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NCCS Resources
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Cray XT3 System Configuration - Jaguar

56 cabinets

5,212 compute processors (25 TF)

82 service and I/O processors

2 GB memory per processor

10.7 TB aggregate memory

120 TB disk space in Lustre file system

Topology (X,Y,Z): 14 torus, 16
mesh/torus, 24 torus

R R T R LR

OAxk RIDGE |\
U.S. DEPAR’I||I




Cray XT3 System Overview

= Cray’s third generation MPP
— Cray T3D, T3E

=> Key features build on previous design philosophy

— Single processor per node
* Commodity processor: AMD Opteron

— Customized interconnect
* SeaStar ASIC
* 3-D mesh/torus

— Lightweight operating system — catamount — on compute PEs
— Linux on service and 10 PEs
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Cray XT3 PE Design
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AMD Opteron

= AMD Opteron Model 150

Processor core / 2.4 Ghz
* three integer units

* one floating-point unit which is
capable of two floating-point
operations per cycle

* 4.8 GFLOPS
Integrated memory controller

Three 16b 800 Mhz
HyperTransport (HT) links

Ll cache: 64KB | and D caches
L2 cache: IMB Unified

= Model 150 has three HT links but
none support coherent HT (for
SMPs)
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Lower latency to main memory
than SMP capable processors

DDR Memory
Controller

Li
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Cray SeaStar Interconnect ASIC

= Routing and communications ASIC

= Connects to the Opteron via 6.4 GBps HT link
=> Connects to six neighbors via 7.6 GBps links

= Topologies include torus, mesh

= Contains
— PowerPC 440 chip, DMA engine, service port, router

= Notice
— No PCI bus in transfer path
— Interconnect Link BW is greater than Opteron Link BW
— Carries all message traffic in addition to 1O traffic
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Software

= Operating systems = Filesystems
— Catamount — Scratch space through Yod
* Lightweight kernel w/ limited —  Lustre
functionality to improve ) i
reliability, performance, etc. = Math libraries
— Linux — ACML 2.7
= Portals Communication
Library

=> Scalable application launch
using Yod

= Programming environments
— Apprentice, PAT, PAPI, mpiP
— Totalview
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Evaluations

= Goals
— Determine the most effective approaches for using the each system

— Evaluate benchmark and application performance, both in absolute terms and in
comparison with other systems

— Predict scalability, both in terms of problem size and in number of processors

= WVe employ a hierarchical, staged, and open approach

— Hierarchical

* Microbenchmarks

* Kernels

* Applications
— Interact with many others to get the best results
— Share those results
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Microbenchmarks

=> Microbenchmarks characterize specific components of
the architecture

= Microbenchmark suite tests

arithmetic performance,
memory-hierarchy performance,
task and thread performance,
message-passing performance,
system and I/O performance, and
parallel I/O
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Memory Performance

Measured
Latency to Main

Platform Memory (ns)
Cray XT3/ Opteron 150 / 51.41
%rAay XD1 / Opteron 248 / 86.51
%1 p690 / POWER4 / 90.57
bl Xeon /3.0 140.57
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DGEMM Performance
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FFT Performance
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Allreduce Performance
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HPC Challenge Benchmark

http:/l/icl.cs.utk.edu/hpcc/
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ORNL has Major Efforts Focusing on Grand Challenge
Scientific Applications
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Climate Modeling

= Community Climate System Model
(CCSM) is the primary model for
global climate simulation in the USA

—  Community Atmosphere Model
(CAM)

—  Community Land Model (CLM)

—  Parallel Ocean Program (POP)

— Los Alamos Sea Ice Model (CICE)
— Coupler (CPL)

= Running Intergovernmental Panel on

Climate Change (IPCC) experiments

Science and technology

Climate change

A canary in the coal mine

The Arctic seems to be getting warmer. So what?

&6 {OLIMATE change in the Arctic is a re-

ality now!” So insists Robert Corell,
an oceanographer with the American
Meteorological Society. Wild-eyed proc-
lamations are all too common when it
comes to global warming, but in this case
his assertion seems well founded.

Dr Corell heads a team of some 300 sci-
entists who have spent the past four years
investigating the matter in a process
known as the Arctic Climate Impact As-
sessment (acta). The group, drawn from
the eight countries with territories inside
the Arctic Circle, has just issued a report
called “Impacts of a Warming Arctic”, a
lengthy summary of the principal scien
tific findings. A second report, which will
sketch out recommended policies, is due
outinafew weeks. A third, far heftier tome
detailing all the scientific findings will not
come out for some months yet.

Already, though, the Ac1A has made a
splash. One reason is the inevitable wran-
gling over policy recommendations. News
reports have suggested that the Bush ad-

ion has tried to supy signs of
support in the second, as yet unreleased,
report, for the UN's Kyoto protocol or other
mandatory policies for the control of
greenhouse-gas emissions. But even set-

ting politics aside, this week's scientific re
port has still created a stir with its bold as-
sessment of polar warming.

At first sight, its conclusions are not so
surprising. After all, scientists have long
suspected that several factors lead to
greater temperature swings at the poles
than elsewhere on the planet. One is al-
bedo—the posh scientific name for how
much sunlight is absorbed by a planet's
surface, and how much is reflected. Most
of the polar regions are covered in snow
and ice, which are much more reflective
than soil or ocean. If that snow melts, the
exposure of dark earth (which absorbs
heat) acts as a feedback loop that acceler-
ates warming. A second factor that makes
the poles special is that the atmosphere is
thinner there than at the equator, and so
less energy is required to warm it up. A
third factor is that less solar energy islostin
evaporation at the frigid poles than in the
steamy tropics.

And yet the language of this week's re-
portis still eye-catching: “the Arctic is now
experiencing some of the most rapid and
severe climate change on Earth.” The last
authoritative assessment of the topic was
done by the un's Intergovernmental Panel
on Climate Change (rPcc) in 2001, That re-

The Economist November 13th 2004 E3)

Also in this section

89 Sorting sperm with optical tweezers
89 30 television

port made headlines by predicting a rise in
sea level of between 10cm (four inches)
and gocm, and a temperature rise of be
tween 1.4°C and 5.8°C over this century.
However, its authors did not feel confident
in predicting either rapid polar warming
or the speedy demise of the Greenland ice
sheet. Pointing to evidence gathered since
the 1rcc report, this week's report sug-
gests trouble lies ahead.

Hotontop

The acia reckons that in recent decades
average temperatures have increased al-
most twice as fastin the Arctic as they have
in the rest of the world. Sceptics argue that
there are places, such as the high latitades
of the Greenland ice sheet and some bu-
oys at sea, where temperatures seem to
have fallen. On the other hand, there are
also places, such as parts of Alaska, where
they have risen far faster than average.
Robin Bell, a geophysicist at Columbia
University who was notinvolved in the re-
port's compilation, believes that such con-
flicting local trends point to the value of
the international, interdisciplinary ap
proach of this week’s report. As he ob-
serves, “climate change, like the weather,
can be patchy and you can get fooled un-
less you look at the whole picture.”

And there is other evidence of warm-
ingto holsterthe Acia's case, For example,
the report documents the widespread
melting of glaciers and of sea ice, a trend
already making life miserable for the polar
bears and seals that depend on that ice. It
also notes a shortening of the snow sea-
son. The most worrying finding, however,
is evidence—still preliminary—that the »
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Climate /| CAM

Performance of the CAM3.1 Atmospheric Model
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Fusion

= Advances in understanding tokamak
plasma behavior are necessary for

the design of large scale reactor
devices (like ITER)

= Multiple applications used to
simulate various phenomena w/
different algorithms

— GYRO

— NIMROD
— AORSA3D
- GTC

OAK RIDGE NATIONAL LABORATORY
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Fusion/ GTC

=)

OAK RiDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

ENADATA

/\<"\

UT-BATTELLE




Combustion / S3D
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Biology / LAMM
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Recent and Ongoing Evaluations

= Cray XT3
- Jz.gb\sletter, S.R. Alam et al., “Early Evaluation of the Cray XT3 at ORNL,” Proc. Cray User Group Meeting (CUG 2005),

=  SGI Altix

—  T.H. Dunigan, Jr., ).S. Vetter, and P.H. Worley, “Performance Evaluation of the SGI Altix 3700,” Proc. International Conf.
Parallel Processmg (ICPP), 2005.

Cray XDl
— MR Fahey, S.R. Alam et al., “Early Evaluation of the Cray XDI,” Proc. Cray User Group Meeting, 2005, pp. 12.

SRC
—  M.C. Smith, ).S. Vetter, and X. Liang, “Accelerating Scientific Applications with the SRC-6 Reconfigurable Computer:
Methodologies and Analysis,” Proc. Reconflgurable Architectures Workshop (RAW), 2005.
=  Cray Xl
—  P.A. Agarwal, R.A. Alexander et al., “Cray X| Evaluation Status Report,” ORNL, Oak Ridge, TN, Technical Report
ORN TM 2004/13, 2004.
—  T.H. Dunigan, Jr., M.R. Fahey et al. Eardl Evaluation of the Cray XI,” Proc. ACM/IEEE Conference High Performance
Networklng and Computing (SCO?
— Duniga 5] J3S Vetter et al., “Performance Evaluation of the Cray X| Distributed Shared Memory Architecture,”
IEEE Micrg, 25(1):30-40, 2005.
=  Underway
—  XDI FPGAs
—  ClearSpeed
—  EnLight

- Multicore processors
—  IBM BlueGene/L
- IBM Cell
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