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Outline

 Enabling experiment steering in a federated workflow incorporating HPC simulation, Al training &
inferencing, edge instrumentation

 Improving a spectrum reconstruction algorithm to be faster, more accurate, and generalizable

 Using log and metadata generated in this workflow to autonomously steer a science experiment

CMF Metadata and Lineage Tracking in HPC

CMF Metadata and Lineage Tracking at the Edge
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A Representative Edge-to-Exascale Autonomous Instrumentation Workflow
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Source: Bhowmik et al, Building an edge computing infrastructure for rapid
multi-dimensional electron microscopy, Microsc. Microanal. 27, 2021
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Challenges in Edge-to-Exascale Autonomous Instrumentation Workflows
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Manual, ad-hoc experiment tracking,
no lineage, limited reproducibility
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lectron microscopy, Microsc. Microanal. 27, 2021
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Automation of Edge-to-Exascale Autonomous Instrumentation Workf
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Source: Bhowmik et al, Building an edge computing infrastructure for rapid
multi-dimensional electron microscopy, Microsc. Microanal. 27, 2021
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References: - G. Saranathan et.al., Towards Rapid Autonomous Electron Microscopy with Active Metalearning, SC 23, https://doi.org/10.1145/3624062.3626085

MD/ DFT SIMULATIONS

i terials Properti
Data Orc.:hestrahod‘/‘a — Co-Scheduling, Metadata Manageme}u‘r,
- Streaming Experiment Tracking and Optimizati®n
- Staging I

- Store-forward
- DTN connection

Edge-to-Exascale SDK
(Common Federation Framework)

© HPE 2024

5

- G. Saranathan et.al., Enrichment and Acceleration of Edge to Exascale Computational Steering STEM Workflow using CMF, submitted CUG 2024

4


https://doi.org/10.1145/3624062.3626085

Challenges in Autonomous Instrumentation & Steering

‘ Long & costly experiment . @ .
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Algorithmic generalization Lack of automation, siloed &
time efficiency ~ ad-hoc execution

: ©HPE2024 | 6



Federated Workflow Deployment SDK
Enables federated hybrid workflows on data from Edge to Extreme-Scale to Cloud

Instruments and data sources Other data centers
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Orchestrating End-to-end Data Transfers and Metadata Tracking
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e Executing data streaming, store-forward jobs in edge instrumentation, storage and compute domains
e Enabling ad-hoc and workflow generated metadata to be logged and queried across compute domains

 E—
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https://arxiv.org/abs/2210.09791

Steering Microscopy Experiments with Active Meta Learning

1. Structural imaging 2. Functional analysis 3. Neural Network reconstructs 4. Neural network is trained by Active Learning
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Problem Statement Our Solution
1. Prior knowledge not utilized in model 1. Seed Active Learning with a meta-model
development trained on results from multiple microscopy
experiments and sites
2. Functional analysis disconnected from physics 2. Drive spectrum-to-function assignment and
modeling Active Learning by Molecular Dynamic (MD)

simulations. In turn, calibrate MD by experiment

References:  G. Saranathan et.al,, Towards Rapid Autonomous Electron Microscopy with Active Metalearning, SC 23
: G. Saranathan et.al.,, Enrichment and Acceleration of Edge to Exascale Computational Steering STEM Workflow using CMF, submitted CUG 2024
©HPE2024 | 9



Preliminary Results and Next Steps

CMF Metadata and Lineage Tracking at the Edge CMF Metadata and Lineage Tracking in HPC
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Results

1. Mapped a real-world Edge + HPC + Al complex
workflow involving data, fleet, authentication,
and scheduling challenges using Common
Federation Framework (CFF)

2. Demonstrated algorithmic enhancements to
improve efficiency, increase generalization of
experiment steering using Active Meta-

Instruments and data sources Other data centers
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scientific experiments with limited data
3. Ongoing improvements from workflow HpC
metadata capture, lineage tracking, and
forensic analysis using Common Metadata
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Future Challenges and Opportunities

e Work in integrating MD simulation to enable simulation steering and integration with real-world
instruments is ongoing

» Synchronizing different timescales of execution for simulation, experimentation, Al model fraining, and
active learning workflows

 Learn from prior experiment results and data characteristics to accelerate meta-model optimization after
adding new data sets

* Investigate simulation steering (calibration of simulation parameters) from results of active learning

» Consider necessary APIs and their organization for the Common Federation Framework (CFF)
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