
Performance and Performance
Scalability of the Community

Atmosphere Model
Patrick H. Worley

Oak Ridge National Laboratory

13th SIAM Conference on
Parallel Processing for Scientific Computing

March 13, 2008
The Renaissance Atlanta Hotel Downtown

Atlanta, GA

Arthur A. Mirin
Lawrence Livermore National

Laboratory

• The work described in this presentation was sponsored by the Atmospheric
and Climate Research Division and by the Office of Mathematical,
Information, and Computational Sciences, both of the Office of Science,
U.S. Department of Energy, under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC and Contract No. DE-AC52-07NA27344 with
Lawrence Livermore National Security, LLC.

• These slides have been authored by contractors of the U.S. Government
under contracts No. DE-AC05-00OR22725 and No. DE-AC52-07NA27344,
and are released as LLNL Report LLNL-PRES-401951. Accordingly, the
U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

• This work used resources of the National Center for Computational
Sciences at Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under Contract DE-AC05-
00OR22725.

 Acknowledgements

Goals

• Goals of Talk
– Describe new Community Atmosphere Model (CAM) benchmark suite
– Present initial results on Cray XT3 and IBM BG/P

• Goals of Benchmarking Activity
– Quantify change in cost of model due to model evolution and to choice

of model configuration
– Establish new performance baselines upon which to base future

performance optimization activities, and with which to evaluate
computing platforms

Relationship with Mirin Presentation

Same models as discussed in
Enabling Highly-Scalable Ultra-High Resolution Climate Simulations
Using the Community Climate System Model,

but the focus is different. In particular I will be discussing
– Performance measurement and analysis, not parallel algorithms and

new features
– Performance scalability for horizontal and vertical resolutions typical

of current production runs
– Performance impact of new physical parameterizations (the other

dimension of problem size scaling)

Community Atmosphere Model

Atmospheric global circulation model
• Developed at NCAR, with contributions from external NSF-, DOE- and

NASA-funded researchers
• Atmospheric component of Community Climate System Model (CCSM)
• Timestepping code with two primary phases per timestep

– Dynamics: advances evolution equations for atmospheric flow
– Physics: approximates subgrid phenomena, such as precipitation, clouds,

radiation, turbulent mixing, …
• Multiple options for dynamics:

– Spectral Eulerian (EUL) dynamical core (dycore)
– Spectral semi-Lagrangian (SLD) dycore
– Finite-Volume semi-Lagrangian (FV) dycore
all using tensor product longitude x latitude x vertical level grid over
the sphere, but not same grid, same placement of variables on grid,
or same domain decomposition in parallel implementation.

Community Atmosphere Model

• Separate data structures for dynamics and physics and explicit data
movement between them each timestep (in a “coupler”)

• Physics includes calls to land, sea ice, and ocean models.
– Sea ice and ocean models are simplified data models (in the CAM

experiments described here).
– Land model is the Community Land Model (CLM), the same as used in

the CCSM. CLM has its own data structures and domain decomposition,
requiring data movement between the physics and land each timestep.
CLM also has significant I/O.

Benchmark Specification Participants

• Draft benchmark specification discussions
– Phil Rasch (NCAR) - lead
– Philip Cameron-Smith (LLNL)
– Brian Eaton (NCAR)
– Cecile Hannay (NCAR)
– Art Mirin (LLNL)
– Will Sawyer (NASA)
– Pat Worley (ORNL)

• Initial benchmarking (reported here)
– Pat Worley

Current Benchmark Suite

• cam3.0p1 (June 2004 public release)
default configuration (C0):
– EUL dycore at T42L26 (64x128 horizontal grid, 20 minute timestep)
– EUL dycore at T85L26 (128x256 horizontal grid, 10 minute timestep)
– FV dycore at 2x2.5 L26 (91x144 horizontal grid, 30 minute timestep)
all with 26 vertical levels.

• cam3.1p2 (March 2005 public release)
C0:
– T42L26, T85L26, FV2x2.5 L26
– FV dycore at 1.9x2.5 L26 (96x144 horizontal grid, 30 minute timestep)

Current Benchmark Suite

• cam3_5_27 (December 2007 internal development version)
C0: T42L26, T85L26, FV1.9x2.5 L26
C1: C0 with 30 vertical levels and FV1.9x2.5 only
C2: C1 with “cam3.5” aerosols
C3: C2 with UW physics package
C4: C3 with Morrison Gettelman cloud parameterization
C5: C4 with predicted aerosol fields
C6: C4 with full tropospheric chemistry

Benchmark Suite Comments

• cam3.0p1 => cam3.1p2:
– new physics interface design (software engineering release)

• cam3.1p2 => cam3_5_27:
– Neale-Richter convection mods, Vavrus “freeze-dry” mod, surface

component coupling every timestep, …
• C0 => C1: 30 vertical levels
• C1 => C2

– Prescribed aerosol datasets generated by CAM with prognostic aerosol
chemistry turned on; reimplementation of existing interpolation scheme

• C2 => C3
– Replace Holtslag-Boville vertical diffusion with diag_TKE (Grenier-

Bretherton); replace Hack shallow convection with UW (McCaa)

Benchmark Suite Comments

• C3 => C4
– Replace Rasch-Kristjansson microphysics with Morrison Gettelman,

including addition of two advected species
• C4 => C5

– Enable prognostic aerosol code, adding 16 advected species
• C4 => C6

– Enable full tropospheric chemistry, adding 108 advected species

Benchmark Details

• 30 simulation days (September) with monthly history output
• Platforms:

– Cray XT3 at Oak Ridge National Laboratory (ORNL): dual-core 2.6
GHz AMD Opteron processors

– IBM BG/P at ORNL: quad-core 850MHz IBM PowerPC processors
(results for cam3_5_27 only)

both platforms supporting MPI and OpenMP.
• Set optimization as high as possible while still preserving reproducibility

with respect to process and thread count. CAM has not been validated on
either platform as of yet.

• C6 configuration not available with cam3_5_27. All other configurations
were run, using both pure MPI and hybrid MPI/OpenMP.

3.0 (T42) vs. 3.1 (T85) vs. 3.5 (FV1.9)

Comparison of historical production configurations. This analysis does not
take into account computer performance evolution.

T85: 3.0 vs. 3.1 vs. 3.5

For small processor counts, cam3.5 is approx. 30% slower than cam3.0 .
However, cam3.5 is also more scalable than the released version of cam3.0 or
cam3.1 .

FV: 3.0 vs. 3.1 vs. 3.5

A number of data are missing. FV 2x2.5 scalability is similar to that of FV
1.9x2.5 . For small processor counts, cam3_5_27 is 20% slower than cam3.1 .
Not all scalability options in cam3_5_27 are being exercised here.

XT3 FV: C0 vs. C1 vs. C2 vs. C3 vs. C4 vs. C5

For 32 and 512 processor cores, the normalized cost progression is
.83 => 1.00 => 1.15 => 1.20 => 1.56 => 1.90 => 2.69 and
.90 => 1.00 => 1.09 => 1.13 => 1.38 => 1.63 => 2.03, respectively.

BGP FV: C0 vs. C1 vs. C2 vs. C3 vs. C4 vs. C5

For 32 and 1024 processor cores, the normalized cost progression is
1.00 => 1.22 => 1.22 => 1.83 => 2.20 => 2.82 and
1.00 => 1.13 => 1.20 => 1.60 => 1.80 => 2.37, respectively.

Current Status

• Have lots of data, but will need to repeat experiments once the
benchmarks are refined. Not worth doing in-depth analysis until
this occurs. Also need to define run and reporting rules
precisely, so that others can contribute to this effort.

• Cost increase from C0 => C5 is less than a factor of 3. C6
benchmark will be interesting, however, as it may be
appreciably more expensive.

• Performance scaling is reasonable, but there are so many
optimization options now (see Mirin talk) that it will take awhile
to determine the optimal performance.

• CAM performance scalability is improved by running in hybrid
MPI/OpenMP mode, and we hope that this option will be
available in the full CCSM on these platforms.

Initial Insights from Benchmarking Activity

Comparing performance of 1.9x2.5 and 0.47x0.63 C0 benchmarks, and
looking at time spent in subset of timers associated with history and restart
output (so lower bound on I/O). A performance scaling problem is occurring
in clm_driver_io for the 0.47x0.63 benchmark.

Performance Scalability Issues

• O(NP) complexity in gather/scatter algorithm used in CLM2 I/O. Replaced
with O(N) algorithm. This only “delays” performance bottleneck, but solves
problem for current systems and process counts. Multiple reader/writer
support may eliminate the bottleneck.

• Performance bug on BG/P system when multiple processes writing to stdout
“simultaneously” and when stdout redirected to a file. Vendor-provided
system patch eliminated the problem.

Impact of Algorithm Fix: FV 0.47x0.63 L26

Modifications improve performance for large process counts significantly.
Advantage of BG/P to XT3 wrt I/O percentage is due to relative performance
of processor and I/O (and communication associated with I/O).

Impact of Algorithm Fix: FV 1.9x2.5 L26 on BG/P

Modifications improve performance on BG/P even for benchmarks with a
smaller horizontal grid. Fix of stdout performance bug also contributes to the
performance improvement.

What’s Next?

• Immediate:
– “Freeze” version of model representing current CAM, something more

recent than cam3_5_27, and collect data for configuration C6.
– Collect data on NCAR systems.
– Fine tune existing benchmarks.

• Longer term posibilities:
– Add high resolution configuration(s), e.g. FV 0.47x0.63? WACCM (66

levels)? Vertical resolution scaling studies?
– Add lower resolution configuration(s), e.g. FV 4x5 (for paleoclimate)?
– Add an aquaplanet benchmark (something suitable for initial

comparison with alternative dycores)?
• Note: benchmarking can be expensive. It is important to prioritize benchmarks,

and to clearly state WHY we are collecting the data.

Performance Benchmarking Costs

• “Fair” benchmarking requires some level of optimization for
each configuration on each system.

• Ensembles (collecting data at different dates and times) and/or
real-time monitoring (babysitting) are required to eliminate
misleading performance perturbations.

• Analysis of detailed timing data is needed to understand results
and to identify performance perturbations.

• Scaling studies are important, at least, for baseline studies and
after major upgrades (system and model), and are expensive in
both computer and people time.

Questions? Comments?

Extra Slides

