
 Importance of Pre-Posting Receives
(a cautionary tale)

or
More Fun with the Parallel Ocean Program

Patrick H. Worley
Oak Ridge National Laboratory

The Second Annual Cray Technical Workshop - USA
February 26-27, 2008

Hotel Nikko San Francisco
San Francisco, California

2

• The work described in this presentation was sponsored by the
Atmospheric and Climate Research Division and by the Office
of Mathematical, Information, and Computational Sciences,
both of the Office of Science, U.S. Department of Energy,
under Contract No. DE-AC05-00OR22725 with UT-Battelle,
LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for
U.S. Government purposes.

• This work used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-00OR22725, and of the
National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

 Acknowledgements

3

POP performance was not scaling well to large processor counts on
the Cray XT3/XT4 (using the Catamount OS).

1. High latency was observed in MPI communications when both cores
were communicating simultaneously.

2. Default implementation of MPI_Allreduce (only one available at time
of experiments) did not take this into account, indicated by higher
performance achieved when running in SN mode (using one core
per node) than in VN mode (using both cores).

3. “Custom” solution (described on later slide) eliminated performance
problem. This same approach is (now) available with MPI_Allreduce
when the MPI_COLL_OPT_ON environment variable is defined.

4. In combination with alternative implementation of conjugate gradient
algorithm that reduces the number of MPI_Allreduce calls in
calculating inner products, we achieved the “land speed record”
when running the POP 1.4.3 benchmark on the tenth degree
horizontal grid.

In our last episode (3/07) …

4

 Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high resolution
studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Domain decomposition determined by grid size and 2D virtual processor

grid.

5

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 with a few

additional parallel algorithm tuning options (due to Dr. Yoshida of
CRIEPI).
− Note: This is the “original” POP benchmark. The current production

version of POP is version 2.0.1 or 2.1, and these are the focus of
current optimization work. Version 1.4.3 is used to evaluate
machine performance, not to evaluate the performance of POP.

• One fixed size benchmark problem
− Tenth degree horizontal grid of size 3600x2400x40 using internally

generated horizontal grid
• Results for a given processor count are the best observed over all

applicable processor grids.

6

• Problem: Barotropic performance limiting performance scalability.
• Solutions:

1. Replaced MPI_Allreduce over MPI_COMM_WORLD with
MPI_Allreduce over a subcommunicator containing only “core 0”
processors.
Implementation:
• Core 1 send local sum to core 0; core 0 adds this to its local

sum
• Call MPI_Allreduce on “core 0” subcommunicator
• Core 0 sends result to core 1.
Note: used SMP-style placement to simplify algorithm
development.

2. Decreased number of MPI_Allreduce calls in barotropic phase by
using Chronopoulos-Gear (C-G) variant of the Conjugate-
Gradient solver. (Back ported C-G code from a more recent
version of POP.)

 Modified POP Benchmark

7

 POP Benchmark Performance

Combination of modified MPI_Allreduce algorithm and C-G variant of conjugate
gradient improved performance significantly. In particular, SN mode performance is
now only slightly better than VN mode for large processor counts, and VN mode is
much faster as a function of compute nodes.

8

 POP Benchmark Performance

While Jaguar is the largest system on which we have run this benchmark on, it also
demonstrates the best scalability. The BG/P system has different performance
characteristics, and different optimization strategies (not implemented in this version
of POP) are required for continued performance scalability beyond 8000 cores.

9

• POP production runs (using versions 2.0.1 and 2.1) are already
using C-G.

• MPI_COLL_OPT_ON makes the modified allreduce algorithm
unnecessary on the Cray XT. However, indications are that similar
performance problems are occurring on other systems, and we are
investigating adding this as an option in the code (as a performance
portability measure)

 Modified POP Benchmark: Comments

10

POP performance was not scaling well to large processor counts on Cray
XT3 (using CNL). Even comparing Catamount results without C-G to CNL
performance with C-G, CNL performance was much worse.

Suddenly last November …

11

Performance difference is clearly in the Barotropic phase.

Catamount vs. CNL Phase Analysis

12

1. First thought was that the MPI_COLL_OPT_ON version of
MPI_ALLREDUCE was broken under CNL . Experiments with the
“dual-core-aware” point-to-point implementation of allreduce, which
was still in the code, did not improve performance. Further
investigation showed that performance degradation was occurring
when running in SN mode as well.

2. Second thought was that this was the dreaded OS jitter problem (for
which allreduce is an excellent diagnostic tool). Added additional
barriers and timers and found …

Hypotheses

13

! calculate (PC)r
WORK1 = R*A0R ! use diag. precond.

! update conjugate direction vector s

WORK0 = R*WORK1
 call t_startf("pcg_global_sum_c0")
eta1 = global_sum(WORK0,RCALCT)

 call t_stopf("pcg_global_sum_c0")

S = WORK1 + S*(eta1/eta0)

! compute As
 call t_startf("pcg_ninept_4_c")

call ninept_4(Q,A0,AN,AE,ANE,S)
 call t_stopf("pcg_ninept_4_c")

Barotropic PCG Solver Logic

! compute next solution and residual
eta0 = eta1
WORK0 = Q*S
 call t_barrierf("sync_pcg_glb_sum_c1")
 call t_startf("pcg_global_sum_c1")
eta1 = eta0/global_sum(WORK0,RCALCT)
 call t_stopf("pcg_global_sum_c1")

X = X + eta1*S
R = R - eta1*Q

! test for convergence
...

14

7200 MPI tasks, without timing barriers (process 0)
 Called Wallclock max min

BAROTROPIC 1133 167.164764 1.315988 0.070891

 pcg_global_sum_c0 139720 30.399334 1.170748 0.000111

 pcg_ninept_4_c 139720 9.045540 0.002591 0.000033

 pcg_global_sum_c1 139720 112.140366 0.006126 0.000062

7200 MPI tasks, with timing barriers (process 0)
 Called Wallclock max min

BAROTROPIC 1133 188.724838 0.342617 0.089528

 pcg_global_sum_c0 139720 26.993826 0.002908 0.000098

 pcg_ninept_4_c 139720 8.519553 0.001952 0.000037

 sync_pcg_glb_sum_c1 139720 111.815437 0.003291 0.000075

 pcg_global_sum_c1 139720 26.179775 0.002964 0.000063

Barotropic PCG Solver Performance

15

• The timing barrier is capturing all of the performance “degradation”,
after which the allreduce behaves normally. If the problem were “OS
jitter” occurring within the allreduce, then both the barrier and the
allreduce would be impacted equally.

• The routine ninept_4 is primarily a halo update, and the new
hypothesis is that “ragged release” from the halo update is the source
of the problems attributed to the allreduce. Next I tried alternate
implementations of the halo update.

Hypotheses II

16

do j=jphys_b,jphys_e
 do i=iphys_b,iphys_e
 XOUT(i,j) = (9 pt. weighted sum)
 end do
end do

! fill buffers and send east-west
! boundary info
do n=1,num_ghost_cells
 do j=jphys_b,jphys_e
 buffer_east_snd(i)= ...
 buffer_west_snd(i)= ...
 end do
end do

call MPI_ISEND(buffer_east_snd, ...
call MPI_ISEND(buffer_west_snd, ...

! receive east-west boundary info and
! copy buffers into ghost cells
call MPI_RECV(buffer_west_rcv, ...
call MPI_RECV(buffer_east_rcv, ...

ninept_4 original
call MPI_WAITALL(2, …

do n=1,num_ghost_cells

 do j=jphys_b,jphys_e

 XOUT(n,j) = ...

 XOUT(iphys_e+n,j) = ...

 end do

end do

! send north-south boundary info

call MPI_ISEND(XOUT(...

call MPI_ISEND(XOUT(...

! receive north-south boundary info

call MPI_RECV(XOUT(...

call MPI_RECV(XOUT(...

call MPI_WAITALL(2, …

17

! Prepost receive requests

call MPI_IRECV(buffer_west_rcv, ...

call MPI_IRECV(buffer_east_rcv, ...

call MPI_IRECV(XOUT(...

call MPI_IRECV(XOUT(...

do j=jphys_b,jphys_e

 do i=iphys_b,iphys_e

 XOUT(i,j) = (9 pt. weighted sum)

 end do

end do

! fill buffers and send east-west

! boundary info

do n=1,num_ghost_cells

 do j=jphys_b,jphys_e

 buffer_east_snd(i)= ...

 buffer_west_snd(i)= ...

 end do

end do

ninept_4 modified
call MPI_ISEND(buffer_east_snd, ...

call MPI_ISEND(buffer_west_snd, ...

! receive east-west boundary info and

! copy buffers into ghost cells

call MPI_WAITALL(2, …

do n=1,num_ghost_cells

 do j=jphys_b,jphys_e

 XOUT(n,j) = ...

 XOUT(iphys_e+n,j) = ...

 end do

end do

! send north-south boundary info

call MPI_ISEND(XOUT(...

call MPI_ISEND(XOUT(...

! receive north-south bddy info

call MPI_WAITALL(6, …

18

Changing implementation of halo update, preposting receive requests, appears
to eliminate performance degradation.

Modified Halo Update on XT3

19

Similar results hold with C-G algorithm and on Cray XT4.

Modified Halo Update on XT4

20

• Won’t know for sure that have addressed the problem adequately
until can test with larger processor counts.

• Problem appeared without any change in hardware. The only
difference was in the Operating System (and other associated
system software). Where is this problem coming from?
− Performance of original POP code under CNL is also subject to

higher performance variability.
− Problem does not appear to be OS-jitter related. Ninept_4 takes

less time than allreduce, so should be less affected by jitter.
Problem also affects SN-mode performance, so is not caused by
contention for resources between the two cores.

− While Cray has always instructed users that preposting receives
is the preferred strategy on the XT, the sensitivity to
communication protocol is significantly different on CNL than on
Catamount. Is this a feature of CNL, or a “bug” that will disappear
with MPT3 or ???

− Can this performance characteristic be observed with kernel
benchmarks?

Problem Solved?

21

CNL vs. Catamount peak bandwidth is not significantly different. In particular,
overlap vs. nonoverlap experiments do not anticipate the POP performance
behavior. Did not measure “ring” bandwidth in these expts.

COMMTEST

22

Alan Wallcraft’s HALO benchmark: isend/irecv protocol very close to what original POP
code used. Measures max time (over all processes). Little protocol sensitivity is evident.
Cost does grow with process count (increasing by a factor of 3 between 16 and 4096
processes). This does not explain source of increase in cost.

HALO on Jaguarcnl

23

1. Identified a performance issue in POP when moving from Catamount
to CNL.

2. Identified a workaround - introducing communication/computation
overlap in the halo update that proceeds an MPI_Allreduce call.

3. Experiments with the HALO benchmark showed an increase in cost
as a function of processor count of the correct magnitude. The
source of the increase is not clear however.

4. Uncertain what lesson should be drawn here - is this a significant
performance issue, or is POP just overly sensitive? Where is the
halo performance degradation coming from?

Summary of Part I

24

Have not verified that POP performance on Franklin has same characteristics as on
Jaguar, but HALO benchmark shows similar behavior on both Franklin and Jaguarcnl.

HALO on Jaguarcnl vs. Franklin (512)

25

Experiments on Franklin this past weekend show performance variability that did not
see on Jaguarcnl over the same period of time. Difference in workload?

HALO on Jaguarcnl vs. Franklin (1024)

26

Variability on Franklin does not appear to be a function of MPI protocol.

HALO on Jaguarcnl vs. Franklin (2048)

27

Variability diminishing as go to higher processor counts (essentially gone for 8192
processes) - coincidental? Note that performance variability on Franklin similar for SN
mode experiments.

HALO on Jaguarcnl vs. Franklin (4096)

28

Experiments on two different days (separate runs for each processor counts).
Perturbations not the same each day, but worst and average cases (80 samples) much
worse than best observed performance.

Allreduce “jitter” test on Franklin (8B)

29

Similar performance issues observed for 1024 Bytes,

Allreduce test on Franklin (1024B)

30

for 32768 Bytes,

Allreduce test on Franklin (32768B)

31

for 262144 Bytes,

Allreduce test on Franklin (262144B)

32

and for 2097152 Bytes. Larger vectors are less sensitive (thankfully), but the
perturbations do not disappear, so this is NOT the signature that has been typical of
jitter in the past. The performance degradation is affecting allreduce regardless of the
duration of the event. This appears to be “something else”.

Allreduce test on Franklin (2097152B)

33

1. Observed significant performance variability on Franklin this past
couple of days that was not evident on Jaguarcnl. Does this mean
anything?

2. Signature of variability does not appear to be that of OS jitter. Have
observed interference from other users when running on ORNL
system. Is this what is occuring on Franklin?

3. Need to run allreduce experiments on jaguarcnl, and to identify how
the ORNL and NERSC systems are different (if they are).

Summary of Part 2

