
Vision, Innovation, Network and
Friendship

SOS20, Biltmore Inn, 25th March 2016

Marie-Christine Sawley

Marie-Christine.Sawley@intel.com

mailto:Marie-Christine.Sawley@intel.com

Celebrating SOS resilience
By one of the founders of the workshop series

EPFL-ETH Zurich Supercomputing scene

Å 1986: first vector machine, CRAY 1s
Å 1989: Gigaflops award to CRPP code

Å 1988: Cray 2@EPFL, CRAY XMP at ETH Zurich, 1st national
strategy

Å 1989: ETH Zurich-CSCS in Manno, national HPC machine

Å 1992: Cray T3D, PATP collaboration
Å JPL
Å LLNL
Å PSC

Å 1996: EPFL against T3E

Å 1997: trip to Santa Fe
Å Ralf Gruber
Å Roberto Car
Å Michel Deville
Å Pierre Kuonen
Å Tony Gunzinger
Å Roland Richter
Å Marie-Christine Sawley

ÅOriginal traction
Å Plasma Physics
Å CFD
Å Material science
Å Big Science

Over the years,
SOS has proven to be a solid story of

VValue

V Vision

V Innovation

V Network

V Friendship

The Swiss storyline

The Swiss storyline

And fame!

From SOS 1 until SOS12, topics say all
ÅSanta Fe: Build your own supercomputer

ÅCharleston:

ÅVillars: The Future of Supercomputers

ÅNew Orleans

ÅHyannis Port: Scalable Cluster Software

ÅLeukerbad: Data Intensive Computingτhealth science

ÅDurango: Architectural Considerations for Petaflopsand Beyond

ÅCharleston: Advanced Computer Architectures for Science

ÅDavos: Full transition to MPP architectures

ÅHawai: Distributed and Green computing

ÅKey West: High Throughput Computing

ÅWildhaus

1997

1999

2001

2002

2003

2004

2005

2006

2007

2008

1998

2000

Issues in MPP Computing:

1. Physically shared memory does not scale

2. Data must be distributed

3. No single data layout may be optimal

4. The optimal data layout may change during the computation

5. Communications are expensive

6. The single control stream in SIMD computing makes it simple-- at the

cost of severe loss in performance-- due to load balancing problems

7. In data parallel computing (óa la CM-5) there can be multiple control

streams-- but with global synchronization

Less simple but overhead remains an issue

8. In MIMD computing there are many control streams loosely synchronized

(eg with messages)

Powerful, flexible and complex

Excerpt from Bill Camp

presentation, SOS8, Charleston

¢ƘŜǊŜŦƻǊŜΧΧΧΦΦƛǎ ƛǘ ǘƘŜ ǎŀƳŜ ǎǘƻǊȅ ƻǾŜǊ
again?

No
A number of important game changers!

Questions to address
ÅAre we entering a new age of software development for HPC?

ÅYes, since more than 25 years ςto tell you how long I have been in this business!
ÅDefinitely an acceleration, and more roles/specialties ĄƳƻǊŜ ŦǳƴŘƛƴƎ ŦƻǊ ǘƘŜ άƳƛŘŘƭŜǿŀǊŜέ

ÅApplication software longevity - a blessing or a curse?
Åaŀƴȅ ƴŜǿŎƻƳŜǊǎ ŎƻƳŜ ŀƴŘ ƎƻΤ ōǳƭƪ ƻŦ It/ ŀǇǇƭƛŎŀǘƛƻƴǎ ǎǘǊƻƴƎƭȅ ǊƻƻǘŜŘ ŀƴŘ ŜǾƻƭǾƛƴƎ ǊŀǇƛŘƭȅ ƛǎ ǘƘŜ It/ wŀƛǎƻƴ ŘΩşǘǊŜ

ÅWhat applications and workflows are driving HPC today?
ÅHPC market revenue: BD, machine learning
ÅHPC production: big science, engineering business

ÅIs co-design having an impact on system design?
Å yes, if it is understood that the pipe is long Ą no quick return

ÅHow have HPC operating systems and runtime environments evolved?
ÅStill room to grow

Game changers impacting 201X onwards

ÅMemory hierarchies

ÅWorkload, RT, OS, who is the driver?

ÅApplication complexity; i.e. more attention paid to data structures

ÅApplication models are growing

ÅAbstraction layers

ÅWorkflows and usage models
ÅImpact on designing and operating systems, policy makers

ÅHPC embraced by much larger community, with new workloads

ÅEnhanced need to bridge with new specialties

What drives supercomputing market?

ÅIn 2014, market update (source IDC)

ÅHPC: 10 B$, 0.5 % of total IT market

ÅSupercomputers, 3.2 B$, 0.16 % of total

ÅStorage is the fastest growing segment of

HPC, will continue with HPDA, according

to IDC

Focus on application complexity
ÅArchitectural features we can rely on for enhanced performance

Å Vectorisation(SIMD)

Å Instruction-level parallelism requires independent data sets within a loop

Å Pipelining is efficient on small regular loops

Å Branch prediction favourconstant branch path

Å Prefetching (DRAM memory latency) favourscontiguous stride -1 accesses

Å Caches favourdata reuse, efficient if data structures allow

ÅCodes may exhibit on very brief time scale
Å Complex data dependencies (Stiff ODE solvers)

Å Dynamic data structures (AMR, multiresolution)

Å Data access patterns that hard to predict (HW)

Å Dynamic load imbalance

ÅAnd would not benefit from the features above

ÅChallenge
Å to ƛŘŜƴǘƛŦȅ ǊŜƎǳƭŀǊƛǘȅ ǘƻ ŜȄǇƻǎŜ ǘƘŜ άǊƛƎƘǘέ ƎǊŀƴǳƭŀǊƛǘȅ ƛƴ ƻǊŘŜǊ ǘƻ ōŜƴŜŦƛǘ ŦǊƻƳ ǎǳŎƘ

features

Å tƘŀǎŜǎ ǿƘŜǊŜ ǇŀǊŀƭƭŜƭƛǎƳΣ ŎƻƳǇǳǘŀǘƛƻƴ ŘŜƳŀƴŘǎΣ ƳŜƳƻǊȅ ŘŜƳŀƴŘǎ ΧΣ ŀǊŜ άǎǘŜŀŘȅ"

Image ref of very complex
application: AVBP, CERFACS

Abstraction layers

Å Growingnumberof collaborative studieson
Å Explore/propose ideasfor abstraction mechanisms

Å Isolatedevelopmentof new physics/algorithmsfrom performance-sensitive operations
Å Allowperformance portability acrossarchitectures,

Å Developproof-of-concepts (PoCs) to test ideasfor specificcodes

Å Abstraction/performance compromises
Å Abstraction whichallowsalgorithmicoptimizations? (re-usingunusedarraysfor temp. storageΣ Χύ Ąmemory copies?
Å Stayclose to data structures (Fortran arraysΣ Χύ

Å Developmentchoices
Å Programminglanguage? (build system complexity, interfacingΣ ŀŘƻǇǘƛƻƴ ΧΦύ
Å Abstraction without hinderingphysicistproductivity?

ÅStaypragmatic
Å Abstraction return on investment: decreaseswith abstraction level

Key message: code refactoring is very different than optimization

Example of joint effort in code
refactoring

Partners

