
Performance portability
in weather and climate HPC applications
SOS26 Workshop
Edoardo Paone, CSCS
March 12, 2024

Challenges in W&C application design

3

4

A multi-domain software stack

The data structure The physics computation SW optimization & deployment

(1) Jungclaus, J. & Lorenz, Stephan & Schmidt, H. & Brovkin, V. & Brüggemann, N. & Chegini, Fatemeh & Crueger, Traute & De-Vrese, P. & Gayler, V. & Giorgetta, Marco & Gutjahr, Oliver & Haak, Helmuth &
Hagemann, Stefan & Hanke, M. & Ilyina, Tatiana & Korn, Peter & Kröger, Jürgen & Linardakis, L. & Mehlmann, C. & Claussen, M.. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in
Modeling Earth Systems. 14. 10.1029/2021MS002813.

(2) Wild, M. Introduction into parameterizations and parameterization of the planetary boundary layer. Institute for Atmospheric and Climate Science, ETH Zurich.

(1) (2)

The ICON model

5

§ ICON is a modelling framework for numerical weather and climate prediction.
§ Released as open-source code in January 2024.

application code and
optimization code

inter-mixed in one place

https://www.icon-model.org/

Challenges for code maintainability and performance portability

6

§ Imperative programming languages describe how computation is done, rather than what it does.

§ Compiler directives and macros reduce code readability.

§ Optimization code grows with the number of different target architectures.

The EXCLAIM project

§ Aims at developing a computing platform based on ICON model that is capable
of running kilometer-scale climate simulations.

§ Rewrites the ICON model using GT4Py, a declarative domain specific language
(DSL) supporting the computational patterns of W&C applications.

7

ç ICON Fortran
GT4Py DSL è

performance portable,
HW-agnostic user code

https://github.com/GridTools/gt4py

GT4Py

c: Field[[Cell], float] = [c(0), c(1), ..., c(7)]
v: Field[[Vertex], float] = [v(0), v(1), ..., v(8)]

V2C: Connectivity[origin=Vertex, neighbor=Cell] =
[[0], [0, 1, 2], [2, 3], ..., [7]]

fv: Field[[Vertex], float] =
neighbor_sum(c(V2C), axis=V2CDim)

§ The GT4Py DSL provides a data structure (called Field) and a set of operators
to express stencil-based computations.
§ A field maps a position in the form of tuple of indices to a value.

GT4Py programming model

0 1 2

3 4 5

6 7 8

0
1

2
3

4
5

6
7

9

GT4Py programming model

§ The GT4Py DSL provides a data structure (called Field) and a set of operators
to express stencil-based computations.
§ A field maps a position in the form of tuple of indices to a value.
§ Field operators cover most patterns of explicit finite-difference and finite-volume discretization

and are composable.

10

@field_operator
def lap(u: Field[[I, J], float]) -> Field[[I, J], float]:

return (-4.0 * u + u(I[1]) + u(J[1]) + u(I[-1]) + u(J[-1]))

@field_operator
def laplap(u: Field[[I, J], float]) -> Field[[I, J], float]:
return lap(lap(u))

GT4Py programming model

§ The GT4Py DSL provides a data structure (called Field) and a set of operators
to express stencil-based computations.
§ A field maps a position in the form of tuple of indices to a value.
§ Field operators cover most patterns of explicit finite-difference and finite-volume discretization

and are composable.
§ A program is a sequence of (stateful) operator calls transforming the input arguments and

writing the result to the specified output field.

11

@program(backend=...)
def program1(inp1: AnyField, out1: AnyField, out2: AnyField):
operator1(inp1, out=out1)
operator2(inp1, out=out2)
...

GT4Py programming model

§ A declarative language, that describes what the computation does, not how to
execute it.

§ Makes the highly-productive Python ecosystem available to domain scientists.
§ By selecting a different backend users can switch to a different hardware

architecture (e.g GPUs) with the change of a single line.

12

GT4Py toolchain

§ GTFN backends rely on GridTools:
§ Optimizations on the iterator intermediate representation (ITIR) exploit the semantics of field

operators to improve the schedule of operations in the stencil program.

13

Field

@field_operator @scan_operator

k+1 k-1

@program

@program(backend=...)
def program1(inp1: AnyField, out1: AnyField, out2: AnyField):
 operator1(inp1, out=out1)
 operator2(inp1, out=out2)
 ...

@field_operator
def edge_average(vertex_field: Field[[Vertex], float])

-> Field[[Edge], float]:
return 0.5*(vertex_field(E2V[0])+vertex_field(E2V[1]))

@scan_operator(axis=KDim, forward=True, init=0.0)
def simple_scan_operator(
 carry: float, current_value: float
) -> float:
 return carry + current_value

simple_scan_operator(inp_field, out=out)

↦ ↦
Field[[Vertex], float]

vertex_field(E2V[0])

neighbor_sum(flux(V2E), axis=V2EDim)

•

•

•
•

•

•

@field_operator
def laplap(u: Field[[I, J], float]) -> Field[[I, J], float]:
return lap(lap(u))

https://github.com/GridTools/gridtools

Field

@field_operator @scan_operator

k+1 k-1

@program

@program(backend=...)
def program1(inp1: AnyField, out1: AnyField, out2: AnyField):
 operator1(inp1, out=out1)
 operator2(inp1, out=out2)
 ...

@field_operator
def edge_average(vertex_field: Field[[Vertex], float])

-> Field[[Edge], float]:
return 0.5*(vertex_field(E2V[0])+vertex_field(E2V[1]))

@scan_operator(axis=KDim, forward=True, init=0.0)
def simple_scan_operator(
 carry: float, current_value: float
) -> float:
 return carry + current_value

simple_scan_operator(inp_field, out=out)

↦ ↦
Field[[Vertex], float]

vertex_field(E2V[0])

neighbor_sum(flux(V2E), axis=V2EDim)

•

•

•
•

•

•

@field_operator
def laplap(u: Field[[I, J], float]) -> Field[[I, J], float]:
return lap(lap(u))

GT4Py+DaCe toolchain

14

ITIR

C++

CUDA C++

SDFG Simplify

Optimize (CPU)

Optimize (GPU)

§ DaCe backend:

DaCe

15

§ An SDFG is a hierarchical state machine of
acyclic dataflow multigraphs.

16

Stateful Dataflow multiGraphs (SDFG)

explicit data movements

state transitions

https://spcldace.readthedocs.io/en/latest/sdfg/ir.html

§ An SDFG is a hierarchical state machine of
acyclic dataflow multigraphs.

§ Create the SDFG programmatically from ITIR
using the SDFG builder API.

17

Stateful Dataflow multiGraphs (SDFG)

ITIR

https://spcldace.readthedocs.io/en/latest/sdfg/ir.html

§ An SDFG is a hierarchical state machine of
acyclic dataflow multigraphs.

§ Create the SDFG programmatically from ITIR
using the SDFG builder API.

§ The DaCe frontend allows to parse and
include external stencil-SDFGs.

18

Stateful Dataflow multiGraphs (SDFG)

nested SDFGs

https://spcldace.readthedocs.io/en/latest/sdfg/ir.html

DaCe optimization

§ Different means for SDFG optimization:
§ Graph rewriting transformations that preserve the SDFG semantics.
§ Local and global auto-tuning (e.g. data layout, map permutation, map tiling, map fusion).

19

CUDA code generation

20

Packaging application code and optimization code

21

W&C application repository

application code
and

backend selection

Python + DSL
(HW-agnostic stencils)

domain
scientists

performance
engineers

DaCe

.cpp .cu

arch-A

.cpp .cu

arch-B

optimization code

Python + CUDA/C++
(application-aware

and target HW-aware)

Conclusions

§ Improve productivity of domain scientists by
providing a DSL + the Python SW ecosystem.

§ Improve code portability and maintainability by
separating application code from optimization code.

§ Provide additional optimization opportunities by
means of data-centric analysis.

§ Produce C++/CUDA source code optimized for the
target architecture.

23

Performance portability in W&C HPC applications

GT4Py DaCe

.cpp .cu

arch-A

.cpp .cu

arch-B

Thank you for your attention.

