
 Early Evaluation of the IBM BG/P

Patrick H. Worley
Oak Ridge National Laboratory

The 9th LCI International Conference on High-Performance Clustered Computing
April 30, 2008

National Center for Supercomputing Applications
University of Illinois

Urbana, Illinois

2

• The work described in this presentation was sponsored by the
Atmospheric and Climate Research Division and the Office of
Mathematical, Information, and Computational Sciences, both of the
Office of Science, U.S. Department of Energy, under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725 with UT-Battelle,
LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

• This work used resources of the National Center for Computational
Sciences at Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under Contract DE-AC05-
00OR22725.

 Acknowledgements

3

1. 10/2007: a two-rack (8192 processor core) IBM BlueGene/P system
is installed at Oak Ridge National Laboratory (ORNL).

2. Evaluation team is assembled: 13 ORNL research staff contribute to
code porting and data collection and analysis using microkernel,
kernel, and application benchmarks. Goal is to generate an early
evaluation before opening system up to users.

3. 4/2008: Technical report describing evaluation results is currently 65
pages long. 20-page subset is submitted to SC08.

4. Next step: continue performance studies (at scale) on systems at the
Argonne Leadership Class Facility.

5. This talk and the associated LCI paper describe my contributions to
this much larger effort, with the paper describing results as of early
March, 2008. Most of “my” benchmarks are internally-developed or
application-specific. Other members of the team collect data using
the standard benchmark suites and a wider range of application
benchmarks.

Background

4

1. A complete evaluation:
a. microkernel, kernel, application benchmarks, chosen to examine

major subsystems and to be representative of anticipated workload
b. optimized with respect to obvious compiler flags, system

environment variables (esp. MPI) and configuration options
2. performed quickly:

a. not exhaustive (can’t answer all questions nor examine all options)
b. minimal code modifications

3. with a goal of determining:
a. performance promise (a lower bound)
b. performance characteristics (good and bad)
c. usage advice for users

4. in the context of an “evolving” system, subject to:
a. HW instability
b. system software upgrades
c. unrealistic run environment (no users)

What is an Early Evaluation?

5

1. Compute node:
– 850 MHz quad-core PowerPC 450 processor, hardware cache

coherence, and 2GB of memory. Each core also has an
associated dual-pipe 64-bit floating point multiply-add unit,
Computational peak is 3.4 Gflop/s per core and 13.6 Gflop/s per
node.

– running Compute Node Kernel (CNK) microkernel OS, which
supports OpenMP parallelism (unlike on the BG/L system).

2. Interconnects: 6(!), 4 relevant to users
– 3-D torus network for point-to-point messaging between compute

nodes. 6 connections per node, where each link has a peak
bidirectional bandwidth of 425 MB/s.

– Global collective network. 3 connections per node, where each link
has a peak bidirectional bandwidth of 850 MB/s.

– Global barrier and interrupt network. 4 connections per node.
– 10 Gigabit Ethernet. All I/O nodes connected via a standard 10

Gigabit Ethernet switch. Compute nodes not connected directly.

Overview of IBM BG/P

6

Early acquisition issues
1. Many compute nodes replaced during first 4 months

– Did not appear to affect performance results, but needed to rerun
everything many times to verify this.

2. Permanent Ethernet switch not installed until 2/2008 (primarily
delayed/compressed time for I/O tests, not discussed in this work).

3. Two (known) performance-altering system software updates
– Impacts isolated to subsystems: MPI collectives and output to

stdout and stderr
4. A number of compiler bugs identified and reported (and some fixed)

in process of porting benchmark codes.
– Constrained compiler optimization flags that could be used and

choice of application benchmarks

Early Evaluation Issues for ORNL BG/P

7

System architecture issues
1. Complicated architecture: SMP-node architecture and multiple

networks (and network topologies) between nodes
– performance sensitive to “topology” of allocated nodes, to choice

of process-to-processor mapping, and to choice of programming
paradigm (e.g., MPI vs. hybrid MPI/OpenMP)

– but performance appears to be pretty deterministic (no mysteries)
2. Complicated architecture: dual-pipe floating point unit

– Using primary pipe does not require unusual user attention.
Using secondary pipe requires the issue of SIMD instructions (in
lock step with primary pipe) and requires memory alignment and
(essentially) stride one access patterns. Get at most a factor of
two for what may require significant code restructuring.

We were not able to do a completely fair evaluation with respect to either
of these aspects of the BG/P architecture within the context of our early
evaluation. Results described are achievable lower bounds.

Early Evaluation Issues for ORNL BG/P

8

1. CNK supports three different modes of execution:
a. SMP - assign only one MPI process to a node*;
b. DUAL - assign two MPI processes to a node;
c. VN - assign four MPI processes to a node.
For SMP and DUAL modes, OpenMP parallelism can be used to
generate threads of execution for the unused cores.

2. By default, processes are mapped to compute nodes in XYZT
ordering, i.e., assigning one process to each node in the X direction
of the torus, then the Y, then the Z, then returning to the first node
and assigning a second process, etc. Other options:

a. TXYZ ordering, which assigns processes 0-3 to the first node, 4-
7 to the second node (in the X direction), etc.

b. XZYT, YXZT, YZXT, ZXYT, and ZYXT (defined analogously to
XYZT)

c. Explicit mapping file can be used to define an arbitrary mapping.

* For dual-core Cray XT4, this mode is referred to as SN.

Details and Terminology

9

3. By default, some MPI collectives have been optimized to take
advantage of the collective global and interrupt networks, or of special
features of the torus. The optimized versions can be disabled by
setting the environment variable DCMF COLLECTIVE to 0, and re-
enabled by setting it to 1.

4. Other systems used for comparison:
a. Cray XT4 (2.6 GHz dual-core Opteron processor; 3-D torus

interconnect with SeaStar2 network interconnect card; Catamount
operating system)

b. Cray XT3/CNL (2.6 GHz dual-core Opteron processor; 3-D torus
interconnect with SeaStar network interconnect card; Compute
Node Linux operating system, with OpenMP support)

c. Cray X1E (4-way vector SMP node. Each processor has 8 64-bit
floating point vector units running at 1.13 GHz. Nodes are fully
connected within 8-node subsets, and are connected via 2-D torus
between subsets. Runs UNICOSMP, which supports OpenMP)

Details and Terminology

10

1. Computational Performance (DGEMM, PSTSWM)
a. Peak and “typical” performance
b. Per core, in isolation and under contention when all cores computing

2. MPI Commmunication Performance (BARRIER, COMMTEST, HALO)
a. Peak, and how to achieve it
b. Intranode, internode, and under contention when other cores are

communicating
c. Impact of network topology

3. Application Benchmarks
a. Community Atmosphere Model (CAM)
b. Parallel Ocean Program (POP)

(Benchmarks not described in paper are in red.)

(My) Evaluation Questions

11

Other Benchmarks

(partial list of other benchmarks used by ORNL team in BG/P evaluation)
1. Subsystem or Kernel Benchmarks:

a. Intel MPI Benchmark suite (ping-pong, exchange, allreduce, bcast,
barrier)

b. HPC Challenge: Communication (Ping-pong, Natural Ring,
Random Ring); HPL, MPI_FFT, PTRANS, MPI-RandomAccess

c. TOP500 Linpack
d. Parallel I/O: IOR, FLASH, and custom
e. Custom difference stencil benchmark

2. Application Benchmarks:
a. Geophysics: HYCOM (ocean)
b. Biology: LAMMPS, AMBER, and NAMD (molecular dynamics

codes)
c. Combustion: S3D (DNS for turbulent reacting flow)
d. Fusion: GYRO (gyrokinetic turbulence)

12

 Matrix Multiply Benchmark (DGEMM)

Evaluated performance of ESSL routine for matrix multiply. Achieved 79% of peak,
so must be using both pipes of floating point unit. No significant degradation
observed from running benchmark on all cores simultaneously. Opteron in XT4
achieved 90% of peak; POWER5 in p575 achieved 95% of peak.

13

 Matrix Multiply Benchmark (Fortran)

! Fortran version 2
do i=1,N; do j=1,N
 c(j,i) = 0.0
 do k=1,N
 c(j,i) = c(j,i) + a(j,k)*b(k,i)
enddo; enddo; enddo

! Fortran version 1
do j=1,N; do i=1,N
 t = 0.0
 do k=1,N
 t = t + a(j,k)*b(k,i)
 enddo
 c(j,i) = t
enddo; enddo

Comparing performance of two Fortran implementations for matrix multiply with that
of the ESSL routine. Version 1, despite use of aggressive compiler optimizations
with the IBM xlf compiler, runs significantly slower than Version 2. “Typical” user
code runs much slower than the tuned library routine for matrix multiply.

14

 Matrix Multiply Benchmark (Fortran)

xlf compiler on POWER5 system has similar problems with version 1, but gap
between version 2 and DGEMM is much less on the POWER5. (On SGI Altix and
Cray X1E, version 1 achieves 90% performance of library call: 5 and 15 GF/s.)

15

PSTSWM Benchmark

 The Parallel Spectral Transform Shallow Water Model represents an
important computational kernel in spectral global atmospheric models. As
99% of the floating-point operations are multiply or add, it runs well on
systems optimized for these operations. PSTSWM exhibits little reuse of
operands as it sweeps through the field arrays; thus it exercises the
memory subsystem as the problem size is scaled and can be used to
evaluate the impact of memory contention in multi-core nodes. (“STREAM
analog”)

 These experiments examine serial
performance, both using one core and
running the serial benchmark on all
cores simultaneously. Performance is
measured for a range of horizontal
problems resolutions for 1 to 18 vertical
levels.

Horizontal Resolutions

T5: 8 x 16

T10: 16 x 32

T21: 32 x 64

T42: 64 x 128

T85: 128 x 256

16

 PSTSWM Benchmark: Platform Comparisons

BG/P shows much less performance sensitivity to either contention between cores or
number of vertical levels compared to the XT4. Performance is still 2-3 times slower.

17

Computation Benchmarks: Summary

1. Effective exploitation of secondary floating point pipe will likely require
code modifications. (The compiler can’t do it for you, but it can advise
you what you need to do.)

2. Math library routines are effective performance enhancements (partially
because they often are able to use the secondary floating point pipe).

3. BG/P processor-core floating point performance is relatively poor
compared to those used in other HPC architectures.

a. However, there is little or no degradation in per core performance
when other cores are also computing (for these benchmarks), in
sharp contrast to many other platforms.

b. A node-to-node comparison (or a power consumption comparison or
a cost comparison or …) varies with the specifics of the other
platforms and can’t be easily summarized here.

18

COMMTEST Benchmark

• COMMTEST is a suite of codes that measures the performance of MPI
interprocessor communication. In particular, COMMTEST evaluates the
impact of communication protocol, packet size, and total message
length in a number of “common usage” scenarios. (However, it does not
include persistent MPI point-to-point commands among the protocols
examined.)

• Used SMP, DUAL, VN modes and predefined and custom process-to-
core mapping files to precisely define and control contention
experiments.

• Experiments: Best observed performance over all pt2pt protocols
(reported as sum of bandwidth in each direction) for …
i-j
− processor i swaps data with processor j. Depending on i and j, this

can be within a node or between nodes.
i-(i+j); i=1,…,n; n<j
− n processor pairs (i,i+j) swap data simultaneously. Depending on j,

this will be within a node or between nodes (or both). Minimum per
pair performance is reported.

19

 MPI Bidirectional Bandwidth

BW for a single pair (left) and as aggregate BW for the “hot link” (right). For large
messages, BW is highest within a node, and without contention. As go between
nodes and add contention, “per pair” BW degrades in a deterministic manner (~
constant aggregate BW). Performance is identical for small messages.

20

 Bidir. BW: Platform Comparisons

BW when one core in one node communicates with analogous core in neighboring
node (left) and when each core in one node communicates with analogous core in
neighboring node (right). MPI latency on BG/P (torus) is superior to that on other
systems. BW on BG/P (torus) for large msgs. lags that on the Cray X1E and XT4.

21

 MPI_Barrier Performance

MPI_Barrier performance for one MPI process per node and for 4 MPI processes
per node, using both the barrier network (default) and an implementation utilizing the
torus network (unoptimized). MPI_Barrier on (proper) node subsets via
subcommunicators will NOT use the barrier network.

22

 MPI_Barrier: Platform Comparison

“Unoptimized” MPI_Barrier performance on BG/P is faster than on Cray XT4
(because latency on BG/P torus is superior to that on XT4 torus?).

23

HALO Benchmark

• Alan Wallcraft’s HALO benchmark is a suite of codes that measures
the performance of 2D halo updates as found in 2D domain
decompositions of, for example, finite difference ocean models.
Implementations exist for multiple message layers, and for multiple
implementations for a given layer. The benchmark measures max time
(over all processes) for a small number of repetitions, normalized by
the number of repetitions.

• We used HALO to compare:
− MPI two-sided communication protocols, for both VN and SMP

modes
− Impact of process mapping on performance

24

 HALO Benchmark: Protocol Comparison

Experiments for VN and SMP modes, both on the whole machine (2048 nodes).
Little protocol sensitivity is evident, and growth in cost as a function of halo size is
qualitatively the same for both modes. Contention from using all cores in node
doubles cost over using just one core for large halo exchanges.

25

 HALO Benchmark: Mapping Comparison

VN experiments for 1024 and 2048 nodes, looking at the different predefined
process mappings. “Optimal” custom mappings were not investigated. Purpose is
to point out performance sensitivity. Here small halo performance was not
sensitive, while large halo performance differed by as much as a factor of 5. Best
performing predefined option differed in two experiments.

26

Communication Benchmarks: Summary

1. Barrier network is a significant performance enhancer.*
a. It is only available for barriers over all application processes
b. Barrier implementation over torus is still pretty good compared to

that on Cray XT4 system.
2. BG/P internode (torus) MPI latency is excellent compared to that on

Cray systems. (Note that BG/P intra- and inter-node latency are
identical. Not sure what that signifies.)

3. BG/P internode (torus) MPI bandwidth is less than that on Cray
systems.

a. Link contention (saturation) on torus is evident and mapping of
processes to processors may be an important performance
optimization for some codes.

b. Contention is also very predictable, and good and bad maps should
be easily determined a priori.

* Similar comment probably holds for reduction network

27

Atmospheric global circulation model developed at NCAR (with
contributions from DOE and NASA):
• Timestepping code with two primary phases per timestep

− Dynamics: advances evolution equations for atmospheric flow
− Physics: approximates subgrid phenomena, such as precipitation,

clouds, radiation, turbulent mixing, …
• 4 benchmark problems, two using Spectral Eulerian (EUL) dynamics:

− T42 horizontal grid (64x128) and 26 vertical levels
− T85 horizontal grid (128x256) and 26 vertical levels
and two using Finite-Volume semi-Lagrangian (FV) dynamics:
− 1.9x2.5 horizontal grid (96x144) with 26 vertical levels
− 0.47x0.63 horizontal grid (384x576) with 26 vertical levels
all using tensor product longitude x latitude x vertical level grid over
the sphere

 Community Atmosphere Model (CAM)

28

• Using internal development version 3_5_27 in these experiments.
• The atmospheric scientists require that CAM simulation results should

be invariant with respect to process and OpenMP thread count. We
were able achieve this by compiling most of the code with -O3, adding
-qstrict for a small subset. Given that we could not compile with
higher optimization levels, here was no reason to set the -qarch=450d
flag and try to use the secondary floating point pipe.

• Ran most experiments with TXYZ and XYZT mappings. Have not had
the opportunity to do more extensive experimentation. For VN runs
(pure MPI), XYZT is superior to TXYZ runs.

 CAM Experiment Particulars

29

 CAM Performance

OpenMP is a significant performance enhancement for all benchmark problems.
(I was unable to get the large FV problem to run in pure MPI mode.) The performance
continues to scale out to the largest processor core counts indicated, though the
scaling is minimal at the limit. Three of these problems are quite small, and the
scaling limits are algorithmic. However, the large problem is not scaling well either.

30

CAM Platform Comparisons

Performance on the XT3/CNL has similar performance scaling characteristics to
that on BG/P, with the additional BG/P scalability arising from the XT3 having only
two cores per node while the BG/P has four. For the EUL benchmarks,
performance on the XT3 is at least 2.1 times faster than on the BG/P. For the FV
benchmarks, the factor is less than two.

31

CAM Benchmarks: Summary

1. CAM results are preliminary. We still need to look closely at …
a. Higher compiler optimization levels that still preserve reproducibility;
b. Additional process mapping experiments;
c. Detailed comparison of BG/P and XT3/CNL results, to identify how

they are similar and how they are different;
d. Why the large FV problem is not scaling well. (We already identified,

and eliminated, one algorithmic limiter as part of these studies.)
2. However, OpenMP parallelism is clearly working well for this

benchmark.
3. The three small benchmark problems are not good candidates for the

highly scalable BG/P architecture, but they are representative of current
production problem resolutions. Other proposed problem scenarios are
significantly more expensive, and these are likely to be better
candidates for the BG/P architecture. Alternative dycores, such as
HOMME from NCAR and the next generation FV dycore, both of which
use a cubed sphere (rather than a longitude-latitude) horizontal grid, are
demonstrating better scalability.

32

 Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high resolution
studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Two different conjugate gradient algorithms considered: standard and

Chronopoulos-Gear (C-G). C-G halves the number of MPI_Allreduce
calls compared to the standard algorithm, but at the cost of some
additional computation.

• Domain decomposition determined by grid size and 2D virtual processor
grid.

33

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 with a few

additional parallel algorithm tuning options (due to Dr. Yoshida of
CRIEPI).
− Note: This is the “original” POP benchmark. The current production

version of POP is version 2.0.1 or 2.1, and these are the focus of
current optimization work. Version 1.4.3 is used to evaluate
machine performance, not to evaluate the performance of POP.

• Two fixed size benchmark problems
− One degree horizontal grid of size 320x384x40 using externally-

defined “real” horizontal grid
− Tenth degree horizontal grid of size 3600x2400x40 using internally

generated horizontal grid
• Results for a given processor count are the best observed over all

applicable processor grids using the TXYZ mapping. Using TXYZ was
never more than 3% slower than the best predefined mapping option
for either benchmark problem.

34

 POP: Compiler Optimization Comparison

Experiments run with 1024 processes. With optimization disabled, cost is 5 times
greater than with the best optimization. Attempts to use the secondary floating
pipe are more effective for smaller process counts. Similar sensitivities observed
for 0.1 degree problem.

35

 POP Performance: 1 degree

Comparing performance on Cray XT4 and IBM BG/P for 1 degree benchmark. Note
that baroclinic much faster on XT4 and barotropic much faster on BG/P. While BG/P
never quite “catches up”, on a per node basis, performance is similar in VN mode.

36

 POP Performance: 0.1 degree

Comparing performance on Cray XT4 and IBM BG/P for 0.1 degree benchmark.
The baroclinic is still much faster on the XT4, Here, however, the barotropic is also
faster on the XT4 (out to 8000 processes). This appears to be due at least partially
to the halo updates used in the linear solvers (for residual calculations),
demonstrating the higher torus bandwidth on the XT4.

37

POP Benchmarks: Summary

1. Even without modifying the code, compiling for secondary floating pipe
pipe shows some modest performance improvement (for smaller
process counts).

2. The POP performance “signature” on BG/P is significantly different from
that on the Cray XT4 (and other systems). The inner product calculation
(MPI_ALLREDUCE) is quite fast on the BG/P, and the performance
limiter for the both problem sizes is the baroclinic computation speed.

3. Scaling on the BG/P is excellent for both problem sizes, with
expectations that it will be able to use many more processes on the 0.1
degree problem. Note that John Dennis of NCAR has been developing
algorithm modifications that eliminate some of the load imbalance and
halo update bandwidth issues shown here.

38

Evaluation Summary
1. From the perspective on someone who has never run on an IBM BG/L, and has

only heard talks and read papers, the IBM BG/P has very similar performance
characteristics to the BG/L:

a. Relatively slow processor and limited memory per node, with a relatively
difficult to use secondary floating point pipe;

b. Rich assortment of networks supporting low latency point-to-point and
collective communication operators;

c. Limited bandwidth on torus network;
d. Excellent performance determinism and ability to precisely control how the

application code uses system.
2. From a user’s perspective, the significant new features are

e. Somewhat faster processor (and improved memory bandwidth and network
injection rate, to retain a similar balance with these other subsystems);

f. Quad-core instead of dual-core, with support for OpenMP parallelism.

Overall, this is an important evolution of the BG architecture that preserves the
basic strategy of a highly scalable, physically dense system with relatively low
power requirements.

