

Foundation Models for Earth Observation

Philipe Dias, Ph.D. GeoAl Group Geospatial Science and Human Security Division

Aristeidis Tsaris (CCSD), Dalton Lunga (GeoAl), Abhishek Potnis, Jacob Arndt, Jordan Bowman

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Earth Observation

- Gathering of information about the physical, chemical, and biological systems of the planet Earth
- **Remote-sensing technologies**, direct-contact sensors in ground-based, airborne platforms
- Applications: human dynamics, precision agriculture, disaster management, humanitarian assistance, national security

Schmitt, Michael, et al. "There are no data like more data: Datasets for deep learning in earth observation." IEEE Geoscience and Remote Sensing Magazine (2023).

GeoAl @ ORNL

GeoAl

- Spatial explicit AI models
- Infusing spatial temporal reasoning into AI models

Capabilities developed over the years

- Mapping physical and built environments
- Disaster impacts analysis
- Help population distribution mapping
- Assess urban growth
- HPC-enabled mapping at large-scale

Examples of capabilities & applications

Characterization of built environment: model population, human dynamics

GeoAl example: Detected building footprints with socio-economic neighborhood delineations Image Credit: ORNL

From local to country-scale

Dias, P., Arndt, J., Bowman, J., Myers, A., Yang, L., and Lunga, D. "Human-Machine Collaboration for Reusable and Scalable Models in Remote Sensing Imagery Analysis". Presented at the ICML 2022 Workshop on Human-Machine Collaboration and Teaming

The multiple modalities in EO

Cesa

Sentinel-2

Launch Mass 1,130kg

DigitalGlobe

WorldView-4 Launch Mass 2,485k

Aqua (MODIS) 250m Resolution

AIRBUS

planet

Landsat-8 30m Resolution

Sentinel-2 10m Resolution

PlanetScope (Dove) **3m Resolution**

🏶 Radiant.Earth

Earth Imagery for Impact

5

Pleiades 0.5m Resolution

Worldview-4 0.3m Resolution

SpaceNet 4 https://www.cosmigworks.org/arch ived-projects/spacenet-4/

SpaceNet

Passive vs. Active Sensors

sunlight, but a few utilize active image capture by transmitting their own signal.

Passive Satellites: · Aqua (MODIS)

· PlanetScope (Dove) · Worldview-4

· Landsat-8

· Pleiades

· Sentinel-2

https://breakingdefense.com/2023/02/maxar-contractsstartup-umbra-to-supply-sar-satellite-data/

 RADARSAT-2 · ICEYE-X1 TanDEM-X

Probability Façade type 0.51 Masonry Glass 0.05 0.44 Concrete 0.00 Wood Bayesian Modeling: Estimation of *probable* material types for each building in Knoxville, TN. Image Credit: ORNL

Spectral bands

Characteristics/challenges of Earth Observation data

Data volumes

OAK RIDGE National Laboratory

- Current EO satellite constellations: 100+TBs of data/day
- Images can be billions of pixels large (e.g., 30,000 x 30,000 x 4)
 - At a modest 5m resolution:
 Earth's surface = 100 trillion pixels
 - Nigeria at ~0.5 m resolution
 - 20,000 Individual scenes, 90TB
- Data management, training/inference challenges
- But great potential for applications & large models!

Data size now exceeds 100 petabytes, and is growing quasi-exponentially (tapering of the figure to the right indicates decreasing data size.) The speed of change exceeds 5 petabytes a year; data are taken at frequencies of up to 10 Hz or more; reprocessing and versioning are common challenges. Data sources can be one- to four-dimensional, spatially integrated, from the organ level (such as leaves) to the global level. Earth has diverse observational systems, from remote sensing to in situ observation. The uncertainty of data can stem from observational errors or conceptual inconsistencies.

Fig. 1: Big data challenges in the geoscientific context.

Foundation models for Earth Observation

A shared backbone pretrained using self-supervised learning (SSL) that can be efficiently tuned for multiple tasks

Model scaling & Data scaling \rightarrow Emergent Abilities

Key aspects / building blocks

Rolling database of ~400k+ high-resolution satellite images, ~3 PB of data

Quetzal Foundation Model(s)

- Quetzal-HR: High-resolution (HR) ٠
 - Optical imagery (RGB+NIR)

1. Pretraining using SSL

Diagram adapted from: Sun, X. et al. "RingMo: A remote sensing foundation model with masked image modeling". IEEE TGRS (2022)

Quetzal-LR: Low-resolution (LR) + multimodality (SAR)

- Mesoamerican cultures: messenger between Earth and heavens/sky
- Multiple colors: metaphor for multiple modalities

Resplendent Quetzal by Phoo Chan, Shutterstock

2. Finetune task-specific decoders

Sentinel (SAR) Dias, P., Potnis, A., Guggilam, S., Yang, L., Tsaris, A., Medeiros, H. and Lunga, D. "An Agenda for Multimodal Foundation Models for Earth Observation". IEEE International Geoscience and Remote Sensing Symposium 2023

8

"Mise en place" toward such models

Data

- Maxar WorldView 3 imagery
 - RGB+NIR, ~0.5meter/pixel

Labeled

- ORBITaL-Net (ORNL BFE) [1]
 - North America, South America, Africa, Asia
 - variety of viewing angles, vernacular architecture styles, land-use contexts, atmospheric conditions
 - 130k tiles, 512 x 512 pixels each

Unlabeled

Access to rolling database of ~400k+ high-resolution satellite images, PBs of data

[1] Swan, B.; Pyle, J.; Roddy, D.; Rose, A.; Yang, H. L.; Laverdiere, M. (2024). "*ORBITaL-Net Training Library for Building Extraction. Figshare+. Dataset*". https://doi.org/10.25452/figshare.plus.25282225.v1

Key aspects / building blocks

Architecture

Pretraining objectives

Large Language Models (LLMs)

- Transformer-based architectures
 - Data tokenization: "words"
- Masked Language Modeling
 - Randomly mask a portion of the input tokens in a sentence
 - Task model to predict masked tokens
 - e.g., BERT, GPT

- Vision Transformers (ViT)
 - Data tokenization: pixels? Patches!
- Masked Image Modeling
 - Randomly mask a portion of the patches in an image
 - Task model to reconstruct masked patches

From [1]

- e.g., Masked Autoencoders (MAE)

Masked input Reconstruction Original img

CAK RIDGE National Laboratory

[1] Dosovitskiy, A., et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." *ICLR* 2020.
 [2] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." IEEE/CVF CVPR 2022.

Quetzal-HR: High-resolution (HR)

• Pretraining: Masked Autoencoder (MAE)

1. Masked Autoencoder (MAE) for SSL

1

- Downstream: finetune task-specific decoders
- Generative Self-supervised Pre-training PI Mask Encoder Decoder Flatten : \rightarrow (ViT/Swin \Rightarrow (linear Transformer) layer) Input image Masked Image Original Reconstructed `fasked patches image image 2. Finetune task-specific decoders Downstream Interpretation Task Application Playground Detection Hea Encoder Classifier -Harbor Encoder × : Airport X (a) Scene Classification (c) Object Detection Segmentation **Change Detection** Encoder Encoder Head Head (b) Semantic Segmentation (d) Change Detection

Diagram adapted from: Sun, X. et al. "RingMo: A remote sensing foundation model with masked image modeling". IEEE TGRS (2022)

Pretraining objectives

Downstream adaptation

Quetzal-HR: 4-band

Building Footprint Extraction as application

- Pretraining & finetuning using same image tiles
- ViT-B (86M parameters) + UperNet
- Computing setup
 - PyTorch with Distributed Data Parallel (DDP)
 - Summit and now Frontier
 - Pretraining: 8 nodes (64 GPUs) BS=2046

4,000+ validation tiles

	F1	Recall	Precision
Baseline (no pretrain)	90.78	89.31	92.30
MAE pretrain + FT	91.79	90.78	92.83

180 out-of-geography (test) tiles

	F1	Recall	Precision
Baseline (no pretrain)	86.58	81.23	92.69
MAE pretrain + FT	90.51	89.65	91.38

Model scaling

- Contrastive learning, Masked Autoencoders
- But restricted to small scale (model sizes)
 - Mostly conducted by academia

An incomplete summary of FMs developed for EO

Reference	Model size	GPUs
GASSL	ResNet (~25M)	N/A
Sat-MAE, Scale- MAE	ViT-Large (300M)	8 V100 GPUs N/A
RVSA	ViT-Base	8 A100 GPUs
RingMo	Swin/ViT-Base	N/A V100 GPUs
Prithvi	ViT-Large	64 A100 GPUs
SeCo	ResNet (~25M)	N/A
Satlas	Swin-Base	N/A
GFM	Swin-Base	8 V100 GPUs
*SkySense	ViT-L/Swin-H (654M)	80 A100 GPUs

Table 1: ViT-22B model architecture details.

Name	Width	Depth	MLP	Heads	Params [M]
ViT-G	1664	48	8192	16	1843
ViT-e	1792	56	15360	16	3926
ViT-22B	6144	48	24576	48	21743

Dehghani, M., et al. "Scaling vision transformers to 22 billion parameters." *ICML* 2023.

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

Quetzal-HR – Open data

- MAE pretraining with 1M samples (MillionAID)
- ViT configurations up to **3B** parameters
 - Frontier, Pytorch DDP, 2048 global batch size, 100k iterations
- Semantic Segmentation (fine-tuning)
 - more complex decoder (3B requires sharding)
 - 64 nodes (512 GPUs), BS=1 for ViT-1B model
 - limited gains with limited data

Image segmentation (fine-tuning)					
	LoveDA [mloU % – test]	Potsdam [mF1 % - val]			
ViT-Base	50.92	90.83			
ViT-Huge	e 51.94	91.36			
ViT-1B	52.58	91.49			

Tsaris, A.; Dias, P.; Potnis, A.; Yin, J.; Wang, F.; Lunga, D. *"Pretraining Billion-scale Geospatial Foundational Models on Frontier"* To be published at IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2024)

Model	Parameters [M]
ViT-Base	87
ViT-Huge	635
ViT-1B	914
ViT-3B	3067

Image classification (linear probing)

Image Classification					
Datasets Training Samples Testing Samples Classe					
MillionAID	1000	9000	51		
UCM	1050	1050	21		
AID	2000	8000	30		
NWPU	3150	28350	45		

			Top1 Acc (%)					
	Model	Pretrain	UCM	AID	NWPU	MillionAID		
		epochs	(TR= 50%)	(TR= 20%)	(TR= 10%)			
_	ViT-Base	400	45.17	52.11	54.28	47.20		
Г	ViT-Base	100	40.62	41.72	42.40	41.31		
L	ViT-Huge	100	50.00	60.78	57.24	53.28		
L	ViT-1B	100	57.10	68.89	64.35	59.14		
L	ViT-3B	100	74.05	79.96	76.43	72.98		

Data scaling

Larger models require more data to avoid MIM overfitting

Xie, Z. et al. "On data scaling in masked image modeling". IEEE/CVF CVPR 2023.

Model	Iter	IN1K (10%)	IN1K (20%)	IN1K (50%)	IN1K (100%)	IN22K (100%)
	125K	43.4	44.9	45.3	44.2	-
SwinV2-S	250K	43.5	46.7	46.6	45.8	-
	500K	43.5	47.2	47.2	48.3	-
	125K	44.2	45.4	46.1	46.0	46.8
SwinV2-B	250K	43.3	46.0	48.5	47.7	47.3
	500K	42.1	46.9	49.0	49.3	48.2
	125K	43.4	46.4	48.0	48.0	47.4
SwinV2-L	250K	43.1	47.3	49.6	50.2	50.0
	500K	41.9	45.6	50.3	51.1	51.2

Table 5: Results (mIoU) on validation set of ADE20K semantic segmentation.

Ineffective to just "dump" a bunch of data

- ORBITaL-Net (ORNL BFE) vs Ukraine only:
 - larger volume, but worse results → diversification issues
 - ORBITaL-Net (ORNL BFE) [1]
 - North America, South America, Africa, Asia
 - variety of viewing angles, vernacular architecture styles, LU/LC contexts, and atmospheric conditions

	Volume	F1 – Ukraine data	F1 – Global data
Global tiles	0.7 TB	90.51 %	91.79 %
Ukraine images	18 TB	90.55 %	91.40 %

[1] Swan, B.; Pyle, J.; Roddy, D.; Rose, A.; Yang, H. L.; Laverdiere, M. (2024). "*ORBITaL-Net Training Library for Building Extraction. Figshare+. Dataset*". https://doi.org/10.25452/figshare.plus.25282225.v1

15

Data biases

16

Constellations Headquarters World Map

FIGURE 3. A distribution of available EO datasets over different platforms, sensor types, and number of acquisition times. Single-image red, green, blue (RGB) images acquired by satellites are clearly the dominating modality. MS: multispectral; HS: hyperspectral.

Schmitt, Michael, et al. "There are no data like more data: Datasets for deep learning in earth observation." IEEE Geoscience and Remote Sensing Magazine (2023).

Dataset needs for pretraining and benchmarking

Currently 🤓

FIGURE 28. An illustration that shows the authors' view of the paramount properties that an ideal benchmark dataset needs to satisfy, including the type of tasks, sensors, temporal constraints, and geolocalization.

Schmitt, Michael, et al. "There are no data like more data: Datasets for deep learning in earth observation." IEEE Geoscience and Remote Sensing Magazine (2023).

17

How we are curating a Pretraining Dataset

- Key requirements
 - Geographic Diversity
 - Temporal Diversity
 - Acquisition Parameter Diversity
 - Support for varied Pretext Tasks and Dataset Sizes
- Sampling
 - Geo-clusters based on biome, realm, and climate zone information
 - Koppen-Geiger Climate Zones
 - 2017 Ecoregions Layer
 - Guided sampling based on landcover, population density, and geo-cluster
 - Land Cover: ESA WorldCover v200
 - Population: ORNL LandScan Global

CAK RIDGE

Arndt, J., Dias, P., Potnis, A., and Lunga, D. "Towards Diverse and Representative Global Pretraining Datasets for Remote Sensing Foundation Models". Accepted for publication at IEEE International Geoscience and Remote Sensing Symposium 2024

Quetzal-LR: Low-resolution (LR) + multimodality (SAR)

Multimodal reasoning

- Modality alignment ٠
 - different input types, dimensionalities, resolutions _
- Early fusion vs late fusion vs mixed ٠
 - e.g., cross-attention mechanisms
- Challenges ٠
 - Risk of model relying mostly in certain modalities _ over others
 - Different data availability for different modalities

Perceiver

- concept of cross-attention
- inputs of different dimensionalities projected into fixed-dimensional space

Jaegle, A., et al. "Perceiver: General perception with iterative attention." ICML 2021.

ClimaX: A foundation model for weather and climate

- modality-specific tokenization + aggregation
- aggregation: cross-attention outputs single vector per spatial position

Figure 2: The ClimaX architecture as used during pretraining. Variables are encoded using variable-separate tokenization, and subsequently aggregated using variable aggregation. Together with position and lead time embedding those are fed to the ViT backbone

Nguyen, T., et al. "ClimaX: A foundation model for weather and climate." ICML 2023.

CAK RIDGE 20

National Laboratory

Closing thoughts

Tsaris, A.; Dias, P.; Potnis, A.; Yin, J.; Wang, F.; Lunga, D. "Pretraining Billion-scale Geospatial Foundational Models on Frontier" To be published at IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2024)

Model	Width	Depth	MLP	Heads	Parameters [M]
ViT-Base	768	12	3072	12	87
ViT-Huge	1280	32	5120	16	635
ViT-1B	1536	32	6144	16	914
ViT-3B	2816	32	11264	32	3067
ViT-5B	1792	56	15360	16	5349
ViT-15B	5040	48	20160	48	14720

Liu, F., et al. "RemoteCLIP: A vision language foundation model for remote sensing." arXiv preprint arXiv:2306.11029 (2023).

Segmentation Datasets (SEG-4) Vaihingen Potsdam iSAID LoveDA	Step 1	Data Scaling via Annot	tation Unification	
	Detection Datasets (DET-10)			
Mask-to-Box (M2B)	Satellite I	magery	UAV Imagery	
Box-to-Caption (B2C)	Box-to-Caption (B2C)		Box-to-Caption (B2C)	Retrieval Datasets (RET-3)
M 📷 🏑 👯				RSICD RCITMD UCM
A large deal of There is a place whickes a small whick and Lots of buildings places with cars, with building in ser in the middle this remote sensing picture bit of the picture.	Many small. A quantity of vehicles in the airplanes are middle of the located in the picture . picture . picture .	There are 15 An airplane in the A ship in the aircrafts on the middle of the middle of the ground. picture. picture .	A crowd of cars A human and a There are both are located in this car all the edge of peridentifiens and remote sensing the picture. picture , bet of the picture , picture , bet of the picture , bet of the picture ,	Some planes are parked in an airport terms course are bedde the gray road. An airplanes is surrounded with som care.
		12 Classificatio	n Datasets 3 Retrieval Datase	s RemoteCount (New)
Image Encoder	Text Encoder White buildings are beside the gray road .	Zero-shot Classification	Linear Classification Text-to-image Retrie	val
ResNet/Vision InfoNCE Transformer Loss	Transformer Language Model	Few-shot Classification	k-NN Classification Image-to-text Retrie	val
Step 2. RemoteCLIP Pretraining		Step 3. Downstream Application		

Mai, G., et al. "On the opportunities and challenges of foundation models for geospatial artificial intelligence." arXiv preprint (2023).

each building in Knoxville, TN. Image Credit: ORNL

Thank you!

Contacts:

ambroziodiap@ornl.gov

geoai.ornl.gov

- Acknowledgements
 - Aristeidis Tsaris (CCSD)

GeoAl colleagues:

- Dalton Lunga
- Abhishek Potnis
- Jacob Arndt
- Jordan Bowman
- Lexie Yang
- OLCF/Frontier
- CADES

22