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| ~__Introduction | Scaling Physics to Many Processors 3 > CLM2 is usually run coupled directly with CAM2.
gln © otf tI;e gtoalswcl) f;hf fsc'.? AC pr?jegt CoI:abo:a_tntle D es'an a:n: Dev;alopment of t:'ebﬁf:mn;l::'ty Decoupling of the physics and dynamics data structures and parallel algorithms allows the physics to 5 u llel inal | h h
, Ct;m?nﬁnii,; :tr:'no:p:eri?:rMsgae?c(:gzM;)rZﬁ: ﬁ:: (;:m(:nllznnl?:; ‘I’_zndel\lilooe;eolr(rgtrltlf;) IO(;thIi:nyp(r)ove(ranents use more processors than the spectral Eulerian and spectral semi-Lagrangian dycores. These dycores The models run in paraliel as a singie executab e, Sshare the same
] e . . . . ) presently use a one-dimensional decomposition, and consequently can use at most 64 processes at a rocessors. and exchanae surface fluxes and states via MPI.
take two_ forms: 1) m_o dlflcat_lons that improve perforr_nance in all configurations on atl _platforms, and T42 horizontal resolution. Moreover, scalability of the dycores is poor when increasing from 32 to 64 - P ’ 9
I 2) compile- or rrn—tlmebciptlon_s thaSt_can tbhe Lfsed t;? lmpﬁ;‘le pertorrtn1asn ce fotrha specm_c p_lfa.tfor:n, processes. In contrast, the physics can now use up to 8192 processors for the same problem size. ‘ o A new interface between the atmosphere and the land surface
processorhcoubn » Of prdo © rr:)s;:le. mceD e lrtgez Lon o1the prfo Ject 7 mon stagcz,_mgnl ‘ean t One approach to improving scalability is to use the same number of MPI processes in the physics and g u u fici MxN .
Progress nas Heen mace 'n Dot areas. Jescribed ere are periormance impacts o1 Improvements the dycore, but use additional processors in the physics via OpenMP parallelism. |L B was Implemented to prowde an etiicient Mx transposmon -.
0 to the physical parameterizations, and the spectral Eulerian dynamical core as well as the _ _ _ _ _ _ bet hvsi hunk d land cl
l.' implementation of a new interface between CAM2 and CLM2. Performance results are shown for PO AN G e 0 1 CROL yroce Tao g g oric Model PO AN MO T BUL Synoare Ao A os Prpric Model etween pnysics Chunks and lana clumps.
©| theIBM p690 cluster at Oak Ridge National Laboratory and the HP AlphaServer SC ES45 cluster at 25 ' ' ' ' ! ' ' 25 ' ' ' ' ' ' !
I Pittsburgh Supercomputer Center. ! P —— i%%"pf.gih'k:mng?f‘y . — ElgaAT)lhhﬁ}MnE;(Tﬁy el SR 1 © Two new data structures, chunk2clump I o
B I o oo Choape bl o L B[ T ek oo o oa el | i and clump2chunk provide the
) IIF | 2 15 * mapping between the two. Atmosphere
Physical Parameterization Optimizations . o Vi > Ip_coupling_init() initializes ~ Phsis columns
. . these data structures, and it chunks
| | may be called repeatedly to
2 Prlor to the SCIDAC proleCt5 CAM developers Chose to Separate 01 I2 I4 8 16 32 64 128 256 01 2 I4 8 16 32 64 128 256 re_initialize the mapping if the MxN transposiﬁon between chunks andclumps
H H Processors Processors —_ .
the data structures and para"el algorlthms of the phy5|cal The improvement to model performance by scaling to larger processor counts is plotted in terms of decomposmon of either the Land Surface o o v arar crcr — — —
arameterizations (nphvsics) from the dvnamical core (dvcore) to simulation years per day of computation for the IBM p690 (left) and the HP AlphaServer SC (right). - orid cells aw . .ar ey ey e 7/ 77,7
P . (p y ) y . ( y . ) For the mixed MPI/OpenMP experiments, the optimal mix of MPI processes and OpenMP threads was phy5|cs or the Ia_nd changes. ] groulp?g '“tO'Z:"""'gggggggg
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e allow physics to operate on independent vertical columns, and .
 improve domain decomposition for parallelization. > Multiple MPI gathers and scatters were replaced by a single
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o After data structures are initialized, no additional computation is
required to perform data exchange via MPI.

called the “chunk” — an arbitrary subset of vertical columns

distributed among MPI processes.

* Two tuning parameters: number of
columns assignhed to a chunk and
number of chunks assigned to MPI
processes.

e Each MPI process is assighed at least
one chunk, and OpenMP parallelism
is exploited when more than one
chunk is assigned to an MPI process.  Vertical columns in the atmosphere

e Two decomposition strategies: gggg%?)ogi‘ti%n%ntclinlosad galgra‘lcailng.

1. Use the same parallel decomposition as in the dycore, avoiding
interprocess communication between the physics and dycore.
The chunks are defined to balance the work associated with
each chunk for a given process, thus load balancing any
OpenMP parallelism within an MPI process.

2. Assign columns to chunks to balance the load across all
chunks, and assign the same number of chunks to each
process. Chunk assignment also attempts to minimize the
interprocess communication in the physics/dycore interface.

© To further improve scalability, work is underway to implement a
two-dimensional parallel decomposition into the spectral Eulerian
and spectral semi-Lagrangian dycores which presently use a one-
dimensional decomposition.

CAM2/CLM2 Interface Performance

To gauge performance of the new atmosphere/land interface, tests were run on the IBM Power 4
(p690) at Oak Ridge using CAM2.0.1 with CLM2.0 at T42L26 with the spectral Eulerian dycore.

° Prior to adding this two-dimensional decomposition, the current
decomposition was optimized by
* implementing a consistent one-dimensional decomposition in the
spectral data structures,
* redefining the decomposition to improve load balancing, and
e eliminating unnecessary interprocess communication.

6EUL
eeeeeeeeeeeee

16 E3 16 E3
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The left figure shows mean communications time from the atmosphere to the land while the right
figure shows the mean communications time from the land to the atmosphere. Dashed curves
represent the old interface; solid curves represent the new interface. Mean total communications
time is significantly reduced in the new interface, and the variance of communications times across
processes is also reduced.

© The overall impact was a significant decrease in communication
overhead, decreasing run time on all systems.
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The left figure shows the ratio of mean land model (CLM2) run time to mean full model (CAM2+CLM2)
run time. Dashed curves represent the old interface; solid curves represent the new interface. Since
communication time is attributed to the land model, the improved interface reduces total land model
run time so that CLM2 represents a smaller percentage of total run time. The right figure shows the
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A New Atmosphere/Land Interface

© The chunk size (i.e., number of columns per chunk) determines > The Community Land Model (CLM2) simulates land surface ratio of mean communications time to mean total land model run time. The new interface significantly
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