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Community Atmosphere Model

 Developed at National Center for Atmospheric Research
(NCAR), with contributions from Department of Energy (DOE)
and National Aeronautics and Space Administration (NASA)
researchers

 Consists of physics and dynamics modules
 Physics evolves along vertical columns and includes radiation,

clouds, precipitation, turbulent mixing, boundary layer effects,…
 Dynamics is modeled using choice of methods

— this study uses finite-volume dynamical core developed by
Lin and Rood while at NASA Goddard Space Flight Center
(GSFC)
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Finite-volume (FV) dynamical core

 Time-integrate dynamical equations within control volumes
bounded by material surfaces
—equations are vertically decoupled except for geopotential

calculation, which involves vertical indefinite integrals at
each horizontal location

—conservative semi-Lagrangian method allows violation of
longitudinal CFL condition near poles

 Remap Lagrangian surfaces to physical space based on
vertical transport
— remap is horizontally decoupled and conserves mass,

momentum and total energy
 Equations solved on latitude/longitude/vertical staggered grid
 Overall method conserves mass
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Parallelization of FV dycore

 Multi-two-dimensional domain decomposition methodology
— latitude/vertical decomposition for main dynamics
— latitude/longitude decomposition for surface remap and

possibly geopotential
—decompositions connected via transposes (Pilgrim,

Mod_comm – NASA/GSFC)
 Assign subdomains to MPI tasks in 1:1 fashion
 Utilize OpenMP for shared memory parallelism

—with respect to vertical coordinate for main dynamics
—with respect to latitude for surface remap

 Optionally utilize (threaded) one-sided MPI-2 communications
 Optionally utilize shmem communications on Cray X1E
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Vectorization for Cray X1E and Earth
Simulator

 Main dynamics is structured in nested fashion with outer loop
over vertical level and inner loops over longitude
—move latitude loops to lowest level

 Finite-volume method is fundamentally one-sided (upwind) and
higher order, leading to nested branching throughout
—perform logical tests in advance and partition latitude loops

using indirect indexing

 Polar filters use FFTs along complete latitude lines, with
vectorization across FFTs
—at fine domain decomposition there are insufficient latitude

lines to efficiently vectorize
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Physical parameterizations

 Uses same computational grid as dynamics, but
computations along vertical columns are
independent of one-another

 Basic computational structure is the chunk, an
arbitrary collection of vertical columns
—vectorization is over the columns in a chunk; MPI

and OpenMP parallelism is over chunks
—number of columns assigned to a chunk can be

chosen to optimize for vectorization, cache
blocking, and/or MPI or OpenMP parallelism

—composition of chunk can be chosen to minimize
load imbalance, and/or communication overhead
when moving between dynamics and physics

 Optimal choice of chunk size and composition is
architecture-specific
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Architectural intercomparison
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Communication pattern for 16x4
latitude/vertical decomposition

Dots adjacent to main diagonal represent latitudinal boundary communication

Dots parallel to but separated from main diagonal represent vertical geopotential
communication

Dots in subdued diamond pattern represent transposes

With 1-D latitudinal decomposition, the only dots present are those adjacent to main
diagonal
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Architectural performance comparison
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Limitations on processor count

 Mesh is 361 (latitude) x 576 (longitude) x 26 (vertical)
 Algorithm requires 3 latitude lines per subdomain

—limit is 120 subdomains in latitude
—performance often does not improve going from 4

to 3 latitude lines
 Parallel efficiency falls off rapidly with respect to

vertical decomposition
—practical limit is generally 8 subdomains in vertical

 Maximum number of subdomains (practical limit) =
120 x 8 = 960
—this corresponds to 960 processors in absence of

OpenMP
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Benefits and drawbacks of OpenMP

 OpenMP is of benefit on IBM machines
—with 8 OpenMP threads on seaborg, one can

make effective use of 2944 (92x4x8) processors
(vertical decomposition is limited to 4
subdomains)

 OpenMP is of no benefit on the LLNL Itanium2
machine

 OpenMP provides increased throughput on the Cray-
X1E at coarse domain decomposition; however at
fine domain decomposition, the correspondingly
shorter vector lengths offset the gains of additional
processor power

 OpenMP is of great benefit on the SGI Origin (Mirin
and Sawyer, IJHPCA)
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Alternative communications

 One-sided MPI-2 communications, particularly in
combination with OpenMP, lead to significant gains
on SGI Origin (Mirin and Sawyer, IJHPCA)

 One-sided MPI-2 communications are a detriment on
the IBM (separate study)

 Both one-sided MPI-2 communications and Shmem
show no benefit on the Cray X1E
—neither work in conjunction with OpenMP

 One-sided MPI-2 communications with non-
contiguous data supported on IBM but not on Cray
X1E or SGI Origin
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Limitations on scaling (fixed problem size)

 Parallel efficiency falls off with increasing processor count
— increase in communication to computation ratio
— increase in load imbalance

– dynamics work per grid point is relatively uniform except
for polar filtering

– physics work per grid point varies with conditions
(sunlight, moisture, etc.)

– use of separate decomposition for physics improves
load balance, at expense of extra communication

—decrease in vectorization efficiency (shorter vector lengths)
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