
Performance Analysis in a Time of Development

Patrick H. Worley
Oak Ridge National Laboratory

The 8th International Workshop on
Performance Analysis and Optimization of High-End Computing Systems

November 11, 2007
Reno-Sparks Convention Center

Reno, NV

2

• Research sponsored by the Climate Change Research Division of the
Office of Biological and Environmental Research, by the Fusion
Energy Sciences Program, and by the Office of Mathematical,
Information, and Computational Sciences, all in the Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

• This research used resources of the National Center for Computational
Sciences at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725 with UT-Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

 Acknowledgements

3

Two (related) topics:
 Observations on special needs and attributes of performance

engineering when working with codes under active development
 Recent performance engineering activities

Overview

4

 Tasks: parallel algorithm development (for HPC applications);
application performance analysis, evaluation, and optimization;
system performance evaluation

 Platforms: Cray X1E, Cray XT3 (Compute Node Linux OS), Cray
XT4 (Catamount OS), IBM BG/P, IBM p575 and p575+ clusters, SGI
Origin 3800

 Applications:
– Climate: atmosphere model (CAM), ocean model (POP), and

land model (CLM) - all components of the Community Climate
System Model (CCSM).

– Fusion: XGC-1 (gyrokinetic “edge” particle code)
– Others: As application engagement coordinator of the

Performance Engineering Research Institute (PERI), I am
peripherally involved in or monitoring a large number of the
SciDAC applications.

A Month (10/07) in the Life of …

5

 Diverse, often changing, computing environments
 Constantly changing application codes and/or relevant science

experiments, with most changes not under my control and some not
well documented (if documented at all)

 “Performance expeditions” (detailed analyses of static code in a
static environment) are expensive and not always relevant to the
needs of application development.
– Getting relevant benchmark problems is a constant battle.
– Some level of triage to identify when a performance expedition is

justified is vital for efficient allocation of resources.

I want consistent, informative, performance data at all stages of the
development process. Deciding to examine performance should
mean (initially) looking at performance data from recent runs, NOT
doing a special run to collect the data. Special runs will still be
needed at times, but should not be required to answer basic
questions about current performance.

Characteristics of Work

6

Basics
 Always on, with very low overhead (so users won’t complain)
 Easily ported, easily maintained, and “part” of the application code

(so can’t be left out), providing the same basic performance data and
view of performance across all platforms

 User or developer-friendly view of performance - providing data that
reflect the logical structure of the code (not necessarily the code
structure or the call path)
– Requires involvement of developers in defining this; no “throwing

the code over the fence” to be evaluated as a black box
 “Baby Bear” instrumentation: not too much, not too little, “just right”
 Runtime control to increase (or decrease) volume and/or change

nature of the performance data
 Scalable (in terms of duration of run, process/thread count, and

number of user events begin tracked), with respect to both overhead
and output volume.

Instrumentation for Development

7

Desirable
 Interfaces/support for more detailed performance data, when

available, but still integrated into user-friendly view, e.g.
– PAPI
– MPI? (would like PAPI-style query functions and data from the

native MPI libraries)
 (semi-) Automatic archiving of data with appropriate metadata (for

performance tracking)

End Game?
 Performance characterization or model (or performance model

parameters) as output
and/or
 Performance characterization or model generation from archived

performance data (doable today? - still want models that support
developer-view of performance)

Instrumentation for Development

8

My standard methodology is to …
1. Manually insert instrumentation points, representing the application

developer’s understanding of the code
2. Augment, develop or port instrumentation library, checking library

code into application source code repository, and including it in
application make logic:

– some minimal instrumentation always there; enabled/disabled,
amount of data, and nature of data specified at runtime

– provides a location to insert more detailed/intrusive
instrumentation (hidden from the application developers)

3. Empirically study tuning options
a. application-specific
b. compiler
c. other system (MPI environment variables, etc.)
d. scriptable experiments
using both application-relevant microkernel and kernel benchmarks
and full application code (lots of experiments, per platform)

Current Methodology

9

4. Study performance scaling (looking for trends and anomalies)
a. both problem size and processor count scaling
b. “cross-platform scaling”
c. scriptable experiments (again, lots of experiments)

5. Collect PAPI / HWPC - style hardware performance counter data (as
needed).

6. Collect, analyze, and/or visualize MPI profile or trace data (as
needed).

In general, this process (steps 3-6) is too expensive for development,
unless experimental data is essentially free and only need to fill
“holes” in data, and even then, only when code or science
configuration or platform or … change sufficiently to warrant
reexamining performance. Need a change in performance
engineering “sociology”.

Current Methodology

10

 Built on top of slightly modified version of GPTL timer library
(developed and maintained by Jim Rosinski, currently with SiCortex)
– Uses MPI_Wtime, gettimeofday, clockgettime, nanotime, papitime,

or rtc timers, selected at runtime.
– Works with hybrid MPI/OpenMP, collecting profile information per

thread.
– Events not predefined. Instead are defined/identified at time of call

by character label. (Events not currently distinguished by call
path.)

– Event nesting (approximately) indicated in output.
 Output:

– Per process/thread view. For each event, total time, min and max
time over occurrence, and total number of occurrences. When
PAPI enabled, includes up to 4 counters (totals only).

– Global view. For each event, min and max total time over
processes. When PAPI enabled, min and max counter values over
processes

Current Instrumentation Library

11

***** GLOBAL STATISTICS (64 MPI TASKS) *****

$Id: gptl.c,v 1.68 2007/07/30 20:29:32 rosinski Exp $
'count' is cumulative. All other stats are max/min
name count wallmax (proc thrd) wallmin (proc thrd) FP_OPSmax (proc thrd) FP_OPSmin (proc thrd)
TOTAL 64 9.309 (0 0) 9.284 (1 0) 1.51e+09 (0 0) 1.46e+09 (59 0)
MAIN_LOOP 128 4.576 (17 0) 4.407 (0 0) 1.07e+09 (7 0) 1.05e+09 (59 0)
CHARGEI 256 1.972 (17 0) 1.800 (0 0) 4.68e+09 (0 0) 4.83e+08 (7 0)
POISSON 256 1.005 (38 0) 0.963 (9 0) 2.37e+08 (49 0) 2.30e+08 (33 0)
…

************ PROCESS 0 (0) ************
…
Stats for thread 0:
 Called Recurse Wallclock max min % of TOTAL UTR Overhead FP_OPS e6/sec
TOTAL 1 - 9.309087 9.309087 9.309087 100.00 0.000000 1.51e+09 162.13
 MAIN_LOOP 2 - 4.406962 2.204860 2.202102 47.34 0.000000 1.07e+09 241.69
 CHARGEI 4 - 1.799709 0.450417 0.449442 19.33 0.000001 4.81e+08 267.24
 POISSON 4 - 0.968812 0.245042 0.238809 10.41 0.000001 2.37e+08 245.01
…

Current Instrumentation Library

12

XGC-1 performance on process zero when running on 2048 processors

13

 (Partial) list of current performance issues dealing with
 Description of some recent performance engineering results and

activities
– Performance Tracking: Maintaining vector performance for code

being developed on non-vector systems
– Performance Optimization: Using Cray XT4 data to identify

performance idiosyncrasies on IBM BG/P

Outline of Rest of Talk

14

Nothing new, but these issues continue to be important.
1. Multi-core (was SMP processor) contention:

a. processor-memory and processor-network
b. bandwidth and latency

2. Algorithmic scaling bottlenecks
a. phase or component-specific scaling limits
b. memory requirements
c. reproducible numerics

3. Load imbalance
a. ‘algorithmic’ (i.e., occurs on homogeneous systems)
b. due to running on heterogeneous system

5. I/O (serial and parallel performance, and scalability)

Current Performance Issues

15

6. Transient system performance problems:
a. slow nodes
b. slow (hot spots) or missing network links
c. interference from neighbors (especially I/O, but perhaps also

network contention)
d. topology of allocated processors and process placement

7. Performance portability: supporting efficient performance across
platforms with different (evolving) performance idiosyncrasies.

8. Management expectations or requirements:
a. execution time or numerical accuracy versus other ‘performance

metrics’
b. comparison with other codes (doing different science or using

significantly different numerical methods)

Current Performance Issues

16

Community Atmosphere Model (CAM)
• Atmospheric global circulation model
• Timestepping code with two primary phases per timestep

− Dynamics: advances evolution equations for atmospheric flow
− Physics: approximates subgrid phenomena, such as

precipitation, clouds, radiation, turbulent mixing, …
• Multiple options for dynamics:

− Spectral Eulerian (EUL) dynamical core (dycore)
− Spectral semi-Lagrangian (SLD) dycore
− Finite-Volume semi-Lagrangian (FV) dycore
all using tensor product latitude x longitude x vertical level grid over
the sphere, but not same grid, same placement of variables on grid,
or same domain decomposition in parallel implementation

• Separate data structures for dynamics and physics and explicit data
movement between them each timestep (in a “coupler”)

• Developed at NCAR, with contributions from DOE and NASA

 Performance Tracking Example: CAM

17

1. Spectral Eulerian dycore running on T85L26 computational grid
− 128x256x26 (latitude by longitude by vertical) grid
− Until recently, production dynamical core and grid resolution in

CCSM
2. Finite Volume dycore running on 1.9x2.5 degree horizontal grid with

26 vertical levels
− 96x144x26 (latitude by longitude by vertical) grid
− Finite volume dycore is the preferred (required among current

options) dycore for atmospheric chemistry due to its conservation
properties. 1.9x2.5 degree resolution is the initial CCSM
production grid size.

3. Finite Volume dycore running on 0.5x0.625 degree horizontal grid
with 26 vertical levels
− 361x576x26 (latitude by longitude by vertical) grid
− 15 times larger than FV production grid resolution.

 CAM Performance Experiments

18

· Performance impact of SciDAC check-ins from March 2004 to April 2006 on the
Cray X1E, plotting performance for both named version tag and for immediately
preceding version.

· Not all check-ins improved performance, nor were expected to - some improved
portability, added new performance tuning options, or fixed bugs.

 CAM Performance History: X1E

19

Perf. Characterization Example: POP

• Parallel Ocean Program (POP)
• Developed at Los Alamos National Laboratory. Used for high resolution

studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Domain decomposition determined by grid size and 2D virtual processor

grid.

20

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 with a few

additional parallel algorithm tuning options (due to Dr. Yoshida of
CRIEPI).
− Note: This is the “original” POP benchmark. The current production

version of POP is version 2.0.1 or version 2.1.?. Version 1.4.3 is
typically used to evaluate machine performance, not to evaluate the
performance of POP.

• Two fixed size benchmark problems
− One degree horizontal grid of size 320x384x40 using external grid

definition
− Tenth degree horizontal grid of size 3600x2400x40 using internally

generated horizontal grid
• Results for a given processor count are the best observed over all

applicable processor grids.
• Focusing on scaling studies to identify and diagnose performance

issues, comparing performance on XT4 and BG/P in order to identify
how best to optimize on each platform.

21

 POP Benchmark Performance

Performance rolls over on both platforms (at different places), as expected for a
relatively small fixed size problem. Raw performance better on XT4, but scaling to
large processor counts is better on BG/P.

22

 POP Performance Diagnosis

Baroclinic is much faster on XT4 than on BG/P, but Barotropic determines
performance on XT4 for large processor counts. Barotropic is faster on BG/P than
on XT4 (communication intensive), but lack of scalability in Baroclinic on BG/P
prevents BG/P from (ever) exceeding performance on XT4.

23

 POP Performance Optimization

The default implementation of MPI_Allreduce when using both cores in an XT4
dual core node is much slower than when using only a single core per node. A
“dual-core aware” alternative improves performance significantly.

24

 POP Perf. Optimization Opportunity?

A big gap also appears in performance between using all 4 cores in a BG/P node
and using only one. Perhaps there is an opportunity for a “quad-core aware”
MPI_Allreduce implementation.

25

 POP Benchmark Performance

Large problem, and performance is scaling well on both platforms. Raw
performance is still better on the XT4.

26

 POP Performance Diagnosis

Similar advantage of XT4 over BG/P for Baroclinic phase. For Barotropic phase,
XT4 is also faster (and already in nonscalable region for both architectures). What is
going on? MPI_Allreduce is not determining performance on the BG/P? POP
performance sensitivities may be different on BG/P and need further investigation.

27

1. I am proposing a change in the “sociology” of how performance
engineering is used within application development teams that I work
with, to relieve some of the demand for limited resources.

2. Performance tracking, in particular, improves triage process.

3. Archiving performance data allows data mining to be used to guide
performance analysis, including exploiting insight across platforms.

4. “Always on” performance instrumentation is not, however, sufficient.
Special benchmarking runs will continue to be necessary.

Talk Summary

