home  |  about us  |  contact  

This page is part of the CSMD web archive and is not maintained.
Please visit csm.ornl.gov/newsite for the latest CSMD information.

 CSM Home
LDRD Proposal

Statistical Physics of Fracture: Scientific Discovery through Advanced Computing

fracture image

Understanding how materials fracture is a fundamental problem of science and engineering even today, although this problem has been investigated since ancient times. Some of the fundamental questions of material fracture that exist today are: 1) what are the size effects and scaling laws of fracture of disordered materials? and 2) how can the fracture surfaces of materials as different as metallic alloys, glass, wood and mortar (for example) be so similar?

Material disorder and long-range interactions are two of the key components that complicate the study of material failure. From an engineering point of view, understanding the size-dependence of material strength and its sample-to-sample statistical fluctuations is crucial to the design and failure analysis of engineering structures involving quasi-brittle materials such as concrete.

On the other hand, the relation between fracture and phase transitions poses many fundamental questions in statistical physics. Experimental results reveal the existence of an intriguing crackling noise in the acoustic emission and of self-affine fractals in the crack surface morphology. Recent advances in computer power have enabled considerable progress in the understanding of such models and resolved numerous long lasting controversies. Among these still partly controversial issues are the scaling and size effects in material strength, the statistics of avalanches or bursts of microfailures, and the morphology of the crack surface.

Using Oak Ridge National Laboratory’s (ORNL) large scale numerical simulations, which are the largest ever systems analyzed, on Argonne National Laboratory’s IBM BG/L and ORNL’s Cray-XT4, we have developed a novel scaling law for material strength that captures for the first time the experimentally observed crossover from a stress concentration controlled scaling regime to a disorder controlled scaling regime. The scaling law is in excellent agreement with the experimental data on notched paper samples. This universal scaling law extends our understanding of size dependence of material strength, and is relevant for the design and analysis of engineering structures made up of quasi-brittle materials such as concrete.

For more information, please contact:

Phani Nukala


   CSM Projects   
   Advanced Simulation Capability for Environmental Management (ASCEM)   
   The Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM)   
   Coordinated Infrastructure for Fault Tolerant Systems (CIFTS)   
   Hybrid Multi-Core Consortium   
   Integral Equation Technology   
   MADNESS (Multiresolution Adaptive Numerical Environment for Scientific Simulation)   
   NEAMS Integrated Computational Environment (NiCE)   
   Nuclear Energy Advanced Modeling and Simulation (NEAMS)   
   Reliability, Availability, and Serviceability (RAS) for Petascale High-End Computing and Beyond   
  INCITE Allocated Projects  
   Advanced Simulations of Plasma Microturbulence at the Petascale and Beyond   
   Cellulosic Ethanol: Simulation of Multicomponent Biomass System   
   Climate-Science Computational Development Team: The Climate End Station II   
   High-Fidelity Simulations for Advanced Engine Combustion Research   
   High Fidelity Tokamak Edge Simulation for Efficient Confinement of Fusion Plasma   
   Investigation of Multi-Scale Transport Physics of Fusion Experiments Using Global Gyrokinetic Turbulence Simulations   
   Magnetic Structure and Thermodynamics of Low Dimensional Magnetic Structures   
   Nuclear Structure and Nuclear Reactions   
   Performance Evaluation and Analysis Consortium End Station   
   Petascale Modeling of Chemical Catalysts and Interfaces   
   Three Dimensional Simulations for Core Collapse Supernovae   
   Ultrascale Simulation of Basin-Scale CO2 Sequestration in Deep Geologic Formations and Radionuclide Migration using PFLOTRAN   
   Uncertainty Quantification for Three-Dimensional Reactor Assembly Simulations   
   Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air