
Chasing Scalability Bottlenecks:
Recent Activities

Patrick H. Worley
Oak Ridge National Laboratory

Workshop on Code Instrumentation and
Modeling for Parallel Performance Analysis

Dagstuhl Seminar 07341
August 22, 2007

Schloss Dagstuhl, Wadern, Germany

2

• Research sponsored by the Climate Change Research Division of the
Office of Biological and Environmental Research, by the Fusion
Energy Sciences Program, and by the Office of Mathematical,
Information, and Computational Sciences, all in the Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

• This research used resources (Cray XT3 and XT4) of the National
Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

 Acknowledgements

3

 In this talk I describe recent work on addressing performance
scalability problems in three different application codes. Hopefully,
these descriptions will lead to discussions on how tools and models
can help in this process.

 My current focus is on
 serial and parallel algorithm evaluation (and less on algorithm

implementation optimization), looking for insight (identification of
potential performance problems, followed by performance
diagnosis), not automatic ‘fixes.’

 evaluation and optimization as part of the development process
(as some of these codes are undergoing rapid development);

 Examples are all for codes running on the Cray XT3/XT4 system at
ORNL (dual-core 2.6 GHz Opteron, where XT3 nodes have lower
memory and NIC bandwidth than XT4 nodes). However, the
performance issues discussed are not Cray XT-specific.

Background

4

Nothing new, but these issues continue to be important.
(Superset of issues addressed in examples; ordering is random.)
1. Multi-core (was SMP processor) contention:

a. processor-memory and processor-network
b. bandwidth and latency

2. Algorithmic scaling bottlenecks
a. phase or component-specific scaling limits
b. memory requirements
c. reproducible numerics

3. Load imbalance
a. ‘algorithmic’ (i.e., occurs on homogeneous systems)
b. due to running on heterogeneous system

5. I/O (serial and parallel performance, and scalability)

Current Issues

5

6. Transient system performance problems:
a. slow nodes
b. slow (hot spots) or missing network links
c. interference from neighbors (especially I/O, but perhaps also

network contention)
d. topology of allocated processors and process placement
(Note - would like algorithmic ‘transient performance
problem tolerance’ ala fault tolerance.)

7. Program manager or project PI expectations:
a. execution time or numerical accuracy versus other ‘performance

metrics’
b. comparison with other codes in program manager’s portfolio

Current Issues (cont.)

6

My standard (‘Luddite’) methodology is to use …
1. Manually inserted ‘application-specific’ instrumentation points,

representing the developer’s understanding of the code
2. Application-specific or application-portable profiling layer:

– some minimal instrumentation always there, enabled/disabled at
runtime

– provides a location to insert more detailed/intrusive
instrumentation (hidden from the developers)

3. Empirical studies of tuning options
a. application-specific
b. compiler
c. other system (MPI environment variables, etc.)
d. scriptable experiments
using both application-relevant microkernel and kernel benchmarks
and full application code

Methodology

7

4. Scaling studies (looking for trends and anomalies)
a. both problem size and processor count scaling
b. “cross-platform scaling”
c. scriptable experiments

5. PAPI / HWPC - style hardware performance counter data (less
frequently)

6. MPI tracing, analysis, and/or visualization (as needed, but rarely)

Methodology (cont.)

8

Description of performance diagnosis and/or optimization of:
 XGC-1 fusion simulation code
 Parallel Ocean Program
 Community Atmosphere Model

Outline of Rest of Talk

9

 XGC-1

• Kinetic Fokker-Planck/Poisson code for simulating neoclassical or
electrostatic turbulence physics in the ‘edge’ of a tokamak fusion device
− particle-in-cell code
− 5-dimensional (3-D real space + 2-D velocity space), realistic

magnetic geometry and wall shape
− conserving plasma collisions (Monte Carlo); full-f ions, electrons,

and neutrals; gyrokinetic Poisson equation for neoclassical and
turbulent electric field; particle source from neutral ionization; …

− PETSc library for Poisson solver
− MPI for parallelization

• Developed at NYU as part of the Center for Plasma Edge Simulation
http://www.scidac.gov/FES/FES_CPES.html

10

Weak scaling experiments, keeping number of particles assigned to
each process constant as number of processes increases. Other
problem input parameters (e.g. background ‘cell’ grid) fixed.

– Looking to identify program phases for which performance is
primarily a function of local particle count, and program phases for
which performance is also sensitive to process count.

– Comparison of performance when using one core (SN mode) and
two cores (VN mode) per node on the ORNL XT3/XT4 (quantifying
impact of contention).

Experiment Methodology

11

Phase Diagrams: 25K par./proc. on XT3

• Other than the PETSc Solver, performance is only mildly sensitive to processor count. For
these phases, ‘work’ appears to be primarily a linear function of local particle count, all other
input parameters being fixed.

• Using both cores (-VN) degrades performance by 20%, but uses half as many nodes as when
using -SN for same number of processes (and same total number of particles).

• Solver performance is worst for 512 processors, improving for larger node counts.
• Charge_i and Solver are the most expensive phases.

12

Phase Diagrams: 25K vs. 50K
particles/process on XT3

• Charge_i, Charge_e, Push_i, and Push_e approximately double runtime
when double number of particles per process. Poisson solver (local
computation and PETSc solver) and diagnosis phases are essentially
constant as a function of number of particles per process.

13

XGC-1 Performance Scaling on the XT4

 Different benchmark problem => different performance characteristics
 Poisson solver cost more important than in earlier analysis. 122M total

particles at 4096 processors. If goal is 10B particles, at 4096 processors,
cost of everything but Poisson multiplied by ~100.

14

1. Single processor rate: 8% of peak (435 Mflop/s on XT4) using HYPRE
solver.

2. Parallel performance:
a) Some load imbalance (idle processes), but not by itself a significant

performance limiter. Mark Adams (Columbia/PPPL) identified this as a
poor graph partition. Using ParMETIS or Chaco is expected to
eliminate this problem.

b) Significant communication overhead / limited parallelism as scale up
(fixed size problem). New graph partitioning will affect this as well.

c) IF solver wallclock time relatively constant as a function of process
count, solver will not limit number of processors or total number of
particles. It will just represent a lower bound on execution time
independent of processor and particle count.

3. To do: MPI tracing, to look for MPI performance bugs. For example, VN
performance should be closer to SN performance. Also, characterize
performance as function of processor count.

Phase Analysis: Solver

15

1. Next most time-consuming phase after Poisson solver (for given
benchmark).

2. Performance primarily a function of number of local particles, so not
affected by processor count. Also not affected significantly by memory
contention due to using both cores (VN) vs. using just one core (SN).

3. Looked at hardware performance counters, including modifying code
to help quantify operation count and memory access performance:

a) Low floating point computation rate probably irrelevant - not doing
many floating point operations (~4 flops per 100 memory
accesses).

b) Isolated floating point computations, and measured 8% of peak for
15% of runtime, so existing flops not limiting performance.

c) Memory access pattern is efficient (4 L1 cache misses per 1000
accesses), so not unnecessarily limited by memory performance.

CHARGEI Phase Analysis

16

1. No memory access pattern or floating point operations to optimize,
so tried

a) aggressive in-lining to minimize subroutine call overhead. It
“worked” (everything was in-lined), but performance did not
improve.

b) reorganizing code to test for rare events more efficiently. This
produced a small performance improvement.

2. Will be trying more aggressive source code instrumentation (Rice
collaborators using HPC Toolkit), but significant performance
improvement appears to require an improved algorithm.

3. Ed D’Azevedo (ORNL) investigated an number of alternatives,
identifying an algorithm modification that nearly halved CHARGEI
execution time.

CHARGEI Optimizations

17

1. Performance evaluation identified need for algorithmic improvements.
Application experts used performance characterization to propose
alternative approaches.

2. Relevant benchmark problem specification is vital. Since code is under
active development, will be requesting that developer enable basic
performance data collection for every run. Performance engineers will
monitor data and provide feedback to developers whenever new
performance issues arise.

3. Need to evaluate/optimize MPI performance in PETSc solver, requiring
PETSc expertise?

XGC-1 Summary

18

 Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high resolution
studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Domain decomposition determined by grid size and 2D virtual processor

grid.

19

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 with a few

additional parallel algorithm tuning options (due to Dr. Yoshida of
CRIEPI).
− Note: This is the “original” POP benchmark. The current production

version of POP is version 2.0.1, and it is the focus of current
optimization work. Version 1.4.3 is typically used to evaluate
machine performance, not to evaluate the performance of POP.

• One fixed size benchmark problem
− Tenth degree horizontal grid of size 3600x2400x40 using internally

generated horizontal grid
• Results for a given processor count are the best observed over all

applicable processor grids.
• Focusing on scaling studies to identify and diagnose performance

issues, comparing performance on XT3 and XT4 and using SN and VN
execution modes.

20

 POP Benchmark Performance

The XT4 faster is than the XT3. SN mode is much faster than VN mode for the
same number of processors, and is not much slower for the same number of
compute nodes. The XT3 and XT4 performance characteristics are similar.

21

 POP Baroclinic Phase

The baroclinic phase is scaling as expected. As with the whole code, the XT4 is
faster than the XT3, and SN mode is faster than VN mode (for the same processor
count). However, the degree to which SN mode is faster than VN mode is much
smaller, and VN is much faster for the same number of compute nodes.

22

 POP Barotropic Phase

The barotropic phase does not scale at all beyond 4096 processors in VN mode,
and scaling is minimal in SN mode. (At least execution time hasn’t started
increasing.) XT3 and XT4 performance are almost identical, modulo performance
perturbations.

23

• Problem: Poor VN mode performance in barotropic phase. Kernel
results (not presented here) suggest that the problem is due to poor
VN mode latency compared to SN mode.

• Solution: Replace MPI_Allreduce over MPI_COMM_WORLD with
MPI_Allreduce over a subcommunicator containing only “core 0”
processors.

• Implementation:
− Core 1 send local sum to core 0; core 0 adds this to its local sum
− Call MPI_Allreduce on “core 0” subcommunicator
− Core 0 sends result to core 1.

Same approach is now available from vendor MPI collective when
MPI_COLL_OPT_ON environment variable is set. This collective
optimization was not available on the ORNL system at the time of
these experiments.

 Modified POP Benchmark

24

 POP Benchmark Performance

Modified MPI_Allreduce improves POP performance significantly, especially at
scale. Improvement is the same for both the XT3 and the XT4.

25

 POP Phase Analysis

The modified MPI_Allreduce improves performance of the barotropic phase, but
performance is still sensitive to perturbations. The barotropic phase also includes a
halo update. Typically the MPI_Allreduce dominates performance, but this needs to
be re-examined.

26

• Problem: Barotropic performance limiting performance scalability.
• Solution: Decrease number of MPI_Allreduce calls in barotropic

phase by using the Chronopoulos-Gear (C-G) variant of the
Conjugate-Gradient solver*. C-G increases the computation cost but
halves the number of allreduce calls. (C-G uses the same number of
reductions, but some reductions are bundled together.)

• Implementation:
− Back ported C-G code from later versions of POP.

Note: C-G is available in POP version 2.1 (release imminent) and is
used in CCSM and POP production runs already.

*A.T. Chronopoulos and C.W. Gear. s-step iterative methods for
symmetric linear systems. Journal of Computational and Applied
Mathematics, 25:153–168, 1989.

 Modified POP Benchmark II

27

 POP Benchmark Performance

Combination of modified MPI_Allreduce algorithm and C-G variant of conjugate
gradient improved performance significantly. In particular, SN mode performance is
now only slightly better than VN mode for large processor counts, and VN mode is
much faster as a function of compute nodes.

28

POP Benchmark Summary

1) Cost of MPI_Allreduce, especially in VN mode, limited POP scalability.

2) Replacing MPI_Allreduce with an “SN mode” implementation alleviated
problem. (This is no longer necessary if use optimized Cray MPI
collective. Approach may still be important for other application
communication operators, and is one of the rationales for examining
OpenMP on the Cray XT system.) Implementation was motivated by SN
vs. VN mode experiments, using both microkernels and full application
code.

3) Reducing the number of calls to MPI_Allreduce via modified algorithm
further improves performance.

Achieved highest reported POP performance (of any version) for this
benchmark. Note that results for largest processor counts included both
XT3 and XT4 compute nodes.

29

Atmospheric global circulation model
• Timestepping code with two primary phases per timestep

− Dynamics: advances evolution equations for atmospheric flow
− Physics: approximates subgrid phenomena, such as

precipitation, clouds, radiation, turbulent mixing, …
• Multiple options for dynamics:

− Spectral Eulerian (EUL) dynamical core (dycore)
− Spectral semi-Lagrangian (SLD) dycore
− Finite-Volume semi-Lagrangian (FV) dycore
all using tensor product longitude x latitude x vertical level grid over
the sphere, but not same grid, same placement of variables on grid,
or same domain decomposition in parallel implementation.

• Separate data structures for dynamics and physics and explicit data
movement between them each timestep (in a “coupler”)

• Developed at NCAR, with contributions from DOE and NASA

 Community Atmosphere Model (CAM)

30

• T85L26 grid: 128x256 latitude-longitude and 128x85 latitude-
wavenumber horizontal grids, both with 26 vertical levels

• Dynamics limited to 1D decomposition in latitude, so can use at most
128 MPI processes.

• Physics supports arbitrary 2D horizontal decomposition, and is twice
as expensive as the dynamics.

• Interprocessor communication in the dynamics includes remap
between 1D latitude and 1D wavenumber domain decompositions.

• Interprocessor communication in “coupling” between the dynamics
and the physics is a complete remap of domain decomposition when
physics load balancing is enabled. Without physics load balancing,
no communication is required.

 Spectral Eulerian Benchmark

31

• Problem: Limited scalability due to lack of OpenMP support on Cray
XT when using Catamount OS (and on IBM BG/L).

• Solution: Allow the dynamics and the physics to use different
numbers of MPI processes.

• Implementation:
− Automatically limit number of active processors in the dynamics,

but allow as many as requested in the physics.
− Allow user to specify stride (separation between active dynamics

processors). So with stride 2 in VN mode using SMP-style
placement, only one processor is active per node during the
dynamics (equivalent to SN mode for the dynamics).

− Allow user to choose between MPI collective and point-to-point
implementations of domain decomposition remaps within the
dynamics and in the dynamics-physics coupling. For point-to-
point implementations, support 19 different MPI protocols.

 Modified Spectral Eulerian Benchmark

32

Spectral Eulerian Performance

Using modified benchmark with MPI collective implementation, we were able to
extend scalability out to 512 processors. SN mode is faster than VN mode, but
running the dynamics in SN mode (stride 2) is faster than running in all VN mode
when using more than 128 processors.

33

Spectral Eulerian Performance

Using modified benchmark and comparing MPI collective implementation with best
point-to-point implementation (MPI_Isend/MPI_Recv) for communication between
the dynamics and the physics. For 512 processors, point-to-point is faster (and it is
competitive for other processor counts).

34

Spectral Eulerian Phase Analysis

Dynamics performance for 256 and 512 processors (both SN and VN modes) is
identical to SN mode performance at 128 processors. The cost of the dynamics-
physics coupling decreases out to 512 processors. However, when using the MPI
collective implementation, the cost at 512 processors is 50% larger than at 256
processors.

35

CAM Benchmarks Summary

1) Lack of OpenMP support limits scalability.

2) Supporting different numbers of active MPI processors in different
phases is effective in increasing scalability in the T85L26 benchmark.

3) Using SN mode in phases using smaller numbers of processors and
using “optimal” point-to-point implementations of collectives improves
performance further.

4) “Defensive programming” feature of including MPI point-to-point
alternative to collectives was useful.

36

Talk Summary

1) In my recent work, many scaling bottlenecks were attributable to the
algorithm, and not to the algorithm implementation, and tools will not be
able to eliminate them automatically (unless alternative algorithms are
already implemented as part of the code or library). Carefully designed
performance experiments and analysis, however, were crucial in
identifying and diagnosing the problems.

2) Scaling studies have been important in the problem identification.
Models could be useful in prototyping alternative algorithms. Modeling
bad code seems to me to be a waste of time unless scaling studies are
not feasible. In this latter case, model accuracy not be high in order to
identify where code needs to be modified. In general, modeling for
development appears to have a different nature (in acceptable modeling
costs and accuracy) than modeling for architecture design or system
evaluation. However, Darren Kerbyson’s use of models to optimize
communication patterns for different networks appears to be an
exception to my claim that “quick and dirty” models might be sufficient.

