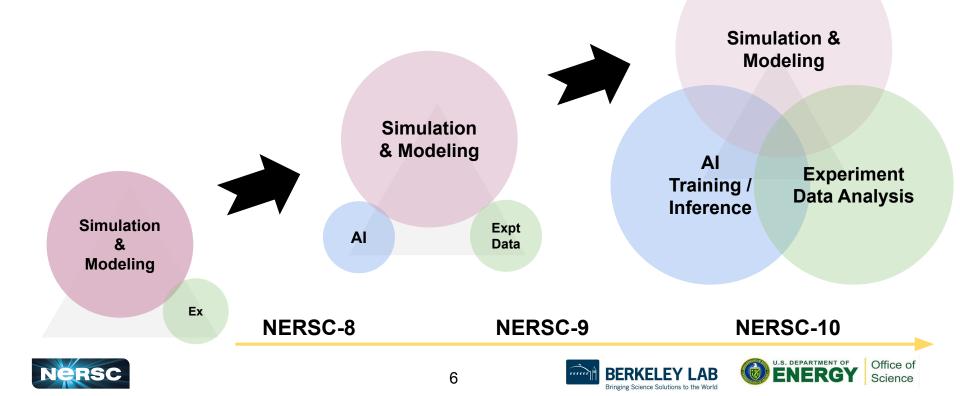
- > 4.2k Python users majority of active users
- NERSC's Top 500 result run in Shifter container
- Superfacility API: 1 request logged every 2 sec



Types of distributed training

DOE's Integrated Research Infrastructure (IRI) Vision:

To empower researchers to meld DOE's world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation


IRI will enable seamless workflows via close collaboration between ASCR facilities & the DOE Scientific Community

ASCR is implementing IRI through these major elements

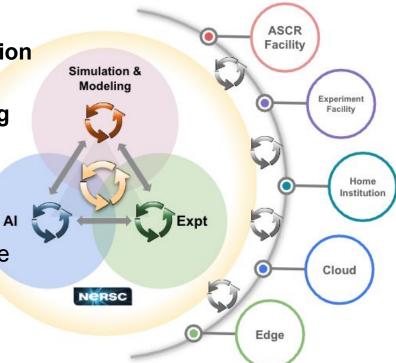
The HPC Facility Workload Balance is Evolving

N10 User Requirements are Evolving

Users require support for new paradigms for data analysis with **real-time interactive feedback between experiments and simulations**.

Users need the ability to search, analyze, reuse, and combine data from different sources into large scale simulations and Al models.

NERSC-10 Mission Need Statement: The NERSC-10 system will accelerate end-to-end DOE SC workflows and enable new modes of scientific discovery through the integration of experiment, data analysis, and simulation.


What is an HPC Workflow?

Workflows are interconnected computational and dataflow tasks with data products. They have task coupling (control flow) and/or data movement between tasks (data flow).

High performance computing (HPC) workflows interconnect computational and data manipulation steps across one/some/all of:

- High performance simulation and modelling
- High performance AI workflows
- High performance data analytics

We've been running workflows for decades - but the complexity and timeliness of workflows is changing which motivates a new approach with N10.

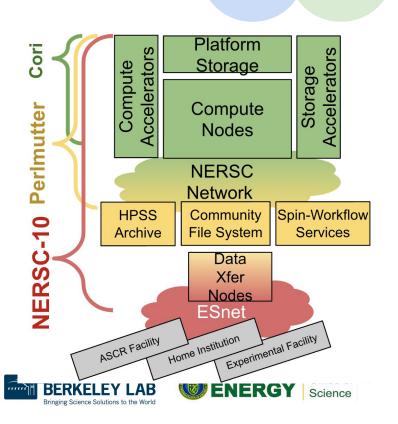
We identified 6 workflows archetypes to help define our vision for N10

1. High-performance simulation & modeling workflow	large-scale multi-physics applications with checkpoint/restart, data post-processing, visualization
2. High-performance AI (HPAI) workflow	data integration-intensive science patterns such as training, inference, hyperparameter optimization
3. Cross-facility workflow: Rapid data analysis and real time steering	time-sensitive science patterns such as superfacility, edge, and hybrid cloud
4. Hybrid HPC-HPAI-HPDA workflow	long-term campaign science patterns, Al-in-the-loop, Al-around-the-loop
5. Scientific data lifecycle workflow: Interactive, data-analytics and viz	data integration-intensive science patterns such as Jupyter, scientific databases, VSCode
6. External event-triggered and API-driven workflow	time-sensitive science patterns such as function-as-a-service, microservices

We identified 6 workflows archetypes to help define our vision for N10

1. High-perfo	rmance simulation &	large-scale multi-physics applications with			
modeling wo	Workflows Arch	visualization			
2. High-perfc	VUINIUWS AICI Ve	s such as ization			
3. Cross-faci analysis and	Deborah Bard, Taylor Groves, Brian Austin, Kevin Gott	uperfacility,			
4. Hybrid HP	Brian Austin, Kevin Gott, Shane Canon,Kristy Kallback-Rose, Jay Srinivasan, Hai Ah Nam, Nicholas J. Wright n-the-loop				
5. Scientific d Interactive, da	ata search for "NERS	SC workflows white paper" Jupyter, scientific databases, VSCode			
6. External ev workflow	ent-triggered and API-driven	time-sensitive science patterns such as function-as-a-service, microservices			

HPC Workflows Drive N10 Technology Capabilities


	Cloud native/ containers	QoS storage system (QSS)	End -to- end API	Network/ scheduling QoS	IRI/ Multi-site workflows	Smart networking	Prog. Env	Workflow Enablement Nodes (WEN, fka Spin)
1.Simulation & modeling		Х	Х			X	Х	
2.AI	Х	Х	Х	Х	Х	Х	Х	Х
3.Cross-facility	Х	Х	Х	Х	Х	Х		Х
4.Hybrid HPC- HPAI-HPDA	X	Х	Х	X	X	X	Х	Х
5.Scientific data lifecycle	X	Х	Х	X			X	Х
6.Event-triggere d & API-driven	X	Х	Х	X		X	Х	Х

HPC Workflows Drive N10 Technology Capabilities

	Cloud native/ containers	QoS storage system (QSS)	End -to- end API	Network/ scheduling QoS	IRI/ Multi-site workflows	Smart networking	Prog. Env	Workflow Enablement Nodes (WEN, fka Spin)
1.Simulation & modeling		Х	Х			X	Х	
2.AI	Х	Х	Х	Х	Х	X	Х	Х
3.Cross-facility	Х	Х	Х	X	X	X		Х
4.Hybrid HPC- HPAI-HPDA	Х	Х	Х	X	Х	X	Х	Х
5.Scientific data lifecycle	х			X Innot be don			X	×
6.Event-triggere d & API-driven	Х	× Gr	een: (: can be don can be ^x done	e only with today in li	mited way	ary eπα X	X

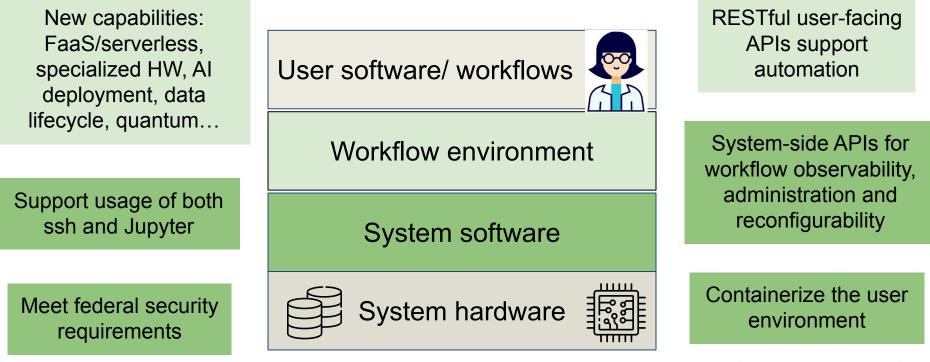
NERSC-10 is Designed to Support Complex Simulation and Data Analysis Workflows at High Performance

- **Quality of Service**: computation, storage and networking enables response-time plus utilization.
- Seamlessness: tight integration of system. components enables high performance workflows.
- **Programmability**: APIs manage data, execute code, and interact with system resources.
- **Orchestration**: coordinates resource management across domains.
- **Portability:** Modular workflow execution across IRI sites.
- Security: authentication, authorization and auditing.

Simulation & Modeling

Training &

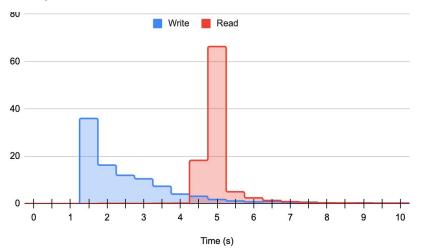
Inference


Experiment

Data

Analysis

Innovation in software is key to enabling complex workflows

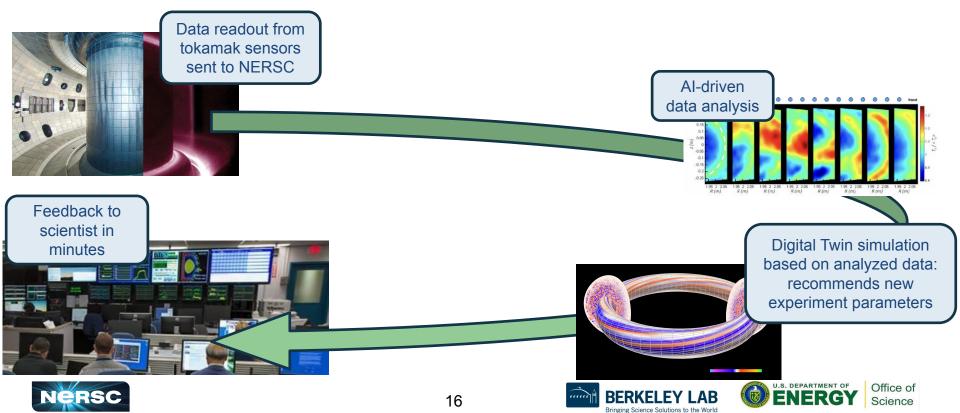


U.S. DEPARTMENT OF

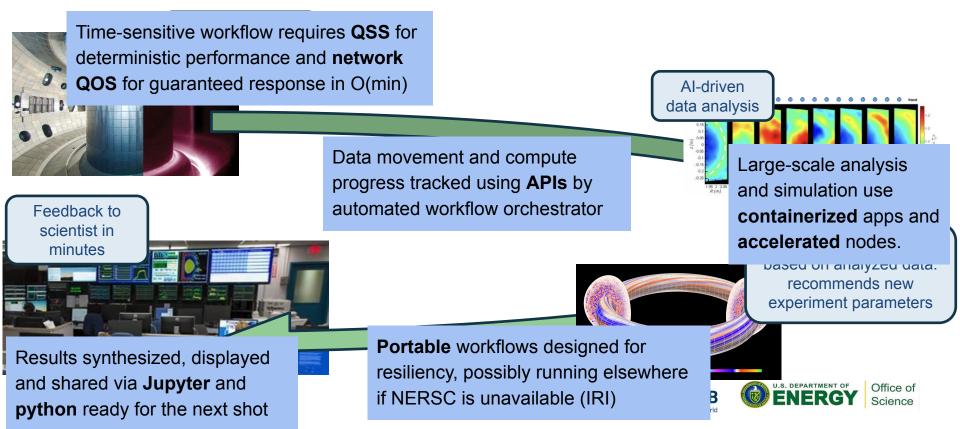
Office of

Science

The NERSC workload requires capabilities that are hard to reconcile in a single file system

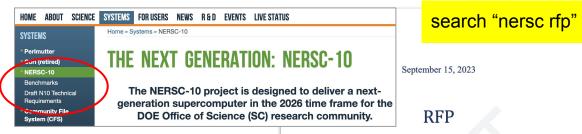

IOR performance on Perlmutter

- 21% of all write tests took more than twice as long as the mode (1.5 sec)
- 2% of all write tests took at least five times longer than the mode


For instrument-driven and time-dependent workflows such variance could be catastrophic

- Quality of Service Storage System (QSS) will provide controllable, guaranteed IOPs / bandwidth to meet the needs of time-sensitive workflows
- Platform Storage System (PSS) is a more traditional FS that will meet the needs of much of the NERSC workload

Cross-facility workflow example: Fusion science with DIII-D, preparing for ITER


Cross-facility workflow example: Fusion science with DIII-D, preparing for ITER

NERSC-10 RFP: Technical Requirements

Technical Summary:

- No peak flops
 requirement
 - 10x on workflow component benchmarks
- CPU + GPU nodes
- Two kinds of storage
 - PSS 120 PB, 20 TB/s
 - QSS 80 PB, performance guarantees
- Workflow Environment (beyond the programming environment)
- Modular system software and management to support complex workflows

Technical Requirements Document

for

NERSC-10 System

Version 3.0

Lawrence Berkeley National Laboratory is operated by the University of California for the U.S. Department of Energy under contract NO. DE-AC02-05CH11231.

RFP Technical Requirements Document for NERSC-10 System, Version 3.0, September 15, 2023

Office of

Science

NERSC-10 Timeline

- Project Authorized by DOE (CD-0) Sept 2021
- Advanced Acquisition Plan approved by DOE March 2023
- Draft RFP Release 20 April 2023
- Technical Design Review August 2023
- Berkeley Lab Director's Review (Red Team) Fall 2023

19

- CD-1 December 2023
- RFP Release March 2024
- Contract signed (CD-2) Late CY 2024
- (Potential) Phase I or Pilot System- mid 2025
- Technical Decision Point Late 2025
- Main System Delivery Late 2026
- User access 2027

we	are	here

The NERSC-10 system will accelerate end-to-end DOE SC workflows and enable new modes of scientific discovery through the integration of simulation, data analysis and experiment.

Our technology choices for NERSC-10 are informed by the work we've done over the past 5 years to develop, operationalize and support Perlmutter and our users including lessons learned from the Superfacility project and IRI.

We're building an engagement model to coordinate a complex set of requirements and stakeholders in a changing technology landscape.

- N10 will deliver 10x Perlmutter performance on HPC workflows.
- *N10 is designed to be IRI-ready.*
- GPU-enabled applications should have minimal issues in porting/running their applications.
- The N10 RFP will be released any moment now, with system delivery in 2026.

Thanks!

Multiple science teams are using NERSC for superfacility-enabled science, in production

The 3 year Superfacility project kick-started this work, building the base infrastructure and services. We now support **multiple science teams using automated pipelines to analyze data from remote facilities at large scale**, without routine human intervention, using:

- Real-time computing support
- Dynamic, high-performance networking
- Data management and movement tools, incl. Globus
- API-driven automation
- HPC-scale notebooks via Jupyter
- Authentication using Federated Identity
- Container-based edge services supported via Spin

Multiple science teams are using NERSC for superfacility-enabled science, in production

A set of 8 initial close science engagements drove this work, but the impact has scaled to benefit all NERSC users

- Real-time computing support ²
- Dynamic, high-performance networking
- Data management+movement tools, incl. Globus
- Interactive HPC via Jupyter
- Container-based edge services supported via Spin
- **API** interfaces
- Federated Identity/auth
- Collaboration accounts for automated "robot"

AMCR

SciData

access

>20 science teams use the **realtime** qos to process urgent data

>1500 unique **Jupyter** users per month, similar to number of users who ssh into our systems

>250 users, >85 projects use **Spin**

>40 projects use the NERSC API, ~19M logged requests since May 2022 = one request every 2 sec

>1400 users are now logging in with a home lab identity

