
 System Evaluation and Application Analysis:
Examples of Empirical Computer Science

Patrick H. Worley
Oak Ridge National Laboratory

May 2, 2008
Indiana University

Bloomington, Indiana

April 28, 2008
Purdue University

West Lafayette, Indiana

2

• The work described in this presentation was sponsored by the
Atmospheric and Climate Research Division, the Fusion Energy
Sciences Program, and the Office of Mathematical, Information,
and Computational Sciences, all of the Office of Science, U.S.
Department of Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for
U.S. Government purposes.

• This work used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-00OR22725, and of the
National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

 Acknowledgements

3

Sampling of recent performance evaluation results:
– Cray XT3/XT4
– IBM BG/P

and performance optimization activities*:
– Parallel Ocean Program (POP)

Focus is on empirical results, and I welcome questions and discussions on
the design of system probes and benchmarking experiments, and on other
mechanisms for characterizing system and application performance.

* For descriptions of other code optimization activities:
– Community Atmosphere Model (CAM)
– XGC (gyrokinetic turbulence particle-in-cell code)

 see presentations given at Dagstuhl (2007) and SIAM Parallel Processing
(2008), available from my web site: http://www.csm.ornl.gov/~worley .

Talk Overview

4

 Cray XT systems at Oak Ridge National Laboratory (ORNL) -
a. October 2005: Installation of 5212 XT3 compute nodes (2.4 GHz

single-core AMD Opteron processors, 2GB DDR-400 RAM)
configured as a 3-D Torus using the SeaStar NIC and running the
Catamount microkernel OS.

b. August 2006: Upgrade to 2.6 GHz dual-core Opteron with 4GB
memory per node (still 2GB/core). System has 10424 processor
cores.

c. April 2007: Addition of 6296 XT4 compute nodes (2.6 GHz dual-
core Opteron, 2GB/core of DDR-667 RAM) and using the SeaStar2
NIC. Combined system has 23016 processor cores.

d. October 2007: Move to Compute Node Linux microkernel operating
system on both XT3 and XT4, adding support for OpenMP
parallelism. (The XT4 part of this system is similar to the Franklin
system at NERSC.)

e. May 2008: Upgrade to 2.2 GHz quad-core Opteron with 8GB
memory per node (still 2GB/core). System now has 32928
processor cores.

Recent System Evaluations: Cray XT

5

 October 2007: IBM BG/P system installed at ORNL -
a. 2048 compute nodes (850MHz quad-core PowerPC 450, additional

64-bit dual-pipe floating point unit per core, 2GB memory
(512KB/core)). System has 8192 processor cores.

b. Utilizing secondary pipe on floating pipe unit requires executing in
SIMD mode with primary pipe. Compiler must generate special
SIMD instructions and data must satisfy alignment requirements.

c. Three user-relevant interconnects - 3-D torus, tree-based reduction
network, and fast barrier network.

d. Compute node runs the Compute Node Kernel (CNK) microkernel
OS, which supports OpenMP parallelism (unlike on the BG/L
compute node).

e. IBM BG/P systems also sited at Argonne National Laboratory
(Surveyor: 1024 compute nodes/4096 processor cores; Intrepid:
8192 compute nodes/32768 processor cores)

Recent System Evaluations: IBM BG/P

6

f. CNK supports three different modes of execution:
– SMP - assign only one MPI process to a node*;
– DUAL - assign two MPI processes to a node;
– VN - assign four MPI processes to a node.
For SMP and DUAL modes, OpenMP parallelism can be used to
generate threads of execution for the unused cores.

g. By default, processes are mapped to compute nodes in XYZT
ordering, i.e., assigning one process to each node in the X
direction of the torus, then the Y, then the Z, then returning to the
first node and assigning a second process, etc. Other options:
– TXYZ ordering, which assigns processes 0-3 to the first node,

4-7 to the second node (in the X direction), etc.
– XZYT, YXZT, YZXT, ZXYT, and ZYXT (defined analogously

to XYZT)
– Explicit mapping file can be used to define an arbitrary

mapping.

* For dual-core Cray XT4, this mode is referred to as SN.

Recent System Evaluations: IBM BG/P

7

ORNL has a long history in evaluating both its own and other high
performance computing systems. Evaluations that I have been involved
in personally include (in alphabetical order):
1. Convex SPP1200/SPP2000
2. Cray T3D/T3E
3. Cray X1/X1E vector systems
4. Cray XD1
5. HP/Compaq AlphaServer SC series
6. IBM POWER2/3/4/5 SMP nodes and clusters of nodes
7. Intel Paragon
8. Intel Xeon and IA64 clusters
9. NEC SX5/SX6
10. SGI Origin and Altix node and clusters of nodes

Prior System Evaluations

8

Evaluation Goals

1. Verify system performance specifications;
2. Characterize subsystem performance, and the expected impact on

application performance;
3. Highlight system peculiarities (good and bad), providing guidance to

users on how best to use the system;
4. Compare and contrast performance of applications representative of

target workload with that on other HPC systems.
5. Monitor performance “health” of system, especially after significant

events (e.g., hardware or software changes), identifying and
diagnosing problems quickly.

Note: I am one member of a large team evaluating and monitoring
performance of these systems. The data described here were
collected by me using the benchmarks that I am nominally responsible
for. Most of these benchmarks are internally-developed or application-
specific. Other members of the team collect data using standard
benchmark suites and a wider range of application benchmarks.

9

1. Computational Performance
a. Peak and “typical” performance
b. Per core in isolation, and per core when all cores computing

2. MPI Commmunication Performance
a. Peak, and how to achieve it
b. Intranode, internode, and under contention when other cores are

communicating
c. Impact of network topology
d. Collective performance, and comparison with point-to-point

implementations
3. Whole System Performance Issues

a. Impact of scale
b. Impact of environment (other users, system events, …)

4. Application Benchmarks (not described here)
a. Parallel Ocean Program (POP)
b. Community Atmosphere Model (CAM)

(My) Evaluation Questions

10

 Matrix Multiply Benchmark (DGEMM)

Evaluated performance of ESSL routine for matrix multiply. No significant degradation
observed from running benchmark on all cores simultaneously on these platforms.
PowerPC 450 with dual-pipe floating point unit in BG/P achieved 79% of peak; Opteron
in XT4 achieved 90% of peak; POWER5 in p575 achieved 95% of peak.

11

 Matrix Multiply Benchmark (DGEMM)

Historical data. Note that do not have POWER6 or Xeon or more recent IA64 or
Opteron processors.

12

 Matrix Multiply Benchmark (Fortran)

! Fortran version 2
do i=1,N; do j=1,N
 c(j,i) = 0.0
 do k=1,N
 c(j,i) = c(j,i) + a(j,k)*b(k,i)
enddo; enddo; enddo

! Fortran version 1
do j=1,N; do i=1,N
 t = 0.0
 do k=1,N
 t = t + a(j,k)*b(k,i)
 enddo
 c(j,i) = t
enddo; enddo

Comparing performance of two Fortran implementations for matrix multiply with that
of the ESSL routine. Version 1, despite use of aggressive compiler optimizations
with the IBM xlf compiler, runs significantly slower than Version 2. “Typical” user
code runs much slower than the tuned library routine for matrix multiply.

13

 Matrix Multiply Benchmark (xlf)

xlf compiler on POWER5 system has similar problems with version 1, but gap
between version 2 and DGEMM is much less on the POWER5. (On SGI Altix and
Cray X1E, version 1 achieves 90% performance of library call: 5 and 15 GF/s.)

14

PSTSWM Benchmark

 The Parallel Spectral Transform Shallow Water Model represents an
important computational kernel in spectral global atmospheric models. As
99% of the floating-point operations are multiply or add, it runs well on
systems optimized for these operations. PSTSWM exhibits little reuse of
operands as it sweeps through the field arrays; thus it exercises the
memory subsystem as the problem size is scaled and can be used to
evaluate the impact of memory contention in multi-core nodes. (“STREAM
analog”)

 These experiments examine serial
performance, both using one core and
running the serial benchmark on all
cores simultaneously. Performance is
measured for a range of horizontal
problems resolutions for 1 to (at least)
18 vertical levels.

Horizontal Resolutions

T5: 8 x 16

T10: 16 x 32

T21: 32 x 64

T42: 64 x 128

T85: 128 x 256

15

 PSTSWM Compiler Comparisons on BG/P

First step is evaluating impact of compiler optimizations. For example, on the BG/P
when using the ESSL FFT, achieve 425 Mflop/s when compiled with -O3 -qhot.
Biggest difference comes from requiring strict numerics or not. Compiling for
secondary floating point pipe (-q arch=450d) decreases maximum performance.

16

 PSTSWM Problem Size Comparisons

Varying horizontal resolution and number of vertical levels changes memory access
patterns. Notice significantly different “signature” on BG/P and XT4 processors. Get
similar data from memory hierarchy benchmarks.

Performance of Spectral Shallow Water Model
on one core of IBM BG/P

17

 PSTSWM Benchmark: Platform Comparisons

XT4 and BG/P also differ in the impact of contention (for memory) on performance
when running on multiple cores.

18

COMMTEST Benchmark

• COMMTEST is a suite of codes that measures the performance of MPI
interprocessor communication. In particular, COMMTEST evaluates the
impact of communication protocol, packet size, and total message
length in a number of “common usage” scenarios. (However, it does not
include persistent MPI point-to-point commands among the protocols
examined.)

• Experiments: Best observed performance over all pt2pt protocols for …
i-j
− processor i swaps data with processor j. Depending on i and j, this

can be within a node or between nodes.
i-(i+j); i=1,…,n; n<j
− n processor pairs (i,i+j) swap data simultaneously. Depending on j,

this will be within a node or between nodes (or both). Minimum per
pair performance is reported.

19

 MPI Bidirectional Bandwidth on BG/P

Same data, presented log-linear (left) and log-log (right). For large messages,
performance is highest within a node, and without contention. As go between nodes
and add contention, “per pair” performance degrades in a deterministic manner
(approx. constant aggregate link BW). Performance is identical for small messages.

20

 MPI Bidirectional Bandwidth on BG/P

Using knowledge of network topology to determine bidirectional bandwidth on “hot”
link(s). Note that relatively constant for large message sizes, indicating that process
pairs are efficiently sharing maximum bandwidth.

21

 Bidir. BW: Platform Comparisons

BW when one core in one node communicates with analogous core in neighboring
node. Same data, presented log-linear (left) and log-log (right). Latency on BG/P
(torus) is superior to that on other systems. Bandwidth on BG/P (torus) for large
messages lags that on the Cray X1E and XT4 systems.

22

 Bidir. BW w/Contention: Platform Cmp.

BW when each core in one node communicates with analogous core in neighboring
node. Same data, presented log-linear (left) and log-log (right). Latency on BG/P
(torus) even better compared to other systems. Bandwidth on BG/P (torus) for large
messages between nodes still lags that on the Cray X1E and XT4 systems.

23

 Bidir. BW w/Contention: Platform Cmp.

Per pair BW when 32, 64, or 128 process pairs communicating simultaneously.
Performance gap between BG/P and Cray systems narrowing somewhat. This
reflects actual performance, but mapping is not controlled on XT4 or Xeon cluster.

24

 MPI_Barrier Performance

MPI_Barrier performance for one MPI process per node and for 4 MPI processes
per node, using both the barrier network (default) and an implementation utilizing the
torus network (unoptimized). MPI_Barrier on (proper) node subsets via
subcommunicators will NOT use the barrier network.

25

 MPI_Barrier: Platform Comparison

“Unoptimized” MPI_Barrier performance on BG/P is faster than on Cray XT4
(probably because latency on BG/P torus is superior to that on the XT4 torus).

26

HALO Benchmark

• Alan Wallcraft’s HALO benchmark is a suite of codes that measures the
performance of 2D halo updates as found in 2D domain decompositions of, for
example, finite difference ocean models. Implementations exist for multiple
message layers, and for multiple implementations for a given layer. The
benchmark measures max time (over all processes) for a small number of
repetitions, normalized by the number of repetitions.

• We used HALO to compare:
− MPI two-sided communication protocols, for both VN and SMP modes
− Impact of process mapping on performance
− Impact of process count on performance

27

 HALO on BG/P: Protocol Comparison

Experiments for VN and SMP modes on the BG/P, both on the whole machine
(2048 nodes). Little protocol sensitivity is evident, and growth in cost as a function
of halo size is qualitatively the same for both modes. Contention from using all
cores in node doubles cost over using just one core for large halo exchanges.

28

 HALO on BG/P: Mapping Comparison

VN experiments for 1024 and 2048 nodes, looking at the different predefined
process mappings. “Optimal” custom mappings were not investigated. Purpose is
to point out performance sensitivity. Here small halo performance was not
sensitive, while large halo performance differed by as much as a factor of 5. Best
performing predefined option differed in the two experiments.

29

 HALO on BG/P: Scaling Comparison

VN experiments for optimal predefined mappings, looking at performance as a
function of process count. The halo exchange is “logically” a local operator, so
performance should not vary with process count for an optimal mapping. While there
is some variability here, possibly because not using truly optimal process mapping for
each process count, it does not appear to be an increasing function of process count.

30

Communication protocol again does not appear to be important, but cost is increasing
monotonically with total process count. Note that I do not have control of processor
allocation in these experiments, so this might be an artifact of a poor mapping. The
regularity of the growth would argue against this though.

HALO on XT3/CNL at ORNL

31

Some HALO experiments on the Franklin system at NERSC exhibited
significant performance “perturbations”, while others showed no perturbations
at all. The occurrences appear to be clustered in time, so may be caused by
other users. This is very difficult to confirm however.

HALO on XT4/CNL at NERSC

32

Even when not subject to performance perturbations, the cost of the halo exchange on
the NERSC system increases with total process count, the same as on the ORNL
system. These graphs show that the minimum time across all processes for a single
exchange behaves as expected. In contrast, the maximum time is the source of the
increasing cost. The source of this behavior still needs to be identified.

HALO on XT4/CNL : max vs. min

33

Other Benchmarks

(partial list of benchmarks used by ORNL team in recent evaluations)
1. Subsystem or Kernel Benchmarks:

a. Intel MPI Benchmark suite (ping-pong, exchange, allreduce, bcast,
barrier)

b. HPC Challenge: Communication (Ping-pong, Natural Ring,
Random Ring); HPL, MPI_FFT, PTRANS, MPI-RandomAccess

c. TOP500 Linpack
d. Parallel I/O: IOR, FLASH, and custom
e. Custom difference stencil benchmark

2. Application Benchmarks:
a. Climate: CAM (atmosphere), POP (ocean)
b. Weather: HYCOM (ocean)
c. Biology: LAMMPS, AMBER, and NAMD (molecular dynamics

codes)
d. Combustion: S3D (DNS turbulent reacting flow)
e. Fusion: AORSA (RF heating), GYRO (gyrokinetic turbulence)

34

System Evaluation Discussion

1. Careful experimental design is important. In particular, while data
mining (‘serendipity’) is important for finding unexpected results, we
still need to know what is being measured, including what parameters
are being varied or fixed, in order to interpret the results.

2. Standard benchmarks are useful for cross-platform comparisons, but
custom (or customizable) benchmarks can be crucial for evaluating
system-specific performance characteristics.

3. Whole system performance data is difficult or impossible to measure
on many HPC platforms, making it extremely difficult to differentiate
between the performance impact of ‘external forces’ (e.g., other users
or external hardware failures) from application-specific or local system-
specific issues (e.g., slow nodes or OS ‘jitter’).

4. Evaluation is (or should be) an ongoing process. Software is being
upgraded continually, often in response to the evaluation results.
Hardware failures often are prefaced by degraded performance. New
application codes may stress the system in unique ways. Evaluation
studies are not just for new systems, performed only prior to opening
the system up to users.

35

Application Analysis and Optimization

Steps:
1. Porting
2. Initial optimization: compiler flags, environment variables,

communication protocols, system- and application-specific
configuration options

3. Performance analysis: scaling studies with appropriate benchmark
problems, using user-defined profiling, PAPI counters, and/or vendor
or third party tools (TAU, HPCToolkit, …)

4. Identify and eliminate performance bottlenecks
5. Repeat as code, problem instances, or performance requirements

evolve, monitoring performance “health” of code.

Example: Parallel Ocean Program

36

 Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high resolution
studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Domain decomposition determined by grid size and 2D virtual processor

grid.

37

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 .

− Note: This is the “original” POP benchmark. The current production
version of POP is version 2.0.1 or 2.1, and these are the focus of
current optimization work. Version 1.4.3 is currently used to
evaluate machine performance and optimization strategies.

• Two fixed size benchmark problems
− One degree horizontal grid of size 320x384x40 using externally-

defined “real” horizontal grid
− Tenth degree horizontal grid of size 3600x2400x40 using internally

generated horizontal grid
• Results for a given processor count are the best observed over all

applicable processor grids.

38

Steps:
1. Implemented and evaluated port to Earth Simulator (by Dr.

Yoshikatsu Yoshida), and customized it for the Cray X1:
a. Vectorization of major computational loops (touched 3% of code)
b. Replaced use of MPI derived datatypes in communication with

explicit buffer packing and unpacking and standard datatypes.
c. Replaced individual halo updates for each vertical level by a

single update for all levels simultaneously.
2. Optimized performance of communication in barotropic phase:

a. Implemented halo update in the barotropic phase in Co-Array
Fortran. (MPI latency was, and is, large on Cray X1/X1E).

b. Replaced MPI_Allreduce call in barotropic phase with a Co-Array
Fortran equivalent. (Vendor-supplied MPI_Allreduce now
demonstrates superior performance, so this is no longer used.)

c. “Inspired” OS and MPI performance improvements, including use
of a global clock to schedule system interrupts.

Porting POP to the Cray X1: 2003

39

Performance
Impact of Co-
Array Fortran

Task Gannt chart before and
after replacement of MPI
allreduce and halo update in
barotropic solver for 128
Processor run:

0: “other”
1: Allreduce
2: Halo Update

40

Much of the algorithm optimization activity from 7/03 to 10/03 was motivated by OS
performance problems. Once these were resolved, algorithmic development
became more “effective”. Note that the color scheme is different in the two graphs.

POP Performance Evolution: Cray X1

41

Problem: Barotropic performance limiting performance scalability.
Solutions:
1. Observed that performance when using only one core per node (SN

mode) was significantly better than when using two (VN mode).
Replaced MPI_Allreduce over MPI_COMM_WORLD with
MPI_Allreduce over a subcommunicator containing only “core 0”
processors.

Implementation:
• Core 1 send local sum to core 0; core 0 adds this to its local

sum
• Call MPI_Allreduce on “core 0” subcommunicator
• Core 0 sends result to core 1.
(This option is now available with MPI_Allreduce if set
MPI_COLL_OPT_ON system environment variable.)

2. Decreased number of MPI_Allreduce calls in barotropic phase by
using Chronopoulos-Gear (C-G) variant of the Conjugate-Gradient
solver. (Back ported C-G code from a more recent version of POP.)

 Optimizing POP on the Cray XT4: 2007

42

 Impact of Modified Allreduce Algorithm

The modified MPI_Allreduce improves performance of the barotropic phase.
Performance appears to be sensitive to perturbations, but the 0.1 degree benchmark
suffers from load imbalance in the baroclinic phase that is mistakenly attributed to
the barotropic phase by the timers.

43

 POP Performance Evolution: Cray XT4

Combination of modified MPI_Allreduce algorithm and C-G variant of conjugate
gradient improved performance significantly. In particular, SN mode performance is
now only slightly better than VN mode for large processor counts, and VN mode is
much faster as a function of compute nodes.

44

Problem: Barotropic (and POP) performance degraded when moving from
 Catamount to CNL operating system.
Solution:

Timers appeared to indicate that problem was once again in the
MPI_Allreduce calls. However, closer inspection showed that the
problem was in the halo update immediately preceding the allreduce.
Preposting the receive requests before calculation associated with
this halo update eliminated much of the problem. The reason this is
important for CNL and not important for Catamount is still under
investigation. The effectiveness of this solution at scale also needs to
be confirmed.

 Opt. POP on the Cray XT3/CNL: 2008

45

POP performance was not scaling well to large processor counts on Cray XT3
(using CNL). Performance difference is clearly in the Barotropic phase.

POP Perf. Devolution: Cray XT3/CNL

46

7200 MPI tasks, without timing barriers (process 0)
 Called Wallclock max min

BAROTROPIC 1133 167.164764 1.315988 0.070891

 pcg_global_sum_c0 139720 30.399334 1.170748 0.000111

 pcg_ninept_4_c 139720 9.045540 0.002591 0.000033

 pcg_global_sum_c1 139720 112.140366 0.006126 0.000062

7200 MPI tasks, with timing barriers (process 0)
 Called Wallclock max min

BAROTROPIC 1133 188.724838 0.342617 0.089528

 pcg_global_sum_c0 139720 26.993826 0.002908 0.000098

 pcg_ninept_4_c 139720 8.519553 0.001952 0.000037

 sync_pcg_glb_sum_c1 139720 111.815437 0.003291 0.000075

 pcg_global_sum_c1 139720 26.179775 0.002964 0.000063

Barotropic Solver Performance

47

Changing implementation of halo update, preposting receive requests, appears to
eliminate performance degradation.

POP Perf. Recovery: Cray XT/CNL

48

Application Optimization Discussion

1. Themes of experimental design, data collection, and data analysis are
equally important here.

2. Performance problems arising from algorithmic complexity do arise,
especially with new code or new problem scenarios, but these are
typically easy to identify. They are also either easy to fix or intractable
(requiring a completely different approach). Most time and effort is
spent in decreasing the “performance constants” in the implementation
of the existing algorithms.

3. Solutions to performance problems often come from the vendor or
system staff in the form of updates to system software. Careful
experimental design and/or the definition of a reproducer that can be
given to the computer vendor accelerate this process.

