
CCSM Performance Engineering
on the Cray XT4

Patrick H. Worley
Oak Ridge National Laboratory

Computing in the Atmospheric Sciences Workshop 2007
September 12, 2007

L’Imperial Palace Hotel
Annecy, France

2

• Research sponsored by the Climate Change Research Division of the
Office of Biological and Environmental Research and by the Office of
Mathematical, Information, and Computational Sciences, all in the
Office of Science, U.S. Department of Energy under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

• This research used resources (Cray XT3 and XT4) of the National
Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

 Acknowledgements

3

• Community Climate System Model (CCSM)
− Fully-coupled, global climate model that provides state-of-the-art computer

simulations of the Earth’s past, present, and future climate states
− Comprised of a coupler and four component models: atmosphere, ocean,

land, and sea ice
− Developed at the National Center for Atmospheric Research (NCAR), with

contributions from external research groups funded by the National Science
Foundation, Department of Energy (DOE) and National Aeronautics and
Space Administration (NASA)

• SciDAC-2 science application project A Scalable and Extensible Earth System
Model for Climate Change Science (SEESM) is working to transform the CCSM
into an earth system model that fully simulates the coupling between the
physical, chemical, and biogeochemical processes in the climate system.

• SciDAC-2 science application partnership project Performance Engineering for
the Next Generation Community Climate Model (PENG) is working with
SEESM on the long-term performance engineering of the CCSM, with an
emphasis on improving problem size and processor count scalability and on
planning for new science capabilities. (PENG is a 3 person project: Ray Loy at
Argonne National Lab., Art Mirin at Lawrence Livermore National Lab., and Pat
Worley at Oak Ridge National Lab.)

Background

4

Many people, at many institutions, are currently working to improve the
portability, performance, and scalability of the CCSM. Major efforts include:
 Model infrastructure, e.g.

– multiple modes of operation (concurrent, sequential, and hybrid)
– (model-) optimized parallel I/O layer

 Component and coupled model porting, performance optimization,
and performance scaling analysis on “prototype Petascale systems”:
– IBM BG/L (and soon BG/P)
– Cray XT

 Algorithms, e.g.
– improved parallel algorithms (for existing numerical algorithms)
– more scalable numerical algorithms (e.g., new dynamical cores

and new computational grids)
In this talk, I describe some recent work in the highlighted areas.
(See John Dennis’ talk for description of some of the other efforts.)

Community-Wide Effort

5

Coupled model made up of 5 components:
• Atmosphere model, currently Community Atmosphere Model (CAM3)
• Ocean model, currently Parallel Ocean Program (modified version of

POP1.4 or POP2.1)
• Land Model, currently Community Land Model (CLM3)
• Sea Ice Model, currently either Community Sea Ice Model (CSIM5) or

Community Ice CodE (CICE4)
• CCSM Coupler, currently version 6

CCSM Components

6

atm

ocn

icelnd cpl

• Logical view of coupling architecture
• Cartoon of parallel implementation in concurrent mode

(slide courtesy of CSEG/NCAR)

CCSM Hub and Spoke

7

• Each component has different performance characteristics:
− atm: 3D computational grid, currently latitude/longitude/vertical

tensor product grid
• 1D horizontal domain decomposition for spectral dynamics or

2D tensor product horizontal and 2D latitude/vertical domain
decomposition for finite volume dynamics

• 2D arbitrary horizontal domain decomposition for physics
− ocn: 3D grid using displaced pole or tripole, locally orthogonal

horizontal grid; 2D horizontal domain decomposition.
− lnd: 2D horizontal grid (same as atm currently); 2D arbitrary

horizontal domain decomposition
− ice: 2D horizontal grid (same as ocn currently); 2D horizontal

decompostion
• At current resolutions, either the atmosphere or ocean component

model, depending on the science being investigated, is the most
expensive to run (i.e., requires the most computational resources to
load balance with other components).

CCSM Performance Characteristics

8

Combined XT3/XT4 system (same interconnect and parallel file system):

 XT3: 5,212 dual-core 2.G GHz Opteron processors
• XT4: 6,296 dual-core 2.6 GHz Opteron processors

so a total of ~23K cores, supporting ~23K MPI tasks, where

 XT3 uses DDR-400 memory (peak 6.4 GB/s BW);
XT4 at ORNL uses DDR2-667 memory (peak 10.6 GB/s).
=> XT4 memory performance potentially 60% better than XT3.

 XT3 uses the Cray SeaStar Network Interface Controller (NIC) (2.2
GB/s peak injection BW, 4 GB/s sustained network BW);
XT4 uses SeaStar2 NIC (4 GB/s peak injection BW, 6 GB/s sustained
network BW)
=> XT4 MPI performance potentially almost twice that of XT3.

(System moving to quad-core processors in CY2008.)

Cray XT system at ORNL (July 2007)

9

Nothing new, but these issues continue to be important.
1. Multi-core (was SMP processor) contention:

a. processor-memory and processor-network
b. bandwidth and latency

2. Algorithmic scaling bottlenecks
a. phase or component-specific scaling limits
b. memory requirements

3. Load imbalance
a. ‘algorithmic’ (i.e., occurs on homogeneous systems)
b. due to running on heterogeneous system

4. I/O (serial and parallel performance, and scalability)
5. Transient system performance problems:

a. interference from neighbors (especially I/O, but perhaps also
network contention)

b. topology of allocated processors and process placement

Current Performance Issues

10

Description of performance analysis and algorithmic optimizations for
XT, but with comments on general implications for future petascale
systems:

1. Community Atmosphere Model
2. Parallel Ocean Program

Terminology
1. Execution Modes:

a. SN uses only one core per processor, leaving the other idle.
b. VN uses both cores: two MPI tasks.
c. OMP uses both cores: one MPI task, and two OpenMP threads

per task.
2. Operating Systems:

a. Catamount: based on Sandia Natl. Lab microkernel OS (no
OpenMP support)

b. Compute Node Linux (CNL): OpenMP support

Outline of Rest of Talk

11

Atmospheric global circulation model
• Timestepping code with two primary phases per timestep

− Dynamics: advances evolution equations for atmospheric flow
− Physics: approximates subgrid phenomena, such as precipitation,

clouds, radiation, turbulent mixing, …
• Multiple options for dynamics:

− Spectral Eulerian (EUL) dynamical core (dycore)
− Spectral semi-Lagrangian (SLD) dycore
− Finite-Volume semi-Lagrangian (FV) dycore
all using tensor product longitude x latitude x vertical level grid over
the sphere, but not same grid, same placement of variables on grid,
or same domain decomposition in parallel implementation.

• Separate data structures for dynamics and physics and explicit data
movement between them each timestep (in a “coupler”)

• Developed at NCAR, with contributions from external NSF, DOE and
NASA funded researchers

 Community Atmosphere Model (CAM)

12

• U.S. “Leadership Class” systems (both current and planned) are
characterized by ever increasing processor/core/functional unit
counts

• Performance of each functional unit in these systems is not improving
quickly (if at all).

• Cost per horizontal grid point in CAM physics is increasing (and is
very large already for versions using Super-Parameterization-based
cloud resolving physics).

• Algorithmic scalability is limited in current dycores.

Two pronged approach:
• Further optimizations of current model (short term solution)

− Allow additional parallelism to be used in phases (e.g., physics)
that can take advantage of additional parallelism.

− Improve parallel performance of current dycores
• New dycores with improved parallel scalability (long term solution;

multiple candidates being developed and evaluated)

CAM Performance Concerns

13

• Domain decomposition, where each subdomain is assigned to a single
MPI process. When available, OpenMP is used to parallelize over the
set of subdomains assigned to a process and/or over array indices
within a subdomain.

• Dynamics and physics use separate decompositions.
− Physics utilizes a fine grain 2D latitude/longitude decomposition.
− Dynamics utilizes multiple decompositions.

• FV: 2D block latitude/vertical and 2D block latitude/longitude,
with same number of blocks in each

• EUL and SLD: 1D latitude in physical space and 1D
wavenumber in spectral space

• Transposes are used to move between decompositions. The amount of
interprocess communication can vary from none to a complete all-to-all,
depending on the runtime choice of domain decomposition and type of
load balancing.

 CAM Parallelization Strategy

14

• Number of MPI processes can not be greater than the minimum of the
number of subdomains employed within each of the physics and
dynamics domain decompositions.

• Number of subdomains is limited by grid resolution (and climate
simulations employ relatively modest resolutions).
− FV: three grid points are required in each coordinate direction in the

dynamics decompositions. When coupled with a small number of
vertical levels, this severely limits the number of subdomains in the
latitude/vertical decomposition.

− EUL and SLD: decompositions are one dimensional, and the
number of MPI processes can not be greater than the number of
latitudes. (CAM allows processes to be idle in the spectral space
decomposition.)

• Communication cost of transposes, load imbalance, I/O, global
diagnostics, … also affect parallel scalability.

 CAM Parallel Scalability Limiters

15

1. Lagrangian remap in FV dynamics is columnar (coupling in the
vertical only) and can use a much finer decomposition than the main
FV dynamics.
− Scaling is limited by cache effects degrading performance for very

small subdomains.
2. Physics is columnar and can use much finer decompositions than the

main dynamics (FV, EUL, or SLD).
− Scaling is limited by cache effects and, to a lesser extent, by load

imbalance.
3. Tracer advection

− Admits finer vertical decomposition (compared to dynamics) since
it does not couple vertically,

− Can be decomposed over tracer index, and
− Can be partially overlapped with main dynamics.

4. Portions of the atmospheric chemistry do not couple vertically and can
be decomposed vertically as well as horizontally.

5. Cloud resolving physics uses much higher resolution and can
therefore utilize many more subdomains.

 Opportunities to Improve Scalability

16

1. Allow the FV latitude/vertical decomposition to have a different
number of subdomains than the FV latitude/longitude decomposition,
thus allowing a different number of active MPI processes to be used
in the respective phases.

2. Allow the number of active MPI processes to be different in the
dynamics (FV, EUL, SLD) and in the physics.

3. Allow the existence of auxiliary processes that can be employed for
alternate decompositions as needed, such as
− Decomposition over tracers during advection,
− Finer vertical decomposition for tracer advection,
− Overlap of tracer advection and main dynamics,
− 3D decomposition in physics for chemistry, and
− Additional subdomains in cloud-resolving physics

(#1 and #2 checked in on Sep. 5, 2007 and available in cam3_5_10.
Joint work with Art Mirin at Lawrence Livermore National Laboratory.)

 Initial Approach: Variable Process Count

17

Spectral Eulerian Performance

For T85L26 (128x256 horizontal grid), cam3_5_10 can use over 1000 MPI tasks on
the XT, greatly exceeding the prior algorithmic limit of 128 tasks. VN performance is
also very close to SN performance for the same task count, indicating that
contention between the cores is not an issue.

18

OpenMP and Spectral Dycore

Preliminary data from XT3 system with CNL operating system. For T85L26 on a
dual-core system the previous limit on total thread count was 256. We are able to
use over 2000 threads. Note that with OpenMP we achieve SN-level performance
without wasting cores.

19

Finite Volume Performance: 2 Degree

For 1.9x2.5 degree resolution (96x144x26 grid), cam3_5_10 can use 1024 MPI tasks
on the XT, exceeding the original 256 task limit, though it is more efficient to use 512
tasks and only one core per node. The spectral dycores include an optimization not
yet implemented in FV that should correct this problem.

20

OpenMP and Finite Volume Dycore

Preliminary data from XT3 system with CNL operating system. For 1.9x2.5 degree
grid, the previous limit on total thread count was 512. We are now able to use over
2000 threads. Here OpenMP performs better than SN for large thread counts,
probably reflecting impact of using fewer MPI tasks for the same thread count.

21

CAM Benchmarks Summary

1) Supporting different numbers of active MPI processors in different
phases is effective in increasing CAM scalability. (A number of other
scalability enhancements were also introduced recently, and more are
awaiting check-in.)

2) OpenMP works well with variable process count, improving scalability
even further. OpenMP also appears to work well, for CAM, on the Cray
XT when using CNL operating system.

3) Immediate next steps:

a) Optimizations in spectral dycores need to be implemented in FV
dycore for FV to see the full benefit on the Cray XT system when not
using OpenMP. With OpenMP, the optimization is less important.
However, it could still be important on systems like BG/L and Red
Storm that do not support OpenMP.

b) Benchmarking FV with 1, 0.5, and 0.25 degree grids, and more
careful performance analyses for all target resolutions.

22

 Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high resolution
studies and as the ocean component in the Community Climate System
Model.

• Two primary computational phases:
− Baroclinic: 3D with limited nearest-neighbor communication; scales

well.
− Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly.
• Domain decomposition determined by grid size and 2D virtual processor

grid.

23

 POP Experiment Particulars
• Los Alamos National Laboratory version of POP1.4.3 with a few

additional parallel algorithm tuning options (due to Dr. Yoshida of
CRIEPI).
− The current production version of POP is version 2.0.1 or 2.1.

Version 1.4.3 is the “original” POP benchmark, and is being used to
evaluate machine and algorithm characteristics, not the
performance of POP. Version 1.4.3 does not support:
• subblocks
• 1D data structures in solver
• space-filling curve for load balancing
• OpenMP

• Two fixed size benchmark problems
− Tenth degree (3600x2400x40) and one degree (320x384x40)

horizontal grids, both using internally generated horizontal grid
− No significant I/O
− Reported results for a given processor count are the best observed

over all applicable processor grids

24

 Initial POP Benchmark Performance

The XT4 faster is than the XT3. SN mode is much faster than VN mode for the
same number of processors, and is not much slower for the same number of
compute nodes. The XT3 and XT4 performance characteristics are similar.

25

 POP Baroclinic Phase

The baroclinic phase is scaling as expected. As with the whole code, the XT4 is
faster than the XT3, and SN mode is faster than VN mode (for the same processor
count). However, the degree to which SN mode is faster than VN mode is much
smaller, and VN is much faster for the same number of compute nodes.

26

 POP Barotropic Phase

The barotropic phase does not scale at all beyond 4096 processors in VN mode,
and scaling is minimal in SN mode. (At least execution time hasn’t started
increasing.) XT3 and XT4 performance are almost identical, modulo performance
perturbations.

27

• Problem: Poor VN mode performance in barotropic phase. Kernel
results (not presented here) suggest that the problem is due to poor
VN mode MPI latency compared to SN mode.

• Solution: Replace MPI_Allreduce over MPI_COMM_WORLD with
MPI_Allreduce over a subcommunicator containing only “core 0”
processors.

• Implementation:
− core 1 sends local sum to core 0; core 0 adds this to its local sum.
− Call MPI_Allreduce on “core 0” subcommunicator.
− core 0 sends result to core 1.

Same approach is now available from vendor MPI collective when
MPI_COLL_OPT_ON environment variable is set. (This collective
optimization was not available on the ORNL system at the time of
these experiments.) However, general theme holds: need to look for,
and optimize for, multi-core contention.

 Modified POP Benchmark

28

 POP Benchmark Performance

Modified MPI_Allreduce improves POP performance significantly, especially at
scale. Improvement is the same for both the XT3 and the XT4.

29

 POP Barotropic Phase

The modified MPI_Allreduce improves performance of the barotropic phase, but
performance is still sensitive to perturbations. The barotropic phase also includes a
halo update. Typically the MPI_Allreduce dominates performance, but this needs to
be re-examined.

30

• Problem: Barotropic performance limiting performance scalability.
• Solution: Decrease number of MPI_Allreduce calls in barotropic

phase by using the Chronopoulos-Gear (C-G) variant of the
Conjugate-Gradient solver*. C-G increases the computation cost but
halves the number of allreduce calls. (C-G uses the same number of
reductions, but some reductions are bundled together.)

• Implementation:
− Back ported C-G code from later versions of POP.

Note: C-G is available in POP version 2.1 (release imminent) and is
used in CCSM and POP production runs already.

*A.T. Chronopoulos and C.W. Gear. s-step iterative methods for
symmetric linear systems. Journal of Computational and Applied
Mathematics, 25:153–168, 1989.

 Modified POP Benchmark II

31

 POP Benchmark Performance

Combination of modified MPI_Allreduce algorithm and C-G variant of conjugate
gradient improved performance significantly. In particular, SN mode performance is
now only slightly better than VN mode for large processor counts, and VN mode is
much faster as a function of compute nodes.

32

 POP Benchmark Performance

Results for one degree grid resolution are qualitatively the same as for tenth degree.
Performance improvement is good up to 500 tasks, and performance continues to
increase up to almost 2000 tasks, IF use optimized algorithms.

33

POP Benchmark Summary

1) Cost of MPI_Allreduce, especially in VN mode, limits POP scalability on
most systems. (See, however, John Dennis’ talk on BG/L performance.)

2) Replacing MPI_Allreduce with an “SN mode” implementation alleviated
problem. (This is no longer necessary if use optimized Cray MPI
collective. Approach may still be important for other application
communication operators, and is one of the rationales for examining
OpenMP on the Cray XT system.)

3) Reducing the number of calls to MPI_Allreduce via modified algorithm
further improves performance. (Option used already in production
version of POP.)

Achieved highest reported performance for POP 0.1 degree grid
benchmark (for any version of POP). Note that results for largest
processor counts included both XT3 and XT4 compute nodes. Cray X1E
results still fastest for 1 degree benchmark problem, primarily due to low
latency in Co-Array Fortran implementation.

34

Talk Summary

1) Using Cray XT (and IBM BG) system to analyze and optimize CCSM
scalability.

2) Multi-core contention (in particular, in MPI communication) is a real
issue, but there are work arounds. OpenMP appears to be a feasible
solution on dual-core systems, but support for non-OpenMP mitigation
strategies is important for both systems without OpenMP and future
“many-core” systems in which OpenMP is not expected to be a complete
solution.

3) Both short term and long term solutions to current scalability limitations
are being developed, and “defensive programming” and performance
portability techniques are key to quickly adapt to the evolving system
hardware and software architectures. In particular, providing flexibility in
how the models run (e.g., the variable process count capability) is
crucial.

