
Leonardo Sala :: AWI :: Paul Scherrer Institute

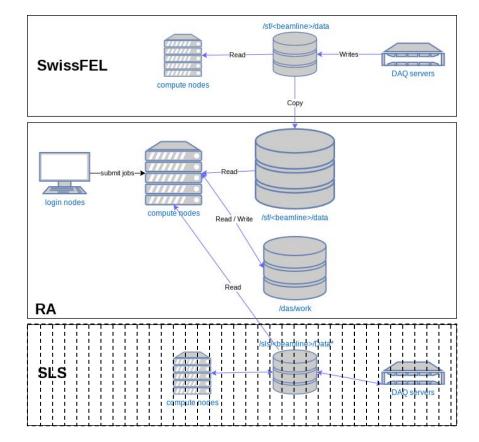
Challenges for the next generation of experiments at large scale research facilities

SOS 26, Cocoa Beach, Florida - 2024-03-11

Nothing new under the sun... but first: what / where is PSI?

Facilities at the PSI Campus

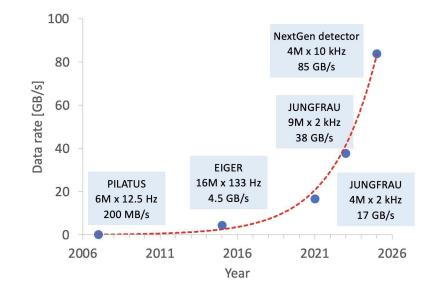
- Data acquisition is mostly run on CPUs
- Data analysis is mostly run on CPUs, and files
- Storage
 - mostly focused on **capacity** rather than speed (HDDs)
 - based on IBM Storage Scale
- Compression and reduction are mostly done by beamlines, and after data is written
- Keep most of data (RAW data == uncorrected data)



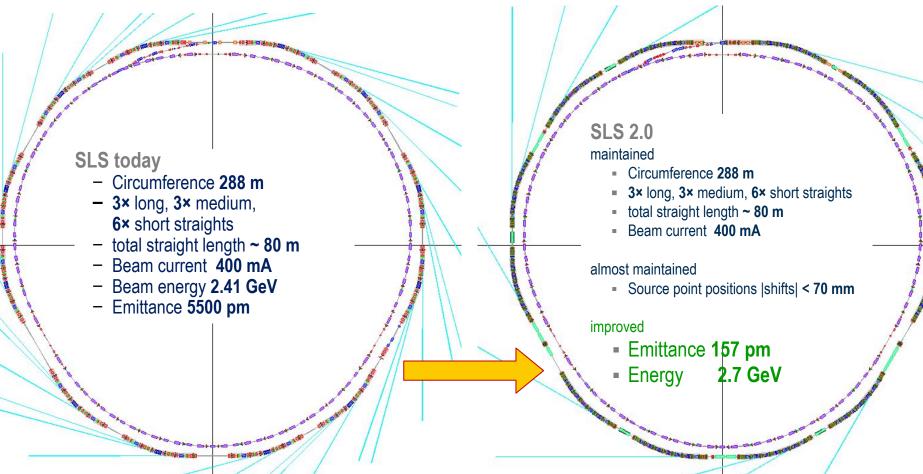
Overview – Photon Science Resources

The Photon Science (Ra) data analysis cluster has (11 PB, ~3600 cores, 16 GPUs

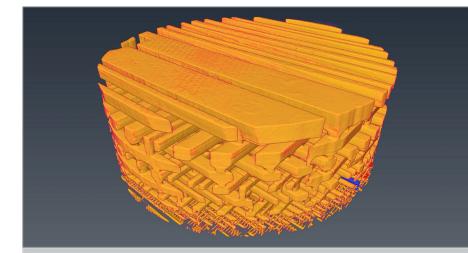
SwissFEL (and **SLS** before shutdown) have dedicated online compute nodes.


- **SwissFEL** only have a dedicated short-term buffer storage
- **SLS** had fully dedicated storage infrastructure

What are the future challenges?


- SLS upgrade
 - increased brilliance -> increased photons -> larger data
- New detectors
 - faster, smaller pixel size
 - does not scale with Moore
 - 85 GB/s
- CryoEM
 - long running experiments
 - few PB / year, 1000s GPUs

PAUL SCHERRER INSTITUT



 $SLS \rightarrow SLS \; \textbf{2.0}$

SLS 2.0 Example: Ptychography

M. Holler *et al.,* Nature **543**, 402 (2017)

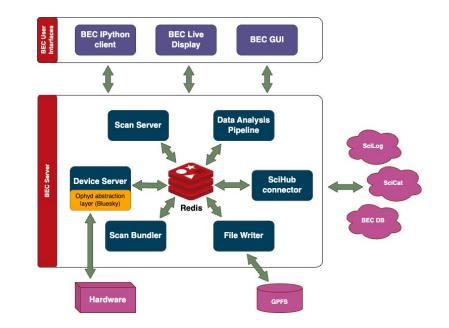
DEVELOPMENT	RESOLUTION (nm)	VOLUME (μm³)	TIME	computing power (a.u.)
State of the art	14.6	15x15x8	22 h	1
SLS 2.0	6.2	85x85x8	41 min	32
+ new undulator	4.6	150x150x8	13 min	100
+ broadband	2.6	475x475x8	1.3 min	1000
+ efficient optics	1.5	1500x1500x8	8 s	10000

Lessons from the past

- **Control** of data flow is essential
 - pre-defined data structures
 - allows for automatic procedures, e.g. archiving
 - this improves also metadata treatment
- early reduction is mandatory, speeds up further data treatment
 - sometimes difficult to get accepted
 - old way of "saving all to tape" do not scale with costs
- scheduling can be hard
 - changes in e.g. sample preparation can lead to 10x more data
 - some experimental techniques are well defined and predictable
 - this can lead to waste of dedicated static resources

Way forward for SLS 2

- Get **better control** of the data flow
 - Beamline Experiment Control (BEC) based on BlueSky / Ophyd
 - Strong integration with e-log (SciLog) and data catalog (SciCat)
- Tiered acquisition
 - low- to mid-range: on CPU, with centrally supported tools (std_daq)
 - high-range: FPGAs + GPUs
 - Fast NVMe storage to help reduction
- **Burst** scale-out for analysis
 - cater to "20%" challenging cases
 - Collaboration with CSCS (similar to Superfacility API)



BEC: Beamline Experimental Control

The BEC is a cross divisional initiative, **extending the bluesky** international initiative led from NSLSII, USA.

The BEC deployed on SLS2.0 beamlines will help enable:

- Interoperability
- Open research data (FAIR)
- Exploiting emerging technologies (AI/ML)

Jungfraujoch: hardware-accelerated platform

"Black box" design Like DECTRIS Detector Control Unit: all-in-one Optimized for MX science case

x86 server (2023) Possible performance up to 40 GB/s

HW and SW platform Data acquisition on FPGA Image analysis on GPU Compression on CPU

Jungfraujoch: hardware-accelerated data-acquisition system for kilohertz pixel-array X-ray detectors

Filip Leonarski,^a* Martin Brückner,^a Carlos Lopez-Cuenca,^a Aldo Mozzanica,^a Hans-Christian Stadler,^b Zdeněk Matěj,^c Alexandre Castellane,^d Bruno Mesnet,^d Justyna Aleksandra Wojdyla,^a Bernd Schmitt^a and Meitian Wang^a

Received 23 June 2022 Accepted 24 October 2022

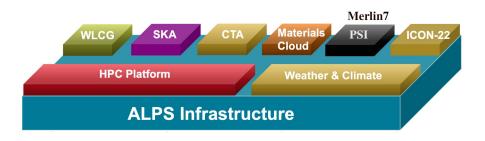
Complementary projects Innosuisse RED-ML Open Research Data

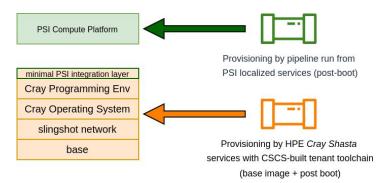
Simple deployment of JUNGFRAU for MX beamlines: tested at SLS (CH), MAX IV (SE) and KEK (JP)

Community accepted interfaces for file writing and streaming

Ongoing project to migrate local HPC resources to CSCS Alps Infrastructure:

- Based on HPE Cray EX
- Build up by the Swiss National Supercomputing center (CSCS)


Quantity	What	Notes	
1024	AMD Rome 7742 Nodes	128 cores, 256/512G RAM / node	
144	Nvidia A100 GPU nodes	4 GPUs / node	
X * 1000	Nvidia Grace Hopper modules	4 Grace Hopper / node	
	HPE Cray Slingshot network		
100 PB	Lustre Storage (HDD)		
5 PB	Lustre Storage (SSD)		



PSI's next HPC simulation/modelling cluster is being implemented as a **vCluster** on top of CSCS Alps

vCluster: Versatile software-defined cluster
→ Convergence of HPC and Cloud technologies

- FPGAs are hard(-coded)
- how many cases can we fit?
- HPC centers are historically not very flexible
- very homogeneous
- ARM means code recompilation
- Need tools to transparently integrate, focus on advanced use cases
- Data volumes
- Mandatory to reduce as early as possible
- Even tape has a cost!
- Automation
- high-throughput experiments
- what is AI/ML role in?

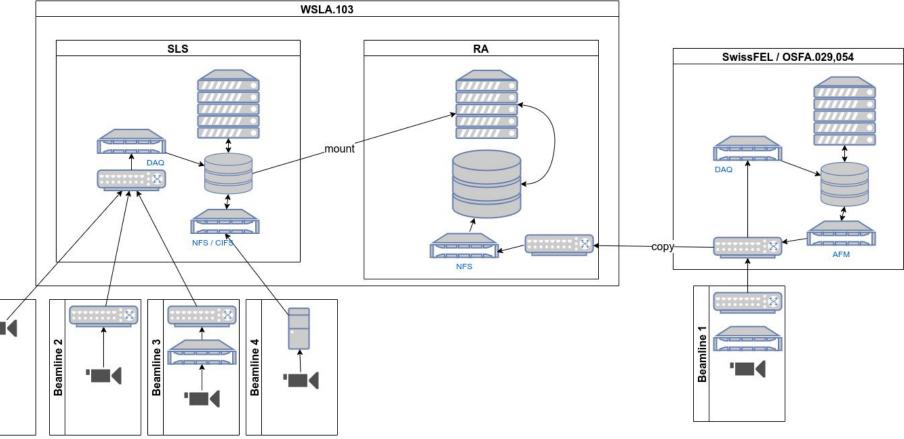
Forecast: data volumes

Wir schaffen Wissen – heute für morgen

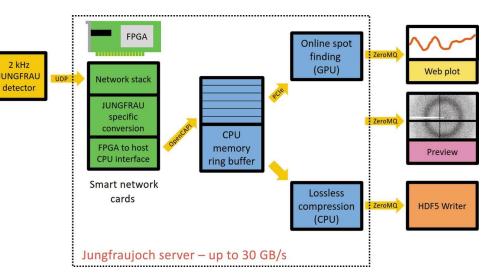
My thanks go to

- People I stole slides:
 - Alun Ashton
 - Derek Feichtinger
 - Filip Leonarski
 - Klaus Wakonig
 - Hans Braun

Bibliography / material


- Us: Science IT Infrastructure and Services (AWI)
- SLS 2 Upgrade project: <u>https://www.psi.ch/en/sls2-0</u>
- BEC: <u>A BEAMLINE AND EXPERIMENT CONTROL SYSTEM FOR SLS 2.0</u>
- JFJoch: <u>Jungfraujoch: hardware-accelerated data-acquisition system for kilohertz</u> <u>pixel-array X-ray detectors</u>
- <u>High-resolution non-destructive three-dimensional imaging of integrated circuits</u>
- ALPS: CSCS Alps Infrastructure

Beamline 1


More detailed IT Architecture

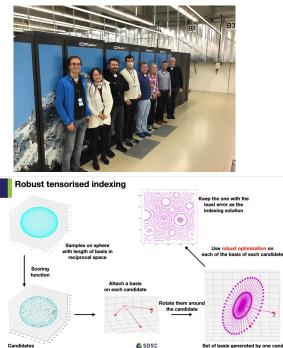
Jungfraujoch: architecture

- Jungfraujoch <-> JUNGFRAU
 - Control (via slsDetectorPackage)
 - Receiving UDP stream
- ZeroMQ stream output:
 - CBOR encoding (DECTRIS Stream2)
 - Image: raw or photon count, compresse
 - Optional pixel binning
 - Real-time analysis results
- Stream to GPFS node for NeXus writer
- Visualize images: DECTRIS Albula or Adxv
- Configuration and analysis result
 - gRPC or REST
 - Web frontend

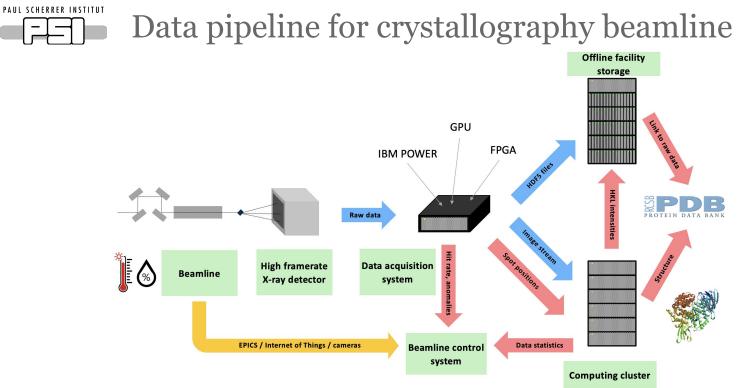
Jungfraujoch: hardware-accelerated data-acquisition system for kilohertz pixel-array X-ray detectors

Filip Leonarski,^a* Martin Brückner,^a Carlos Lopez-Cuenca,^a Aldo Mozzanica,^a Hans-Christian Stadler,^b Zdeněk Matěj,^c Alexandre Castellane,^d Bruno Mesnet,^d Justyna Aleksandra Wojdyla,^a Bernd Schmitt^a and Meitian Wang^a

Received 23 June 2022 Accepted 24 October 2022



Reduction of high volume experimental data using machine learning (RED-ML)


- Funded by the Swiss Data Science Center
- Realized by Science IT, SDSC, CSCS and MX Group
- Main outcome: fast indexing algorithm for serial crystallography running on GPUs
- Solution possible in 500 µs (CPU based algorithms require ~100 ms)
- CrystFEL integration: tested on Piz Daint supercomputer

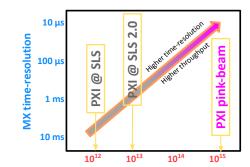
Acknowledgements:

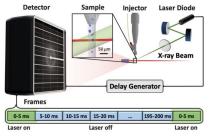
- A. Ashton, G. Assmann, L. Barba, B. Béjar,
- P. Gasparotto, M. Janousch, T. Koka,
- H. Mendoca, H.-C. Stadler

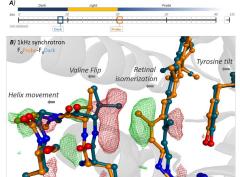
Set of basis generated by one candidate

JUNGFRAU detector for brighter x-ray sources: Solutions for IT and data science challenges in macromolecular crystallography

Cite as: Struct. Dyn. **7**, 014305 (2020); doi: 10.1063/1.5143480 Submitted: 27 December 2019 · Accepted: 4 February 2020 Published Online: 26 February 2020




Filip Leonarski,^{a)} 💿 Aldo Mozzanica, Martin Brückner, Carlos Lopez-Cuenca, Sophie Redford, 💿 Leonardo Sala, Andrej Babic, Heinrich Billich,^{b)} Oliver Bunk, 💿 Bernd Schmitt, and Meitian Wang 💿


Time-resolved serial synchrotron crystallography at SLS 2.0

- Serial crystallography solves protein structures with diffraction images from thousands of crystals
- **PXI-VESPA**: A Versatile End-station for Scattering Pink-beam Applications
- Pump-probe with nanosecond laser
- Thanks to increased brilliance of SLS 2.0 and multilayer optics **microsecond** time resolution is possible
- The most data intensive technique for MX@SLS 2.0
 - Needs surplus of images (millions)
 - Long, continuous measurements
 - kHz frame rates
- Online reduction possible only fraction of images useful

T. Weinert et al., *Science* (2019) https://doi.org/10.1126/science.aaw8634

F. Leonarski, J. Nan, ..., F. Dworkowski (submitted) «Kilohertz Serial Crystallography with the JUNGFRAU Detector at a 4th Generation Synchrotron Source»

Technical ALPS Challanges

- Multi tenancy control of the bare-metal compute nodes by PSI admins
 - PSI is the first CSCS customer institution to run a tenant managed vCluster
 - PSI vCluster is in a VLAN of the PSI DNS space. Develop security policies.
 - CSCS developing <u>Manta</u> to provide tenant admins possibility to manage the vCluster autonomously (WIP)
 - Integration of low level node information in PSI alarming / monitoring
- Architecture and workflows
 - Compute nodes have no local fast storage, so all I/O needs to be handled by the shared FS
 - Cluster used by ~90 research groups of all PSI divisions must support multitude of applications and workflows, from HEP style high throughput to MPI, GPU and single core.
 - Grace Hopper ARM-based architecture will require adaptation / porting of many user applications (many commercial or non-OSS) over this year.
- Future
 - Achieve vCluster resource elasticity to support PSI facilities use cases