SOS 26 March 12th, 2024

Workflow Execution Interface (WEI): A Practical Framework for Integration of Diverse Scientific Instruments at Scale for Automated Scientific Experimentation

CASEY STONE

Computational Scientist Data Science and Learning Division Argonne National Laboratory Rafael Vescovi, Doga Ozgulbas, Ryan Lewis, Tobias Ginsburg, Abe Stroka, Kyle Hippe, Rory Butler, Mark Hereld, Ben Blaiszik, Tom Brettin, Priyanka Setty, Arvind Ramanathan, Ian Foster

Published Work

RESEARCH-ARTICLE

У in 🥶 f 🗳

PDF

Exploring Benchmarks for Self-Driving Labs using Color Matching

 Authors:
 Tobias Ginsburg,
 Kyle Hippe,
 Ryan Lewis,
 Alleen Cleary,
 Doga Ozgulbas,
 Rory Butler,

 Casey Stone,
 Abraham Stroka,
 Rafael Vescovi,
 Ian Foster Authors Info & Claims

SC-W '23: Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis • November 2023 • Pages 2147–2152 • https://doi.org/10.1145/3624062.3624615

Published: 12 November 2023 Publication History

(I) Check for updates

77 0 📌 23

▲ ■ III View all Formats

ABSTRACT

Self Driving Labs (SDLs) that combine automation of experimental procedures with autonomous decision making are gaining popularity as a means of increasing the throughput of scientific workflows. The task of identifying quantities of supplied colored pigments that match a target color, the color matching problem, provides a simple and flexible SDL test case, as it requires experiment proposal, sample creation, and sample analysis, three common components in autonomous discovery applications. We present a robotic solution to the color matching problem that allows for fully autonomous execution of a color matching protocol. Our solution leverages the WEI science factory platform to enable portability across different robotic hardware, the use of alternative optimization methods for continuous refinement, and automated publication of results for experiment tracking and post-hoc analysis.

DOI: 10.1039/D3DD00142C (Paper) Digital Discovery, 2023, 2, 1980-1998

Towards a modular architecture for science factories

Rafael Vescovi[®], Tobias Ginsburg[®], Kyle Hippe[®], Doga Ozgulbas[®], Casey Stone[®], Abraham Stroka[®], Rory Butler[®], Ben Blaiszik[®] ^{ab}, Tom Brettin[®], Kyle Chard[®], Mark Hereld[®], ^{ab}, Arvind Ramanathan[®], Rick Stevens[®], Aikaterini Vriza[®], Jie Xu[®], Jie Xu[®], Agingteng Zhang[®], ^{ab}, and Ian Foster[®], ^{ab} ^a Argonne National Laboratory, Lemont, IL 60439, USA. E-mail: <u>foster@anl.gov</u> ^b University of Chicago, Chicago, IL 60637, USA

Received 31st July 2023, Accepted 26th October 2023

First published on 7th November 2023

Abstract

Advances in robotic automation, high-performance computing (HPC), and artificial intelligence (A) encourage us to conceive of science factories large, general-purpose computation- and Al-enabled self-driving laboratories (SDLs) with the generality and scale needed both to tackle large discovery problems and to support thousands of scientists. Science factories require modular hardware and software that can be replicated for scale and (re)configured to support many applications. To this end, we propose a prototype modular science factory architecture in which reconfigurable *modules* encapsulating scientific instruments are linked with manipulators to form *workcells*, that can themselves be combined to form larger assemblages, and linked with distributed computing for simulation, Al model training and inference, and related tasks. *Workflows* that perform sets of actions on modules can be specified, and various *applications*, comprising workflows plus associated computational and data manipulation steps, can be run concurrently. We report on our experiences prototyping this architecture and applying it in experiments involving 15 different robotic apparatus, five applications (one in education, two in biology, two in materials), and a variety of workflows, across four laboratories. We describe the reuse of modules, workcells, and workflows in different applications, the migration of applications between workcells, and the use of digital twins, and suggest directions for future work aimed at yet more generality and scalability. Code and data are available at https://ad-sdl.github.io/wei2023 and in the ESI.

2C

DOI: 10.1039/D3DD0014

DOI: <u>10.1145/3624062.36246</u> 15

What is Autonomous Discovery?

Harnessing the power of artificial intelligence including robotics, machine learning, simulations and more — to aid in the planning, execution and analysis of scientific experiments

Workflow Execution Interface (WEI)

a robust, modular, composable, and extensible toolkit that coordinates the many instruments and services required for automated experiments and autonomous discovery in the physical sciences.

- Modular
- Open-source
- Experimental logic implemented in Python
- Integrated with Globus ecosystem

Self Driving Laboratories @ Argonne

Software for automated scientific laboratories created at Argonne National Laboratory R 31 followers O United States of America & https://www.anl.gov/autonomous-di...

README.md

Autonomous Discovery - Self Driving Laboratories

Main repositories for the AD-SDL project at Argonne National Laboratory.

Documentation RPL WEI	
Revei Public :	wei_template_workcell Public template
The Workcell Execution Interface (WEI) for Autonomous Discovery/Self Driving Laboratories (AD/SDLs)	
● Python ☆ 2 😵 2	Python
g ot2 module (Public) II	rpl workcell (Public) ::
Driver repo for the OT2 drivers	Container for various workcells/workflows for the RPL
● Python ☆ 1 😵 3	Python 🔓 1 😵 2

https://github.com/AD-SDL

A

Modules

Development of Modules

Modules can be combined into Workcells

Cart-based Workcell in RPL

Compact Workcell in Biosciences Division

Supported Devices

https://github.com/AD-SDL

WEI Architecture

WEI Architecture

WEI Server

• REST API

- Independent of user-side experiment applications and device-side module functionality
- Robust to errors, issues, and client level problems
- Manages instruments and data
- Handles experimental logging

WEI Architecture

Workflows

A sequence of steps to be executed on a given Workcell to accomplish a scientific task

- YAML formatted
- Each step specifies an action to be performed on a specified module

Protocol Files

Defines an instrument specific set of actions

name: Color Picker - Mix Colors - Workflow

metadata:

author: Tobias Ginsburg, Rafael Vescovi info: Main workflow for the RPL Color Picker version: 0.1

modules:

- name: ot2_cp_gamma
- name: pf400
- name: camera_module

flowdef:

- name: Move from Camera Module to OT2
 module: pf400
 action: transfer
 args:
 source: camera_module.plate_station
 target: ot2_cp_gamma.deck2
 source_plate_rotation: narrow
 target_plate_rotation: wide
 comment: Place plate in ot2
- name: Mix all colors
 module: ot2_cp_gamma

```
action: run_protocol
```

args:

color_A_volumes: payload.color_A_volumes color_B_volumes: payload.color_B_volumes color_C_volumes: payload.color_C_volumes color_D_volumes: payload.color_D_volumes destination_wells: payload.dolor_D_volumes

use_existing_resources: payload.use_existing_resources
files:

protocol: payload.config_path

comment: Mix colors A, B, C, and D portions according to input data

Experiment Application

Submits one or more Workflows to WEI and encodes any logic required to manage and run the experiment

Define the Experiment object that will communicate with the WEI server

Define path to the Workflow definition YAML file

Run the Workflow

Fetch the result and save it in our local directory

```
#!/usr/bin/env python3
""" Experiment Application """
from wei import ExperimentClient
def main() -> None:
  exp = ExperimentClient("localhost", "8000", "Example_Program")
 wf path = "example workflow.yaml"
  flow info = exp.start run(
       wf path.resolve(),
        payload={
           "wait time": 5,
           "file_name": "experiment_output.jpg",
        },
  exp.get_file(
        flow info["hist"]["Take Picture"]["action msg"],
        "experiment_output.jpg",
if name == " main ":
    main()
```


We need to link experimentation to computation and data management

- Cloud-hosted Globus services make it easy to orchestrate actions at 1000s of institutions
- Link with data storage
- Enables rapid analysis

Patterns

Linking scientific instruments and computation: Patterns, technologies, and experiences

Authors

Rafael Vescovi, Ryan Chard, Nickolaus D. Saint, ..., Nicholas Schwarz, Kyle Chard, Ian T. Foster

Correspondence

foster@anl.gov

In brief

We review patterns associated with computational flows that link scientific instruments with computing, data repositories, and other resources. We describe methods for implementing such flows and present use cases in which these methods are applied to process data from five different scientific instruments, each of which engages powerful computers for data inversion, machine-learning model training, and other purposes. We also discuss implications of such methods for operators and users of scientific facilities.

10.1016/j.patter.2022.100606

Color Picker Application

Autonomously mixes printer inks and analyzes an image of the results in a loop to recreate a target color

Data from closed-loop "color-picker" application are recorded automatically at ACDC.alcf.anl.gov

Analyze progress in color space

Analyze progress over time

Current Applications

Autonomous Discovery Exemplars

Autonomous Protein and Biomimetic Design

Design of antimicrobial peptides and small molecules

Discovery of redoxmers for batteries and energy storage

Development of circular plastics through waste

BSL-2 Workcell in Biosciences Division

CONTRACTOR Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

Future Challenges and Opportunities

Software Development

- Coordination of multiple
 Workcells
- Scheduling and optimization of Applications
- Error handling and recovery
- Al generation of Application running instructions

Workforce Development!

roonne National Laboratory is a

NERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Rafael Vescovi Casey Stone Doga Ozgulbas Ryan Lewis Tobias Ginsburg Abe Stroka **Rory Butler** Mark Hereld **Kyle Hippe Priyanka Setty Gyorgy Babnigg Ben Blaiszik Arvind Ramanathan Tom Brettin** lan Foster

This material is based upon work supported by the Mobilizing the Emerging Diverse AI Talent (MEDAL) project under the Advanced Scientific Computing Research, and Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

THANK YOU

Casey Stone Computational Scientist Data Science and Learning Division **Argonne National Laboratory** cstone@anl.gov

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

