
OPPORTUNITIES FOR
SOFTWARE MINING
AND ANALYTICS IN

FUTURE HPC
SOFTWARE

DEVELOPMENT

Vivek Sarkar
Rice University

SOS20 Workshop, 03/16 03.25.2016

1

2

Challenges for Exascale & Extreme Scale Systems
§  Characteristics of Extreme Scale systems in the next decade

§  Massively multi-core (~ 100’s of cores/chip)
§  Performance driven by parallelism, constrained by energy & data movement
§  Subject to frequent faults and failures

§  Many Classes of Extreme Scale Systems

Terascale Embedded,
100’s of Watts,

O(103) concurrency

Exascale Data Center
> 1 MW,

O(109) concurrency

Petascale Departmental,
100’s of KW,

O(106) concurrency Key Challenges
§  Concurrency
§  Energy efficiency
§  Locality
§  Resiliency

References:
•  DARPA Exascale Study, 2008
•  DARPA Exascale Software study, 2009

Mobile, < 10 Watts,
O(101) concurrency

3

Rice Habanero Extreme Scale Software Project

Habanero
Programming

Languages
(built on C/C++)

Habanero Compiler
& PIR

(Built on LLVM)

Habanero Runtime
System

(Built on MPI,
GASNet, OCR,
OpenSHMEM)

Two-level programming model
Data Flow Graph Language for

Domain Experts
+

Task-Parallel Languages & Libraries
for Parallelism-aware Developers:

HC-MPI, Heterogeneous HC,
OpenMP 4.5, Habanero-C++,

Habanero-UPC++, Asynchronous
OpenSHMEM, …

Unified execution model with
semantic guarantees:
1) Lightweight asynchronous tasks and
data transfers
§  Creation: async tasks, future tasks,
data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet
2) Locality control for task and data
distribution
§  Computation and Data Distributions:
hierarchical places, global name space
3) Inter-task synchronization operations
§  Mutual exclusion: isolated, actors
§  Collective and point-to-point
operations: phasers, accumulators

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

4

Automatic data layout optimization using the TALC tool

Platform 27� 1 9� 3 3� 9 1� 27

IBM POWER7 1.00 4.66 4.66 4.71
AMD APU 1.00 1.26 1.38 1.40

Intel Sandybridge 1.00 1.06 1.10 1.10
IBM BG/Q 1.00 1.65 2.14 2.20

Table 1: Performance improvement of different layouts
relative to baseline 27� 1 layout, for different platforms

The default layout is the one observed in Figure 1, where the 27
arrays are stored separately (27� 1). A simple rewrite can change
the layout by interleaving groups of three arrays, thus producing
9 arrays of structs where each structure contains 3 fields (9 � 3).
Another rewrite can interleave 9 arrays each, producing three arrays
(3 � 9). The final rewrite interleaves all 27 arrays into one array
(1 � 27). We ran these four versions of IRSmk on four different
platforms: IBM POWER7, AMD APU, Intel Sandybridge, and the
IBM BG/Q, using a problem size of 1003 and all cores within a
single node on each platform. The results are presented in Table 1.
All examples show positive gains for all of the layout options.
However, the performance improvement varies dramatically across
different layouts and different platforms.

3. TALC Data Layout Framework
This section describes our extensions to the TALC Framework
[5, 19] to support user-specified and automatic data layouts, driven
by a Meta file specification. TALC stands for Topologically-Aware
Layout in C. TALC is a source-to-source compiler translation tool
and accompanying runtime system that dramatically reduces the
effort needed to experiment with different data layouts. Our ex-
tended version of TALC has been implemented in the latest ver-
sion of the ROSE [4] compiler infrastructure. In the process of ex-
tending TALC, we have re-implemented its entire code, added new
functionality for automated layouts and extended layout transfor-
mations.

!"

#$%&'()*"
+(,&$%"

-./.0(%&0"

+(,&$%"12)'34.5"
6&$0*."70&80('"

9.%(":3;." <(%("+(,&$%"
=0(/>?&0'()&/"

:3.;5"
62.*3@*()&/"

70&@;.5"+&&2"
A&$/%>"

B>.0"C/2$%>"

D$/)'."
+3E0(0,"

FG.*$%(E;."
70&80('"

70&80('"
H3/(0,"

6&$0*."70&80('"

9(*I3/."
AI(0(*%.03>)*>"

J./5&0"A&'23;.0"

6(?.%,KF00&0"AI.*L>"

Figure 2: Extended TALC Framework

Figure 2 shows the overall framework. TALC can be configured
to run in two modes: Automated Layout and User Specified Layout.
For both of these modes, a user needs to provide some input to per-
form data layout transformation. In the Automated Layout mode,
the user provides a field specification. A field specification file is
a simple schema file, which specifies arrays that should be con-
sidered for transformation. The field specification file is necessary

View node
{

Field {x:d}
Field {y:d}
Field {z:d}

...
}

Figure 3: Sample Field Specification file

View node
{

Field { x:d, y:d, z:d }
Field { xd:d, yd:d, zd:d }
Field { xdd:d, ydd:d, zdd:d }

}

Figure 4: Sample TALC Meta file

because it enables our tool to only transform the specified arrays
(like the 27 arrays in the IRSmk example discussed in Section 2).
Figure 3 shows a sample field specification file. The View keyword
is used internally to parse the data layouts. The field keyword spec-
ifies arrays considered for layout transformation. Each field has a
type associated with it, specified by the : separator. In this example,
d stands for the double data type. Specifying the data type helps
with type checking array subscripts during layout transformations.
More information on the Automatic Data Layout Selection will be
provided in Section 6. We focus next on the user specified layout
scheme.

The Meta file specifies the data layouts TALC should produce.
A Meta file can be generated either automatically or manually.
Figure 4 contains an example of a Meta file. Unlike the field
specification file in Figure 3, the Meta file also specifies which
fields should be combined into the same array. So, this schema
specifies that four arrays of structs are desired. For example, arrays
x, y and z will be interleaved in a single array.

Before performing the data layout transformation, we perform
safety/error checks for a programmer. These checks not only en-
able correctness for data layout transformation, but also relieve the
programmer from subtle runtime bugs. The safety/error checks per-
form a pre-pass of the entire program before applying any trans-
formation. A programmer can see the warnings/errors produced by
this pre-pass. Following is the list of checks performed by extended
TALC framework:

• Type check array fields in Meta file with source program.
• Type check function parameters with array fields in Meta file
• Name check between formal and actual parameters in every

function call where parameters match array fields in Meta file

Data Layout transformation is a key component in the TALC
framework. The transformation accepts a C/C++ source program
and Meta file, produces an equivalent program and changes the
data layout of the specified arrays to match the Meta file. The lay-
out transformation matches the names and data type of the arrays
before modifying the source code. Array subscripts are automati-
cally rewritten to array and field accesses, as appropriate. The lay-
out transformation also rewrites the memory allocation of the lay-
out transforming arrays to a library call. This call is made at the
runtime thereby handling memory allocation gracefully for the en-
tire group in a field. The runtime library ensures memory-aligned
allocation for the array grouping. Figure 5 shows the key portion
of an input file. Figure 6 shows a stylized output file (the new ar-
ray names were inserted for descriptive purposes; the TALC im-
plementation generates synthetic names instead) generated by the
layout transformation, based on the Meta file in Figure 4.

To ensure that data layout transformations can safely be per-
formed, TALC imposes some programming restrictions on the in-
put code:

2 2013/9/13

!"#$%&$'(&"'"$#$))*)'+(#'"#,-$.*/001,,1,2'
+(#'/33'4'3&,56'33'7'3&$86'33992':'

''+(#'/00'4'0&,56'00'7'0&$86'00992':'

''''+(#'/,,'4',&,56',,'7',&$86',,992':'

!"!#!""!$!%%!&!%'!$!((!&!(')!

!*+",!#!-*.+",!&!/-*.+",!!$-*0+",!&!/-*0+",!$!-*1+",!&!/-*1+",!$!

!!! ! !!!!!!!!!-0.+",!&!/-0.+",!!$!-00+",!&!/-00+",!$!-01+",!&!/-01+",!$!

!!! ! !!!!!!!!!-2+",!&!/-2+",!!!$!-30+",!&!/-30+",!!$!-31+",!&!/-31+",!$!

! !!!!!!!!!0*.+",!&!/0*.+",!!$!0*0+",!&!/0*0+",!$!0*1+",!&!/0*1+",!$!

! !!!!!!!!!00.+",!&!/00.+",!!!$!000+",!&!/000+",!!$!001+",!&!/001+",!$!

! !!!!!!!!!02+",!&!/02+",!!!!$!!030+",!&!/030+",!!$!031+",!&!/031+",!$!

! !!!!!!!!!4*.+",!&!/4*.+",!$!4*0+",!&!/4*0+",!$!4*1+",!&!/4*1+",!$!

! !!!!!!!!!40.+",!&!/40.+",!!$!400+",!&!/400+",!$!401+",!&!/401+",!$!

! !!!!!!!!!42+",!&!/42+",!!!$!!430+",!&!/430+",!$!431+",!&!/431+",!)!

!!!!5!

!!5!

5!
IRSmk performance relative to default 27x1 layout (bigger is better)

“Data Layout Optimization for Portable Performance.” K. Sharma, I. Karlin, J. Keasler, J. McGraw, V.Sarkar, EuroPar ‘15.

5

Data Layout Transformations are important for GPUs too …

12.0%

6.2% 5.7%
3.4% 3.6%

27.1%

7.4%

4.3% 4.0% 4.2%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

AMD%CPU% INTEL%CPU% AMD%GPU% INTEL%GPU% NVIDIA%GPU%

Re
la<

ve
%Sp

ee
du

p%

AOS% SOAOS%

• CPUs benefit from spatial locality
–  AoS (Array of Structures)

• GPUs benefit from coalescing
– SoA (Structure of Arrays)

Speedup Relative to default SoA Layout

“Automatic Data Layout Generation and Kernel Mapping for CPU+GPU Architectures”. Deepak Majeti, Kuldeep Meel, Raj
Barik and Vivek Sarkar. 25th International Conference on Compiler Construction (CC 2016), March 2016.

6

Common LLVM-based Communication Optimization
Framework for Multiple Languages

Chapel'
Programs'

UPC++'
Programs'

X10'
Programs'

Chapel3
LLVM'

frontend'
UPC++3
LLVM'

frontend'

X103LLVM'
frontend'

LLVM'IR'
(use'address'
space'feature)'

LLVM3based'
CommunicaCon''
OpCmizaCon'

passes'

Lowering'
Pass'

CAF'
Programs'

CAF3LLVM'
frontend'

“LLVM-based Communication Optimizations for PGAS Programs,” Akihiro Hayashi,
Jisheng Zhao, Michael Ferguson, Vivek Sarkar.

7

Performance improvement due to Communication
Optimization for Jacobi example in UPC++

0

20

40

60

80

100

120

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

Sp
ee

du
p

ov
er

 L
LV

M
-u

no
pt

 1
 n

od
e

Polybench Jacobi-1d Cray-XC30

w/o Comm. Opt.

w/ Comm. Opt.

8

Communication Workers
mediate between

communication runtime and
node runtime

Integrating Inter-node Communication with Intra-node
Task Scheduling

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

Example:

finish{

 async S1;

 MPI_Isend(…);

 MPI_Irecv(…, &req);

 async await(req) S2;

 S3;

}

...

9

Weak Scaling Result for Habanero-UPC++ version of
LULESH on NERSC Edison system

 100

 1000

 10000

 100000

 1e+06

1 8 64 216 512

P
e
rf

o
rm

a
n
ce

 (
F

O
M

 z
/s

e
c)

HabaneroUPC++ Places

1 worker/place

4 worker/place

8 worker/place

12 worker/place

“HabaneroUPC++: A Compiler-free PGAS Library.” Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimlić, Vivek
Sarkar. PGAS 2014.

10

Open Community Runtimes (OCR) Building Blocks
§  Data Blocks (DBs)

§  contains semantically-meaningful metadata that runtime can use
§  relocatable by runtime for power, reliability, ...

§  accessed via globally unique ids (GUIDs)
§  allows exploitation of heterogeneous memories (NUMA, scratchpads, …)

§  Event-driven tasks (EDTs)
§  Can be processes, threads, functions, codelets…
§  An EDT can contain internal data parallelism

u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv,
u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);

§  Events (Dependences)
§  specified explicitly as contingencies on which EDTs are initiated
§  several types of dependences
§  dependences are specified as GUIDs throughout the system

11

Can we improve productivity by capturing “institutional
knowledge” related to performance portability?

Desktop/Laptop
Processors

Server Systems

Compiler

Source Code

Programmers
spend significant
amount of time

tuning
performance for

different platforms

Supercomputers

Sources of
heterogeneity:
•  Processors
•  Memory
•  Interconnect
•  . . .

DARPA program on Mining and Understanding
Software Enclaves (MUSE)

¨  Goal: Apply principles of Big Data Analytics to a
large corpus of Open-Source Software

12

¨  Core idea: treat programs (semantic objects extracted from programs) as data
¨  Source:

http://www.darpa.mil/Our_Work/I2O/Programs/
Mining_and_Understanding_Software_Enclaves_(MUSE).aspx

Pliny Team

13

•  Rice: Vivek Sarkar (PI), Swarat Chaudhuri, Chris Jermaine (Faculty),
Michael Burke, Philippe Charles, Carlos Monroy, Kia Teymourian,
Jisheng Zhao (Research Scientists), Tiago Cogumbreiro, Hassan Eldib,
Vijayaraghavan Murali (Postdoctoral Researchers), John Feser, Yanxin
Lu, Afsaneh Rahbar, Rishi Surendran (PhD Students)

•  Grammatech: David Melski (VP of Research), Denis Gopan, Vineeth
Kashyap (Senior Scientists), Duc Nguyen, Anurag Singh (Software
Engineer)

•  UT Austin: Isil Dillig, Thomas Dillig (Faculty), Ruben Martins
(Postdoctoral Researcher), Yu Feng, Arati Kaushik, Yuepeng Wang,
Navid Yaghmazadeh (PhD Students)

•  UW Madison: Ben Liblit, Thomas Reps (Faculty), Jason Breck, David
Bingham Brown (PhD Students)

The Pliny vision

14

Magic	 in	
the	
cloud!	

Pl
in
y	
us
er
	 in
te
rf
ac
e	

Developer	

•  Debugging	
•  Repair	
•  Program	 Synthesis	
	

Goal:	 use	 the	 cloud	 to	 enable	
order-‐of-‐magnitude	

improvements	 in	 developer	
produc?vity	 and	 so@ware	 quality	

Using Big Code to Realize the Pliny Vision

15

Pliny	
Sta?s?cal	 	
Database	
(Big	 Data	 	

+	 Big	 Compute)	

Pl
in
y	
us
er
	 in
te
rf
ac
e	

Pliny	 Reasoning	
Framework	
(Small	 Data	 +	
Big	 Compute)	

Pl
in
y	
La
ng
ua
ge
	 	

Fr
am

ew
or
k	

Developer	

Code	 	
corpora	

Interac(ve	
mode	

Batch	 mode	

Early Publicity on Wired.com

16

¨  “… The PLINY team will begin by analyzing open source code from around the web,
drawing on code hosting services like GitHub and Sourceforge, along with various major
open source projects, such as those managed by the Apache Foundation. Eventually,
though, he envisions a corporate version that will index all of a company’s own
proprietary software projects. The team is also building a custom database system
specifically designed for the purpose of storing and analyzing code. The new database
will give them ways to structure and prioritize the code it indexes. This could help with
the code quality issue. Projects known for exceptionally good good could be prioritized,
or perhaps code written by specific people would be given preference. The end result
could be something that looks an awful like Google’s autocomplete—only more useful.”

¨  Source: http://www.wired.com/2014/11/darpa-pliny/

The Pliny approach: Batch mode

17

Pliny	 Sta?s?cal	
Framework	

	
	 Learning	 from	 	

program	 abstrac?ons	 Pl
in
y	
La
ng
ua
ge
	 	

Fr
am

ew
or
k	 Features	

The Pliny Statistical Framework

Large-scale machine learning on program features

18

•  k-nearest neighbors
•  Markov random fields
•  HMMs and generalizations
•  …

The Pliny approach: Interactive mode

19

Sta?s?cal	 database	
	
	

Reasoning	 framework	
(Combinatorial	 search	

+	 Deduc?on)	

Underspecified	 	
task	

Developer	

Query	
(features)	

How	 s
hould

	 I	

create
	 a	 dia

log	

box	 in
	 Andr

oid?	
Guidance	 	

Specifica?ons	
Algorithmic	 insights	

(Inference	 on	 	
program	 abstrac?ons)	

Feedback/	
Interac?on	

Pl
in
y	
La
ng
ua
ge
	 	

Fr
am

ew
or
k	 Features	

Goals	

The Pliny reasoning framework

20

Pliny	 reasoning	
framework	

Func?onal	 synthesis	
problem	

Solu?on	 to	 	
synthesis	 instance	

Find	 a	 mathema+cal	 func+on	 that…	
	
1.  …	 sa?sfies	 a	 set	 of	 logical	 constraints	
2.  …	 can	 be	 expressed	 in	 a	 syntac?c	

space	 built	 from	 corpus	 components	
3.  …is	 op?mal	 by	 a	 set	 of	 quan?ta?ve	

criteria	

Combinatorial	 search	 	
+	 	

Automated	 deduc+on	

The Pliny Database and
Compute Engine (PDB)!

21!

✤  Flexible object model, no distinction between RAM/network/
secondary storage layout!

Example:	 Learning	 API	 specifica?ons	

•  Android: “Dialog boxes typically contain at least one button
or a message”

•  POSIX: “Always read only from a file that has been opened”

Learn	 from	 sequences	 of	 calls,	 	
and	 constraints	 among	 their	 arguments,	 	

generated	 from	 real	 code	

22	

Machine

Learning

Corpus

foo[p1]	 bar[p2]	
-‐-‐	 -‐-‐	 -‐-‐	 -‐-‐	 -‐-‐	
foo[p3]	 bar[p2]	
-‐-‐	 -‐-‐	 -‐-‐	 -‐-‐	
-‐-‐	 foo[p1]	 -‐-‐	

Call sequences with!
property states! Statistical models !

of call sequences!
with property states!

main()	 {	
	 	 -‐-‐	 -‐-‐	 	
	 	 ??	
	 	 -‐-‐	 -‐-‐	
	 	 bar()	
}	
New program!

(possibly has ??)!

??	 bar[p2]	
-‐-‐	 -‐-‐	 -‐-‐	 -‐-‐	 	
foo[p1]	 bar[p2]	
-‐-‐	 -‐-‐	 -‐-‐	 -‐-‐	

Call sequences!
(possibly with ??)!

Inference

Probability distribution !
for each sequence!

Sampling

??	 =	 foo	 ,	 …	 	

Final Prediction/Bug report!

MRFs
HMMs

Feature
Extraction

Feature
Extraction

Query

	 	 	 	 	 	 	 in	 foo[p1]	
23	

Learning	 API	 specifica?ons	

24	

Corpus	 Programming	
Language	

Number	 of	
packages	

Lines	 of	 code	 Size	 of	
corpus	

Source	

	
	
	

	
C	

	
3500	

	
256	 million	
(preprocess)	

	
200	 GB	
(source+	
compiled)	

www.debian.org	
	

wiki.debian.org
/Debtags	

	
	
	
	

Sourcerer	

	
	

Java	

	
	

74,000	

	
	

630	 million	

	
	

433	 GB	
(source+jar)	

	
	

sourcerer.ics.u
ci.edu	

	
	
	

	
Java	

	
2500	

	
N/A	
(APK	

bytecode)	

	
28	 GB	

(APK	 only)	

	
www.androiddraw

er.com	
	

www.fdroid.org	

Learning	 API	 specifica?ons	 (Rice)	
•  Android	 Dialog	 box	 API	

•  2500	 packages,	 75,000	
sequences	

•  Training	 ?me:	 6	 hours	 on	 3.2GHz	
x	 20	 cores	

•  Finding	 UI	 bugs	 in	 the	 wild	
•  Example:	 Google	 Play	 Store	 app	
“List	 My	 Apps”	 (50k	 downloads,	
4.3/5	 stars)	 found	 to	 violate	
Dialog	 box	 API	 spec	

•  Displayed	 dialog	 box	 without	 any	
content	 to	 select	

•  Inference	 ?me:	 5-‐10	 secs	
	

25	

PDB:
24/7 Pliny
Statistical

Database &
Analytics
Platform

(Big Data +
Big Compute)

Pliny’s Open Architecture

Pl
in

y
R

ea
so

ni
ng

 F
ra

m
ew

or
k

(S
m

al
l D

at
a

+
 B

ig
 C

om
pu

te
)

Fe
at

ur
e

Ex
tr

ac
tio

n
(S

m
al

l D
at

a
+

 B
ig

 C
om

pu
te

)

Pl
in

y
D

ev
el

op
er

 In
te

rf
ac

e

26
TA2! TA3! TA4!

PDB’s open
API can be
used by
different feature
extractors
for different
languages
and different
similarity
metrics

PDB supports a wide range of user-programmable
analytics ranging from data mining to machine learning

Pliny
Reasoning

Framework
can leverage a

wide range
of languages,
solvers, and

user
interfaces

Examples of Pliny’s Open Architecture

27

LLVM IR .bc!

Clang/Clang++ Front End

LLVM

WALA

javac

Pliny Lightweight
C/C++ Parser

How can Similarity-Based Tools like Pliny Assist
Porting of Applications to Exascale Platforms?

28

Magic	 in	
the	
cloud!	

Pl
in
y	
us
er
	 in
te
rf
ac
e	

Developer	

How	 to	 extend	 the	 following	 to	
aid	 performance	 portability?	
•  Debugging	
•  Repair	
•  Program	 Synthesis	
	

•  Inputs:	 Program	 under	
development,	 performance	 tests	

•  Outputs:	 Iden?fica?on	 of	 similar	
codes	 w/	 transforma?ons,	
selec?on	 of	 best	 transforma?ons	

Debugging, Repair, Synthesis for Performance

¨  Debugging: identify program points that do not match
preferred transformations in code corpora (use profile
information to focus on program regions of interest)

¨  Repair: identify local fixes to repair the performance
“bugs”

¨  Synthesis: generate transformed versions of the program
by implementing transformations suggested by similar
codes in the corpus for similar platforms

Effectiveness of all of these techniques will depend on
availability of code corpora with some/most well-tuned
kernels/modules

Other opportunities

¨  Add performance information from LCF runs of different
codes
¤ Give more weightage in similarity search to codes that are

executed more often?
¨  Extend with use of natural language features from

StackOverflow-like forums in similarity search
¨  Explore functionalities provided by past projects like

Klonos
¤  e.g., classification of subroutines in CESM climate code

¨  Leverage provenance information to tailor support for
different application domains and different platforms

¨  . . .

Pliny Summary

¨  We are building a new “big code” system from scratch
for extracting and storing code features, mining them
for information, and leveraging the mined data for
program synthesis, verification, debugging, and repair

¨  We have completed multiple demonstrations of the
initial Pliny components working together

¨  Our implementation is based on an open architecture,
and we look forward to exploiting this technology to
address performance tuning/portability challenges in a
new age of software development for HPC!

31

