
SciDAC-2 CCSM Consortium:
Software Engineering Update

Patrick Worley
Oak Ridge National Laboratory
(On behalf of all the consorts)

Software Engineering Working Group Meeting
March 16, 2007

Access Grid Meeting

Two coordinated SciDAC-2 projects that include CCSM
software engineering activities:
– SEESM: A Scalable and Extensible Earth System Model

for Climate Change Science (Science Application: Climate
Modeling and Simulation)
o Immediate software (and performance) engineering

needs, 5 year duration
– PENG: Performance Engineering for the Next Generation

Community Climate System Model (Science Application
Partnership: Computer Science)
o More speculative, longer-term performance engineering

activities, 3 year duration

 SciDAC-2

Project Goals

• Software
– Performance scalability
– Performance portability
– Software engineering

• Model Development
– Better algorithms
– New physical processes (esp. chemistry,

biogeochemistry)

Talk Overview

• Recent and Ongoing Activities:
– CAM
– POP / Glimmer / CICE (slides from Phil Jones)
– CLM (content from Tony Craig)
– MCT (slides from Rob Jacob)
– CCSM
– Recent Performance Data

• Toward Improving the Scalability of the Finite-Volume
Version of CAM (slides from Art Mirin)

• Timing Library Update and Discussion

CAM: Recent Activities
• Performance measurement infrastructure

– Introduced new performance profiling module: isolates
CAM from underlying GPTL timer library; replaces and
augments compile time options with runtime control via
new namelist (details later in presentation)

– Refactored timer instrumentation to reflect current CAM
structure

• Scalability support
– Added option to concatenate all performance data into

single files instead of generating one per process (new
default)

– Added option to restrict reporting of many runtime options
and memory usage statistics to process 0 (new default)

CAM: Recent Activities
• New dycore support

– modifications to phys_grid and physics/dynamics interface to
support HOMME dycore, in collaboration with Jim Edwards

• FV support (with Will Sawyer)
– upgrade to newest Pilgrim version
– streamlining of FV to remove unneeded allocations
– resynchronization of FV dycore with that from GEOS5;
– miscellaneous FV fixes/cleanup

• Porting, evaluating and optimizing performance on target and
new platforms
– XT3/XT4 (see performance slides)
– BG/L (T42, T85, FV 1x1.25 so far; working on CAM test

suite)

CAM: Next Steps
• Improve FV scalability

– see Mirin presentaion
• Improve EUL/SLD scalability

– remove dynamics restriction on number of MPI tasks
• Additional performance measurement updates

– evaluate new Rosinski timing library
– call site profiling?
– statistical summary?
– see later presentation

• Detailed performance analysis
• Performance evaluation of cubed sphere FV on Cray XT4 (in

collaboration with Chris Kerr and Bill Putman).

POP Software Engineering
• All new parallel infrastructure mods

– Removed NxN search during block initiation
– More efficient tripole code (reduced memory,

eliminated need for all-to-all top row comms)
– More efficient halo updates (esp. multi-dim halos)
– Unit tests for blocks, distribution, reductions,

broadcasts, gather/scatter, halo updates
– New name conventions
– All now committed to LANL svn repo
– Dennis space-filling curve distribution scheme now

being implemented and tested
• Trac/svn (http://oceans11.lanl.gov/trac/POP)

– Now available for POP bug/feature tracking
– svn checkouts publicly available, restricted check-in

Ice Sheet Model
• Glimmer

– Start with existing Glimmer model
– Add improved transport (mostly

complete)
– De-coupled coupling with CCSM

o Off-line coupling to deal with
topography, land surface changes

• Future improvements
– New vertical coordinate
– Basal sliding
– Unstructured/adaptive grids to better

track melting and change of margins
• Validation with satellite observations

CICE

• 4.0 release
– Adopted POP 2.0 infrastructure

(eliminate ice free regions);
Elizabeth doing exhaustive
testing.

– New ridging scheme
– Snow being worked on by several

groups
– svn repo with NCAR access

CLM Software Engineering
• CLM Finemesh Capability

– Funded by TIIMES project, D. Gochis lead
– Implement finemesh capability (CLM can run on an independent

"finer" grid)
– T42 CAM, 0.5 degree CLM demonstrated summer, 2006
– Testing and refining of downscaling in collaboration with D.

Gochis and A. Hahmann
– Finemesh capability not yet "fully functional" on clm trunk

CLM Software Engineering
• CLM Memory Scaling

– Targeting 0.1 degree globally on 10,000 PEs on low memory
architectures (assuming 256 MB/PE). Mainly need to improve
memory scaling and reduce/eliminate use of global arrays.

– Refactoring large amount of infrastructure and initialization (grids,
decomps, I/O, mapping); CLM physics datatypes and subroutines
are largely unchanged.

– MCT now used for CLM internal mapping (coarse to finemesh and
CLM to RTM) and for some gather/scatter operations.

– Decomposition has been modified (simplified), achieving nearly
equivalent load balance and requiring much less memory to
initialize.

CLM Software Engineering
• CLM Memory Scaling (cont.)

– RTM has been largely rewritten for memory and performance
scaling.

– Migrated from hundreds of global arrays at high water mark to <
20 today.

– Targeting ~5 global arrays in next phase (next couple months);
will use MCT to refactor gather/scatter routines fully.

– To reach our goal, only 1-2 global arrays can be declared at any
time (one global array at 0.1 degree is 50 Mb).

– Can run 1/2 degree on frost (NCAR bluegene) today (512 Mb/pe);
couldn't a year ago.

– Root and non-root PE memory usage NOW largely equivalent. (A
year ago, root PE used ~2x memory as non-root PE.)

– Latest improvements are on the CLM trunk.

CLM Software Engineering
• CLM Memory Scaling Results

– 5/2006 results scaled to 0.5 degrees, maxpatch_pft=17 from
1x1.25, maxpatch_pft=4 by multiplying high water mark by 10

– 3/2007 results from clm3_expa_93, 0.5 degrees,
maxpatch_pft=17 on frost 3/9/07

– Memory is MB/PE; run time in seconds (excluding init. time)
PEs Memory use Memory use PE1 run_time

(est 5/2006) (3/2007) (3/2007)
---- ---------- --------- ----------

 32 1480 MB 318 MB 62.0s
 64 1420 MB 175 MB 31.9s
128 1530 MB 104 MB 16.3s
256 1700 MB 80 MB 8.3s
512 2000 MB 55 MB 4.6s

MCT Update
(since last SEWG meeting)

• MCT 2.2.2 (Sept, 2006)
– First public release of improvements from April

o Alltoall option in Rearranger
o Vector friendly GlobalToLocal segment number

conversion
– More vector-friendly mods

o Router initialization
o Additional Cray compiler directives

– Refactored AttributeVector Copy command. MCT’s
version now as fast as cpl6’s “fcopy”.

MCT Update
(continued)

• MCT 2.2.3 (Oct, 2006)
– Added support for cross-compiling on XT3
– Added support for g95 compiler.
– Minor bug fixes found during port to g95 and XT3.

MCT Update
(continued …)

• MCT 2.3.0 (Jan, 2007)
– New feature: Can now specify which attributes to

interpolate in a call to MCT’s matrix-vector multiply
routine

– Reduced memory requirement during Router and
Rearranger initialization (for BlueGene)

– A few more bug fixes
o GlobalSegMap init with an array supports

processors with no points
o MPEU’s multiple stdout support opens files with

correct name.

MCT news

• MCT is being used inside the new Parallel I/O library
(PIO). See John Dennis’ talk.

• MCT is being used to prototype the sequential CCSM. See
Rob Jacob’s talk.

• MCT has additional users (without our help!)
– COAMPS/ROMS coupling – U. Oregon
– ROMS/SWAN coupling - USGS

CPL and Sequential CCSM
• See Rob Jacobs’ talk for discussion of

– memory issues with mapping and their solution
– other memory issues in cpl6 related to resolution (not solved)
– executable image size on BG/L
– current status of sequential code

• Ongoing effort to diagnosis (and “model”) memory use in CPL in
CCSM

CAM FV Performance

• Earth Simulator results courtesy of D. Parks. SP results courtesy of M. Wehner.

• Maximum number of MPI processes is 960 for 0.5x0.625 L26. IBM systems and Earth
Simulator use OpenMP to increase scalability.

CAM EUL Performance

• Maximum number of MPI processes is 128 for T85 L26. IBM systems use OpenMP
to increase scalability.

POP 1.4.3 Performance

• Missing inner product reduction, tripole grid, Dennis load balancing optimizations
found in version 2.1. Limited by barotropic solve at scale.

Cubed Sphere FV Dycore Performance

• Very early results. Working with S-J Lin, W. Putman, and C. Kerr to evaluate
performance on XT4. Still collecting and analyzing data.

Toward Improving the Scalability
of the Finite-Volume Version of

CAM

A.A. Mirin
Lawrence Livermore National Laboratory

The parallelization model uses
multiple decompositions

• Finite-volume dynamics invokes latitude-vertical and
longitude-latitude domain decompositions

• Physics uses decomposition with respect to chunks
– physics decomposition connects with but can differ

from FV longitude-latitude decomposition
• The various decompositions are joined with transposes
• There is a 1:1 relationship between subdomains and MPI

tasks
• Additional parallelism is provided through OpenMP

The parallelization model limits scalability

• Number of processes is limited to number of subdomains
• Number of subdomains is limited by resolution
• Fast timescale coupling of main dynamics via the

geopotential places restriction on number of vertical
subdomains that can be used effectively

• Each decomposition must be the same size
– parallelism is constrained by the smallest

decomposition

Upcoming calculations will be
more challenging

• Resolution of 1-deg (288x192 grid) or 0.5-deg (576x384
grid)

• Inclusion of atmospheric chemistry
– up to a hundred or possibly several hundred chemical

constituents (tracers)
– chemical constituents must be advected

• Inclusion of cloud resolving physics

Advecting tracers can be expensive

Computer time with N tracers normalized by computer time with 1 tracer; each
tracer adds just over 2% to the overall run time; calculation takes over 3 times
as long with 100 tracers

Number of tracers

LLNL Itanium 2

Cray X1E

Operation and diagnosis at large tracer count
• Amend tracer module to replicate its five tracers as often

as necessary
– in assessing performance, code answers do not matter

• On jaguar, we were limited to less than 200 extra tracers,
whereas phoenix and thunder could handle more than 3000
– jaguar has only half the memory per processor

compared to phoenix and thunder
– one limitation was removed by going to later

incarnation of operating system
– several tracer-size-dependent static arrays were found

and converted to dynamic arrays

Variable process count allows different
 phases of the computation to achieve

their own degree of scalability
• Lagrangian remap (which is columnar) can use much finer

decomposition
– limited mainly by cache effects

• Physics (which is columnar) can use much finer
decomposition
– limited by load imbalance and cache effects

• Tracer advection does not vertically couple
– admits finer vertical decomposition (versus dynamics)
– can decompose over tracer index

• Atmospheric chemistry does not vertically couple (for the
most part) and can be decomposed vertically as well as
horizontally

• Cloud resolving physics uses much finer mesh and can
therefore support much finer decomposition

We propose a versatile but limited
approach to variable process count

• Designate a set of primary processes on which the dynamics
lon-lat and physics chunking decompositions are defined

• Both decompositions will be restricted to the same process set
and have the same number of processes
– this restriction is expected to have minimal effect on

scalability
– this restriction will allow continued intermixing of

dynamics and physics history variables
• Allow the lat-vert dynamics decomposition to be smaller than

the lon-lat decomposition
• Allow secondary processes to be employed for dynamics

and/or physics, as needed

CAM at 0.5-deg can be configured
to use secondary processes

• Mesh resolution is 576x384x26; assume 100 tracers
• Optimal lat-vert decomposition is at best 96x7

– 4 latitudes and 4 levels per subdomain
• Define primary decomposition to consist of 13824 processes

– dynamics lon-lat decomposition is 144x96
– even though Lagrangian remapping and physics are

columnar, optimal decomposition likely requires several
columns per subdomain (cache and load imbalance issues)

CAM at 0.5-deg can be configured
to use secondary processes (cont.)

• Decompose tracers into 20 groups for purposes of advection
(96x7x20 = 13440 processes)
– can attain greater parallelism with this decomposition than

simply decomposing more finely over vertical
• This approach succeeds provided communication costs are not

overwhelming, load is well enough balanced, and fraction of
dynamics time is sufficiently small

We have implemented the first step

• Define npes_dyn and npes_phys to refer to the number of
processes available for dynamics and physics, resp.
– these variables live in spmd_utils

• Define npes_xy and npes_yz to refer to the sizes of the
dynamics lon-lat and lat-vert decompositions, resp.
– these variables live in spmd_dyn

• Define respective communicators (mpicom_dyn,
mpicom_phys, mpicom_xy, mpicom_yz)

• Incorporate new dynamics-related variables in the grid type

First step implementation, cont.
• Assume for now npes_phys = npes_xy = npes_yz, and npes_dyn

= npes
– processes [npes_phys:npes_dyn) are inactive
– for npes_dyn = npes_phys, this defaults to the standard

configuration
• Code successfully executes with inactive processes and gives bit-

for-bit agreement with case not having inactive processes
– see branch varproc_cam3_3_47, tag varproc05_cam3_3_47

We encountered several issues
in the first step implementation

• We added communicators (when not already present) to
pilgrim and mod_comm subroutine argument lists
– this is absolutely necessary for handling barrier calls

• We modified communicators where necessary to correspond to
active processes
– necessary for transposes and barrier calls

• We had to decide whether to skip irrelevant coding blocks or
to execute them with trivial values
– secondary process does not map onto any subdomain
– execution (versus idleness) does not necessarily waste

resources and can make coding simpler
• We inactivated secondary processes for the ocean and ice

The second step will be to implement
the capability for the latitude-vertical
decomposition to be smaller than the

longitude-latitude decomposition

• The biggest challenge will be generalizing the transposes to connect
different-sized decompositions.

• This will involve substantial modification to Pilgrim and more modest
modification to mod_comm.

• Handling the inactive processes during the lat-vert phase should not
be too difficult.

The third step will be to decompose the tracer
advection with respect to the tracer index

• For N-fold decomposition over tracers, associate auxiliary process
P + K * M with primary lat-vert process P, where M is the size of
the lat-vert decomposition and K varies from 1 to N-1
– initialize P + K * M with corresponding subdomain

information
– the idea is to have N copies of the lat-vert decomposition

• Each advection subcycle requires new wind-related information;
however, dynamics subcycles do not require new tracer-related
information
– this is an additional potential source of parallelism

Alternative to tracer decomposition

• Use finer vertical decomposition for tracer advection
– tracer advection is vertically decoupled

• Advantages
– provides additional source of parallelism at small tracer count
– might involve less communication as winds don’t need to be

replicated to same extent
• Disadvantages

– does not provide as much parallelism at large tracer count

Decomposition sizes will be
determined empirically

• We will need to assess the optimal size of the lon-lat and physics
decompositions
– recall that these decompositions will be the same size
– it is unclear how many chunks per process will be optimal
– inclusion of OpenMP will increase that requirement
– inclusion of vectorization will increase that requirement even

further
• In the absence of secondary processes, the lat-vert-tracer

decomposition will ideally be the same size as the lon-lat
decomposition

Several scenarios could involve
secondary processes

• Very large tracer count relative to ratio of lon-lat to lat-vert
decomposition sizes

• Vertical decomposition of chemistry
– replicate physics decomposition in vertical dimension

• Same processes can be used for extra tracer and chemistry
subdomains

• Cloud-resolving physics (superparameterization)

Acknowledgment

• This work was performed under the auspices of the U.S.
Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

Timing Library:
Update and Discussion

P.H. Worley
Oak Ridge National Laboratory

Desirable Traits
• Common performance data collection layer for all components
• Full coverage, capturing logical structure of the components

and of the coupled model, but with runtime control of the level
of detail

• Works at scale (with appropriate runtime settings)
• Works with hybrid MPI/OpenMP
• Low / controllable overhead
• Always present (but can be disabled at runtime), not requiring

use of special instrumented version.
• Option to sample library (e.g. MPI), system, and hardware

counters or capture event traces
• Easily ported and maintained

Current Timing Packages
• POP (and CICE?)

– Specialized support for POP subblocks (and OpenMP over
subblocks).

– Uses system_clock and corrects for timer rollover.
– Accumulated time per event per node (or per block per

node).
– Requires common timer definition across all nodes? Timers

defined at initialization?
– Outputs maximum accumulated time over all nodes.
– Optionally outputs minimum and mean accumulated time

over all nodes, and min/max/mean over all blocks.

Current Timing Packages
• CAM/CLM

– Uses GPTL timer library originally developed by Jim
Rosinski, and subsequently modified by Edwards and
Worley.

– Uses MPI_Wtime, gettimeofday, or rtc timers.
– Works with hybrid MPI/OpenMP.
– Events not predefined, and defined/identified at time of call

by character label.
– Output total, min, max time and number of occurrences per

thread per process.
– Event nesting (approximately) indicated in output

Common Timing Package?
• Neither POP nor CAM/CLM timers perfect, nor appropriate for

the other components (yet).
• Focusing here on recent and future development of CAM/CLM

timers.

Recent Changes to CAM Timers
• New perf_mod module contains all timing library entry points

and global variables used within CAM.
– Completely hides underlying GPTL library, allowing for

future GPTL development, including evaluation of latest
version from Jim Rosinski, without requiring further
modifications in CAM or CLM.

• New namelist prof_inparm used for runtime control of timing
options.
– Replaces all compile-time options: TIMING_BARRIERS,

DISABLE_TIMING, MULTIPLE_PERF_FILES
– Can add new options without requiring changes to

component models.

Usage Details
• Initialization, output, and finalization:

use perf_mod
(… call MPI_Init …)
call t_initf(NLFileName, LogPrint=masterproc, &

 Mpicom=mpicom, MasterTask=masterproc)
…
call t_prf('timing_cam', mpicom)
call t_finalizef()

– t_initf specifies which inputfile contains the prof_inparm
namelist for this component, and uses the component-specific
communicator.

– t_prf specifies the name of the timing data output file for
this component, and uses the component-specific
communicator

Usage Details (cont.)
• Basic event timing:

use perf_mod
…

 call t_barrierf ('sync_eventX', mpicom)

 call t_startf (’eventX')
 …

 call t_stopf (’eventX')

– t_barrierf is optional, and is equivalent to
if (t_barrier_onf()) then

 call t_startf ('sync_eventX')

 call mpi_barrier(mpicom)
 call t_stopf ('sync_eventX')

endif

Usage Details (cont.)
• Profiling control commands:
 call t_disablef ()

– Ignore t_startf/t_stopf/t_barrierf calls
call t_enablef ()

– Re-enable t_startf/t_stopf/t_barrierf calls
call t_adj_detailf (level_adjustment)
– Increment/decrement user-specified timing detail at current

location in code. Used with profile_detail_limit namelist
variable to control profiling.

Namelist Variables
• profile_disable

– Disables all timing (permanently). Replaces DISABLE_TIMING
cpp token

• profile_barrier
– Enables t_barrierf. Replaces TIMING_BARRIERS cpp token.

• profile_single_file
– Toggles between concatenation of all timing data into a single file

and generating one timing output file per process.
• profile_depth_limit

– Disables event timing when event nesting exceeds indicated limit.
• profile_detail_limit

– Disables event timing when user-defined event detail exceeds
indicated limit.

What’s Next?
• Evaluating new Rosinski timing library

– Lower overhead and more accurate overhead estimation
– Better PAPI support
– Runtime selection of timer (MPI_Wtime, gettimeofday, etc.)
– Does not include recent Edwards/Worley modifications

• Adding “call-site” profiling support (two calls to t_startf(‘eventX’)
nested within different parent events defining different events).

• Additional reduced output options, including min/max/mean statistics
ala POP timers.

• Optionally including other performance data (e.g., HW performance
counters, MPI statistics). Capability has been used in custom
modifications, but not checked into trunk as of yet.

Questions? Comments?

