
Software Design for Petascale Climate Science 1

Chapter 16

Software Design for Petascale
Climate Science

J.B. Drake

Oak Ridge National Laboratory

P.W. Jones

Los Alamos National Laboratory

M. Vertenstein

National Center for Atmospheric Research

J.B. White III

Oak Ridge National Laboratory

P.H. Worley

Oak Ridge National Laboratory

16.1 Introduction . 1
16.2 Climate Science . 2
16.3 Petaflop Architectures . 3
16.4 Community Climate System Model . 6
16.5 Conclusions . 17
16.6 Acknowledgements . 18

16.1 Introduction

Prediction of the Earth’s climate is a computational grand-challenge prob-
lem. Spatial scales range from global atmospheric circulation to cloud mi-
crophysics, and time scales important for climate range from the thousand
year overturning of the deep ocean to the nearly instantaneous equilibration
of solar radiation balance. Mathematical models of geophysical flows provide
the theoretical structure for our understanding of weather patterns and ocean
currents. These now-classical developments have been extended through nu-
merical analysis and simulation to encompass model equations that cannot be
solved except using supercomputers. That mathematics and physics lie at the
heart of climate modeling is the primary basis for thinking that we can predict

0-8493-0052-5/00/$0.00+$.50
c© 2007 by CRC Press LLC 1

2 Petascale Computing: Algorithms and Applications

complex climate interactions. The degree of confidence in climate models is
bounded by their ability to accurately simulate historical climate equilibrium
and variation, as well as their ability to encapsulate the scientific understand-
ing of instantaneous interactions at the process level. Observational weather
data, as well as measurements of physical, chemical, and biological processes,
are a constant check on the validity and fidelity of the models and point to
areas that are poorly understood or represented inadequately. In large part
because of the ability of ever more-powerful computers to integrate increas-
ingly rich data and complex models, the understanding of coupled climate
feedbacks and responses has advanced rapidly.

Facilities with computers reaching a (peak) petascale capability are ex-
pected in 2009 or before. The Cray XT and IBM Blue Gene lines, with
processor counts ranging from 25,000 to 250,000, are candidate archtectures.
Enabling climate models to use tens of thousands of processors effectively is
the focus of efforts in the Department of Energy (DOE) laboratories and the
National Center for Atmospheric Research (NCAR) under the auspices of the
DOE Scientific Discovery through Advanced Computing (SciDAC) Program.
This exposition describes the software design of the Community Climate Sys-
tem Model (CCSM) [7, 4], one of the primary tools for climate science studies
in the United States. In particular, it addresses issues and proposed solutions
in readying the CCSM to use petascale computers.

The outline of the chapter is as follows. Section 16.2 describes near-term
climate science goals and the corresponding computational requirements. Sec-
tion 16.3 describes petascale computer architectures that will become available
in the next five years, focusing in particular on how these architectures dif-
fer from current supercomputers and the implications of these differences for
CCSM development. Section 16.4 is a description of the CCSM software ar-
chitecture, including recent and planned functionality introduced to improve
processor and problem-size scalability. Section 16.5 summarizes the promise
and problems introduced by petascale architectures, and how the CCSM is
being readied to exploit the new generation of petascale computers.

16.2 Climate Science

Predicting the climate for the next century is a boundary-value problem
with initial conditions starting in 1870 and boundary data from the histor-
ical, observational record. Parts of the boundary data are the solar input,
including solar variability, and the changing atmospheric chemical composi-
tion, for example, the level of carbon dioxide (CO2) and other greenhouse
gases. Because the future boundary conditions are not known, “scenarios”
are constructed that bracket the likely input parameters. By considering a

Software Design for Petascale Climate Science 3

range of scenarios, the possible future climate states can be bounded.
The CCSM is a modern world-class climate code consisting of atmosphere,

ocean, land, and sea-ice components coupled through exchange of mass, mo-
mentum, energy, and chemical species. The time-dependent partial differen-
tial equations for stratified liquids and gases are posed in a spherical geometry
and a rotating frame. As a dynamical system, the climate is weakly forced
and strongly nonlinear [41]. Increases in greenhouse gases in the atmosphere
change the absorption of long-wave radiation and thus alter the energy bal-
ance of the planet. The inherent nonlinearities of the system are evident in
the constantly shifting weather patterns that arise from differential heating of
the Earth’s surface and instabilities of the atmospheric flow. The resolution of
the models, the number of grid points used to approximate the partial differ-
ential equations representing the physical conservation laws, must adequately
represent the relevant dynamical interactions. For climate simulations that
include a diurnal cycle, the minimum resolution is about 300 km per grid
point. Regional detail begins to emerge as the grid spacing is decreased to
100 km and smaller.

The dynamical algorithms of the atmosphere and ocean include explicit and
implicit finite-volume methods, as well as transform methods (Fast Fourier
and Legendre transforms) to approximate spherical operators and to solve
elliptic equations. The current physical parameterizations, approximations to
subgrid phenomena, are computed for each horizontal position, or column, in-
dependently, in parallel. In contrast, the discrete differential operators require
at least nearest-neighbor communication. The computational requirements
projected for future versions of climate models are discussed in the ScaLeS
report [33], where it was shown that a factor of 1012 increase in computing
capability could be exploited by the research community. A limitation on the
increase in resolution is that the allowable time-step size decreases proportion-
ally with grid spacing. So more timesteps are required to simulate a century of
climate as the grid spacing decreases. Since the time-advancement algorithms
are inherently sequential, parallelism is limited, and the software structure
must be designed carefully to expose as much parallelism as possible.

CCSM developers have adopted software-engineering practices intended to
make the model maintainable, extensible, and portable across a wide variety of
computers while maintaining computational performance [15]. However, any
computational experiment, or set of experiments, has an associated through-
put requirement or limitation on computer resources. Thus the configuration
of the model and the specification of the computational experiment must be
balanced with the computer capabilities and speeds, forcing compromises on
grid resolution and accuracy of physical parameterizations. Petascale systems
offer the promise of sufficient computing power to move beyond the current
limitations. With this promise in mind, CCSM developers are focused on
improving the fidelity of the physical climate simulation and providing new
components that better account for the carbon cycle among the atmosphere,
land, and ocean.

4 Petascale Computing: Algorithms and Applications

16.3 Petaflop Architectures

Over the past few decades, climate simulation has benefited from the ex-
ponential performance increases that have accompanied the progression of
“Moore’s Law” [30], the doubling of transistor counts in integrated circuits
every two years or less. Until recently, processor performance has followed
a curve similar to the one for transistor counts, primarily through increases
in clock frequency. Frequency increases have stalled in recent years, how-
ever, because of limitations arising from increased power consumption and
heat dissipation, while the increases in transistor counts continue. Instead of
clock frequency, it is the parallelism in integrated-circuit chips that is growing
dramatically.

A visible direction for this growth is the number of processor cores on a sin-
gle chip. In the previous decade, growth in parallelism on a chip was primarily
through increasing the number of functional units in a single processor and
through pipelining those units to process multiple instructions at a time. This
strategy increased performance without requiring explicit parallelism in the
software, but it also dramatically increased the complexity of the processor
architecture. The replication of cores on a chip minimizes added complexity
but requires parallelism in software. Other strategies for taking advantage
of the growth in transistor counts include multi-threading and vectorization,
strategies that can add parallelism to a single core that is then replicated on
a multi-core chip.

Emerging petascale computers combine the growth in parallelism in single
chips with increasing numbers of those chips united by high-performance in-
terconnects. The growth in chip counts for individual high-end computers in
recent years seems as dramatic as the growth in transistors in each chip; such
computers may have five thousand to fifty thousand chips.

The path to dramatic increases in computational rate for climate simu-
lation is clear; the software must expose more parallelism. Of course, the
details of how the software should do this depend on the specific performance
characteristics of the target computers. Because CCSM combines multiple
complex components, it stresses multiple aspects of computer architectures,
including raw computation rate, memory bandwidth and latency, and parallel-
interconnect bandwidth and latency. CCSM development has been influenced
by the relative balances of these system characteristics in the available com-
puters over time.

Most CCSM components evolved from data-parallel implementations, tar-
geting vector or single-instruction, multiple-data (SIMD) architectures. As
clusters grew in prominence, CCSM components adopted distributed-memory
parallelism. The limited memory performance and interconnect performance
of clusters, along with their incorporation of shared-memory multiproces-
sor nodes, led CCSM developers toward a variety of strategies in pursuit

Software Design for Petascale Climate Science 5

of portable performance. These strategies now include block-oriented compu-
tation and data structures, hybrid parallelism, and modular parallel imple-
mentation.

In block-oriented computation, each computational kernel is performed on
a subset, or block, of the data domain at a time, not on the whole domain,
nor on a single element at a time. Each phase then has an outer loop over
blocks. The block size is variable and may be tuned for the specifics of the
target computer. Block sizes are larger than one element to enable efficient
vectorization, pipelining, and loop unrolling by compilers. Block sizes are
smaller than the whole domain to enable efficient re-use of cache memory and
registers.

Hybrid parallelism in general refers to the use of more than one paral-
lel strategy at a time, typically hierarchically. For CCSM components, the
hybrid parallelism specifically combines shared-memory parallelism through
OpenMP [11] with distributed-memory parallelism, primarily through the
Message Passing Interface (MPI) [19]. The shared-memory implementation
may target the same dimension of parallelism as the distributed-memory im-
plementation, such as over parallel blocks, or it may target a different dimen-
sion, such as parallelism within a block. This two-level strategy originally tar-
geted clusters of shared-memory systems, where the number of shared-memory
threads within a distributed-memory process is tuned based on the number of
processors in each cluster node and the capability of the distributed-memory
communication infrastructure.

Within this hybrid parallel implementation, modularity has been a neces-
sity to deal with the multitude of rapidly changing computer architectures.
This modularity allows the use of different communication protocols, differ-
ent parallel algorithms, and varying process counts based on the details of
a given run, such as target computer, problem size, total process count, and
relative performance of each component. Performance tuning can involve run-
time changes in algorithm choices, targeted use of specialized communication
protocols (such as SHMEM [17] or Co-Array Fortran [32]), and load balancing
across components by changing the relative process counts.

These strategies for performance portability of CCSM components are well
suited for the emerging petascale architectures. Block-oriented computa-
tion will help with efficient use of cache within multi-core memory hierar-
chies, along with efficient use of the various forms of pipelining and vector-
ization within each processor core. Examples of such vectorization include
the Streaming SIMD Extensions (SSE) in AMD and Intel x86-64 architec-
tures [39], Vector/SIMD Multimedia Extension Technology in IBM Power
processors [40], the SIMD floating-point unit in the PowerPC processors in
IBM’s Blue Gene [1], and the Cray X1E [9] and successors.

Hybrid parallelism continues to be important for many high-end computers,
though the largest computers today, the IBM Blue Gene and the Cray XT4,
support only distributed memory. This should change, however, with the
introduction of higher core counts on each chip. The initial petascale systems,

6 Petascale Computing: Algorithms and Applications

successors to the current IBM Blue Gene and Cray XT4, should not only
support but may require hybrid parallelism to reach the extreme levels of
scalability required for a petaflop of performance.

Even with hybrid parallelism, such scaling is likely to require further tuning
of the parallel algorithms and implementation. The CCSM components may
have to specialize for particular interconnect topologies and communication
protocols. Some phases of computation may have limited scalability, such
that adding processes beyond a given point will actually decrease aggregate
throughput, so these phases should use fewer processors than other phases do.
The modular parallel implementation of the components will simplify these
tuning tasks.

Some aspects of potential petascale computers present unresolved ques-
tions and issues for CCSM developers. The need for maximum parallelism
is driving developers toward aggressive elimination of serial bottlenecks and
undistributed memory, such as found in initialization and checkpointing of
components. Relatedly, parallelization of input and output (I/O) will be of
growing importance.

It is unclear if memory and interconnect bandwidths will be able to keep
up with the continuing increases in aggregate computation rate, but it is
clear that latencies will not see commensurate improvements. Tolerance of
growing relative latencies will be critical to reaching the petascale. As with
memory and interconnects, it is also unclear if I/O bandwidths will keep up.
Parallelization of I/O may not be adequate to mitigate a growing relative
cost; petascale simulation may require asynchronous I/O or in-memory data
analysis and reduction at runtime.

Finally, there is uncertainty in the basic architecture of the processor, such
that the current software strategies for portable performance, though demon-
strably flexible, may not be flexible enough. Examples of potentially disrup-
tive shifts in processor architecture include various forms of non-symmetric
co-processor architectures, such as the IBM Cell Broadband Engine, the Clear-
Speed Accelerator, graphics-processing units, and field-programmable gate ar-
rays. Initial petascale computers will be successors to the current Cray XT
and IBM Blue Gene, with symmetric multi-core processors, but scaling to sus-
tained petaflops may require more-complex processor architectures, perhaps
incorporating novel co-processors, or designed more as an integrated system,
such as the “adaptive supercomputing” strategy embodied by the Cray Cas-
cade project [8].

Software Design for Petascale Climate Science 7

16.4 Community Climate System Model

16.4.1 Overview of the Current CCSM

CCSM3.0 consists of a system of four parallel geophysical components (at-
mosphere, land, ocean, and sea ice) that run concurrently and on disjoint
processor sets and periodically exchange boundary data (flux and state infor-
mation) through a parallel flux coupler. The flux coupler serves to remap the
boundary-exchange data in space and time. CCSM3.0 is implemented with
multiple executables, where each component model is a separate executable,
and all component executables run concurrently on disjoint sets of processors.
Although this multiple-binary architecture permits each component model to
keep its own build system and prevents name-space conflicts, it also increases
the difficulty of porting and debugging. The concurrency of the CCSM com-
ponents is not perfect; the atmosphere, land and sea-ice models are partially
serialized in time, limiting the fraction of time when all five CCSM compo-
nents are all executing simultaneously. (See Fig. 16.1.)

To realize the full benefit of approaching petascale computers, each CCSM
component, as well as the entire CCSM model system, must target higher-
resolution configurations and use processor counts that are one to two orders of
magnitude greater than present settings. These new architectures will require
CCSM components and coupling mechanisms to scale in both memory and
throughput to such processor counts.

16.4.2 Community Atmosphere Model

The Community Atmosphere Model (CAM) is a global atmosphere model
developed at NCAR with contributions from researchers funded by DOE and
by the National Aeronautics and Space Administration (NASA) [5]. CAM is
also the atmosphere component of the CCSM and is the largest consumer of
computing resources in typical CCSM simulations.

CAM is a hybrid parallel application, using both MPI and OpenMP pro-
tocols. It is characterized by two computational phases: the dynamics, which
advances the evolution equations for the atmospheric flow, and the physics,
which approximates subgrid phenomena such as precipitation processes, clouds,
long- and short-wave radiation, and turbulent mixing [6]. Control moves be-
tween the dynamics and the physics at least once during each simulation time
step.

CAM is a community model that is constantly evolving to include new sci-
ence. Thus it has been very important that CAM be easy to maintain and
port to new systems, and that CAM performance be easy to optimize for new
systems or for changes in problem specification or processor count. The soft-
ware design that supports these portability and maintainability requirements

8 Petascale Computing: Algorithms and Applications

FIGURE 16.1: Example timing diagram for the CCSM. Dark grey indi-
cates “busy”, light grey indicates “idle”, and arrows indicate communication
between components.

should also ease the port to petascale computers, but a number of new issues
will need to be addressed. This section begins with a discussion of relevant
features in the existing software architecture. The design is described in more
detail in [29, 34, 43].

An explicit interface exists between the dynamics and the physics, and the
physics data structures and parallelization strategies are independent from
those in the dynamics. A dynamics-physics coupler, internal to CAM and dif-
ferent from the CCSM coupler, moves data between data structures represent-
ing the dynamics state and the physics state. While some minor performance
inefficiency results from the decoupled data structures, the maintainability
and ability to optimize the dynamics and physics independently have proven
very important. Note that the coupler is distributed, and that the dynamics,
physics, and coupler run one at a time, each one in parallel across the same
processors.

The explicit physics/dynamics interface enables support for multiple op-
tions for the dynamics, referred to as dynamical cores or dycores, one of
which is selected at compile time. Three dycores are currently available:
a spectral Eulerian (EUL) [22], a spectral semi-Lagrangian (SLD) [42], and
a finite-volume semi-Lagrangian (FV) [24]. This dynamics modularity makes
it relatively easy to develop new dycores for CAM. Some of the new dycores
currently under development are expected to be better suited to petascale
architectures than the current dycores, as described later.

Both the physics and dynamics use application-specific messaging layers.

Software Design for Petascale Climate Science 9

For the most part, these are simple wrappers for calls to MPI routines. How-
ever, by using layers, we have been able to experiment with other messaging
protocols, for example, Co-Array Fortran and SHMEM. The messaging layers
are also used to implement a large number of runtime options, choosing, e.g.,
between one-sided and two-sided MPI implementations of a required interpro-
cess communication.

CAM has numerous compile-time and run-time options for performance
optimization. Primary examples are the MPI protocol options mentioned
previously, static load-balancing options that trade off communication over-
head with improved physics load balance, the aspect ratio of two-dimensional
domain decompositions in the dynamics, the number of MPI processes and
the number of OpenMP threads per process, and the granularity (block size)
of parallel tasks in the physics (affecting exposed parallelism, memory require-
ments, and vector lengths).

Portable application-specific performance instrumentation allows relevant
performance data to be collected easily when porting and tuning CAM. While
not as powerful as many vendor and third-party performance-analysis tools,
the imbedded instrumentation is sufficient for the majority of performance-
optimization tasks.

Performance scalability in CAM is not yet adequate for petascale compu-
tation. Figure 16.2 describes strong processor scaling for a production-size
problem using the spectral Eulerian dycore and for a large problem (for cli-
mate) using the finite-volume dycore. The scaling problems arise primarily
from the parallel algorithms employed in the dycores. The spectral dycores
use a one-dimensional decomposition of the three-dimensional computational
grid, and, for example, are limited to 128 MPI processes in the production-size
problem. The finite-volume dycore supports the option of a two-dimensional
decomposition of the latitude-longitude-vertical computational grid, but the
two-dimensional decomposition switches from latitude-longitude to latitude-
vertical and back again each time step, incurring significant communication
overhead. Additionally, the number of vertical levels is small compared to the
longitude dimension, limiting the available parallelism compared to a purely
horizontal two-dimensional decomposition. For the problem size in Fig. 16.2,
at most 960 MPI processes can be used. Note that additional parallelism is
available in the physics, and this can be exploited using OpenMP parallelism
on a computer with shared-memory nodes.

Planned modifications to CAM will impact both performance and perfor-
mance scalability. The introduction of atmospheric chemistry will significantly
increase the number of fields that will be advected in the dycore, increase
the computational complexity, change the nature of the load balance in the
physics, and increase the volume of output. The expectation is that the size
of the horizontal dimensions of the computational grid will also increase for
certain science studies. Expected constraints of initial petascale computers
include limited per-process memory, relatively high-cost I/O, and the need to
exploit additional distributed-memory parallelism.

10 Petascale Computing: Algorithms and Applications

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

Processors

Community Atmosphere Model, version 3.0

 Spectral Eulerian Dynamics, 128x256x26 benchmark

 Cray X1E
 Cray XT4 (2.6 GHz Opteron, single core)

 IBM p575 cluster (1.9 GHz POWER5)
 Cray XT4 (2.6 GHz Opteron, dual core)

 IBM p690 cluster (1.3 GHz POWER4)

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

Processors

Community Atmosphere Model, version 3.1

 Finite Volume Dynamics, 361x576x26 benchmark

 Cray X1E
 Cray XT4 (2.6 GHz Opteron, single core)

 IBM p575 cluster (1.9 GHz POWER5)
 Cray XT4 (2.6 GHz Opteron, dual core)
 IBM p690 cluster (1.3 GHz POWER4)

 IBM SP (375 MHz POWER3-II)

(b)

FIGURE 16.2: The graphs detail current CAM scalability (top: EUL dy-
core with production problem instance; bottom: FV dycore with large prob-
lem instance).

Software Design for Petascale Climate Science 11

Various approaches to improve the ability of CAM to exploit petascale
computation are being examined. The physics can efficiently exploit more
parallelism than the dynamics, but it is currently restricted to using the same
number of MPI processes as the dynamics. This restriction is not neces-
sary, and efforts are under way to allow the physics to use more MPI pro-
cesses than the dynamics. More-speculative research is ongoing into using
a three-dimensional domain decomposition for the atmospheric chemistry in
the physics and parallizing over the fields being advected in the dynamics.
In both cases, the number of active MPI processes changes as control passes
through the different phases of CAM.

A number of new dycores are currently under development that are ex-
pected to exhibit improved parallel scalability compared to the current CAM
dycores [27, 10, 35]. These new dycores use computational grids and nu-
merical formulations that allow a single two-dimensional horizontal domain
decomposition to be used. These dycores also attempt to minimize the need
for global communications.

In addition to increasing the inherent parallelism in CAM, work is needed
to exploit existing parallelism that is currently hidden within serial implemen-
tations. For example, CAM now employs a single reader/writer approach to
I/O. This is not only a serial bottleneck, not taking advantage of the parallel
file systems that are necessary components of petascale computers, but it also
increases the per-process memory requirements (as currently implemented).
Efforts are underway to evaluate and use parallel I/O libraries such as Parallel
NetCDF [23] to eliminate both the I/O and memory bottlenecks.

For convenience, a number of data structures are currently replicated or
not maximally decomposed. This too increases the per-process memory re-
quirements, making porting to computers with small per-processor memory
difficult, especially when increasing the problem size. An effort is ongoing
to identify these data structures and determine how best to eliminate the
replication.

At the minimum, a careful performance analysis and evaluation will be
required as CAM runs with significantly more processors, much larger grids,
and new physical processes. The current load-balancing schemes will also need
to be modified to take into account the impact of, for example, atmospheric
chemistry, and the exploitation of additional parallelism.

These various development activities are being funded by a number of differ-
ent projects, including internal efforts within NCAR, collaborations between
members of the CCSM Software Engineering Working Group, and multiple
projects funded by the DOE SciDAC program.

16.4.3 Parallel Ocean Program

The Parallel Ocean Program (POP) is an ocean general-circulation model
that solves the incompressible Navier-Stokes equations in spherical coordi-
nates [36]. Spatial derivatives are computed using finite-difference methods.

12 Petascale Computing: Algorithms and Applications

The time integration is split into the fast vertically uniform barotropic wave
mode and the full three-dimensional baroclinic modes. An implicit free-surface
formulation [16] of the barotropic mode is solved using a preconditioned
conjugate-gradient method, while the baroclinic equations are integrated ex-
plicitly in time using a leapfrog method. POP supports generalized orthogonal
meshes in the horizontal, including displaced-pole [38] and tripole [31] grids
that shift polar singularities onto continental land masses. In the vertical,
a stretched Eulerian (depth) coordinate is used with higher resolution near
the surface to better resolve the ocean mixed layer. A partial bottom cell
option is available for a smoother representation of bottom topography. A va-
riety of options are available for subgrid-scale mixing and parameterizations
of mixed-layer processes [37], all of which can be selected at run time.

Parallelization of POP is through domain decomposition in the horizontal.
The logical domain is subdivided into two-dimensional blocks that are then
distributed across processors or nodes. The optimal block size depends on
both the chosen horizontal grid and the computer architecture on which POP
will be run. Small blocks can be used as a form of cache-blocking for commod-
ity microprocessors, while large blocks can be specified for vector architectures
where longer vector lengths are desired. Blocks that contain only land points
are eliminated from the computation, so smaller block sizes tend to result in
more land-point elimination. However, because each block maintains a halo
of points to reduce inter-block communication, smaller blocks lead to higher
surface-to-volume ratios and a corresponding reduction in parallel efficiency.

The remaining ocean blocks can be distributed using a few different meth-
ods and can be oversubscribed to nodes, providing a mechanism for hybrid
parallelism. Currently, the model supports three block distribution schemes.
The Cartesian distribution simply divides blocks in a two-dimensional logi-
cally rectangular array and distributes them across a similar two-dimensional
array of processors or nodes. A second load-balanced distribution starts with
a Cartesian geometry and then uses a modified rake algorithm [18] in each
logical direction to shift blocks from nodes with excess work to neighboring
nodes with less work. A third scheme was recently introduced by Dennis [12],
using a space-filling-curve algorithm to create a load-balanced distribution of
blocks across nodes. Once the blocks are distributed across nodes, standard
message-passing (MPI) is used to communicate between nodes and thread-
ing (OpenMP) is used to distribute work across processors within a shared-
memory node. Because the messaging routines are packaged in a very few (5)
modules, other messaging implementations based on SHMEM and Co-Array
Fortran have been used, but they are not currently part of the standard re-
lease.

Performance of POP is determined by the two major components of the
model. The baroclinic section of the model that integrates the full three-
dimensional modes is dominated by computational work per grid point, with
only two boundary updates required during each time step. Performance of
this section of the model depends primarily on the performance of a given

Software Design for Petascale Climate Science 13

processor. Both floating-point performance and local memory bandwidth are
important, for the stencil operators used in POP result in a high ratio of loads
and stores to floating-point operations. Scaling of POP is determined by the
barotropic mode solver. The preconditioned conjugate-gradient (PCG) solver
used for the barotropic mode consists of a two-dimensional nine-point operator
followed by a halo update and the global reductions inherent in PCG dot
products. Each iteration of the solver therefore has very little computational
work and frequent small messages and reductions. Performance of this section
is sensitive to both load imbalance and message latency; it limits scalability
because the already small amount of computational work per process decreases
as the processor count increases.

As a component of CCSM, POP is currently run at fairly coarse resolution
(approximately one degree or 100 km) in order to integrate the full climate
model for multiple centuries in time. At this low resolution, parallel efficiency
on most architectures begins to decrease in the 128–256 processor range [21].
For example, see Fig. 16.3. Future simulations run on petascale computers
are more likely to include an eddy-resolving ocean simulation. Production
simulations of the ocean at one-tenth degree (10 km) resolution have been
performed to resolve mesoscale eddies and simulate their impact on global
circulation [28]. Such high resolution and resolved eddy dynamics are re-
quired to accurately reproduce many of the features of global ocean circula-
tion. High-resolution simulations have been integrated only for decades due
to computational expense, but an effort is currently in progress to use an
eddy-resolving configuration in the full CCSM model.

At high resolution, POP scales effectively up to thousands of processors
(see Fig. 16.3). However, scaling of the barotropic solver can still impact
performance at the yet-higher processor counts envisioned for petascale com-
puters. Recently, scaling was improved through the better load balancing of
the space-filling-curve scheme described previously and by gathering active
ocean points into a linear list [13] to further eliminate land points. Future
versions of POP may adopt such a structure throughout the entire model
to support variable-resolution unstructured grids and further eliminate land
points from the domain. Such grids will enable higher resolution in regions
where it is needed and will reduce the total number of ocean grid points,
improving the performance of the baroclinic part of POP.

16.4.4 Community Land Model

The CCSM land component, the Community Land Model (CLM), is a
single-column (snow-soil-vegetation) biophysical model providing surface albe-
dos, upward long-wave radiation, heat and water vapor fluxes, and surface
stresses to the atmosphere component and river runoff to the ocean compo-
nent [14]. Spatial land-surface heterogeneity is represented as a nested subgrid
hierarchy in which grid cells are composed of multiple landunits, snow/soil
columns, and plant functional types. In CCSM3.0, CLM was constrained

14 Petascale Computing: Algorithms and Applications

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

Processors

Parallel Ocean Program version 1.4.3

 320x384x40 (one degree) benchmark

 Cray X1E
 Cray XT4 (2.6 GHz Opteron, single core)

 Cray XT4 (2.6 GHz Opteron, dual core)
 IBM p575 cluster (1.9 GHz POWER5)
 IBM p690 cluster (1.3 GHz POWER4)

 IBM SP (375 MHz POWER3-II)

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

Processors

Parallel Ocean Program, version 1.4.3

 3600x2400x40 (tenth degree) benchmark

 Cray X1E
 Cray XT4 (2.6 GHz Opteron, single core)
 Cray XT4 (2.6 GHz Opteron, dual core)

(b)

FIGURE 16.3: The graphs detail current POP scalability (top: one degree
horizontal grid resolution; bottom: tenth degree resolution).

Software Design for Petascale Climate Science 15

to run on the same grid as the CCSM atmospheric component. The current
CLM has added the capability of running on an independent, higher-resolution
grid, thereby including the influence of fine-resolution, sub-grid land use/land
cover in the climate simulation. The capability to decouple the atmosphere
and land resolutions (as well as grids) should prove beneficial for the target
resolutions associated with petascale simulations. In particular, new atmo-
sphere grids that address CAM scalability problems (see Sec. 16.4.2) are not
well suited for land-surface modeling. Separating these grids provides the flex-
ibility for each component to chose the grid most appropriate for both science
and computational requirements.

Future CLM software will need to address several issues in order to run
effectively on petascale computers. CLM is fundamentally a scalable code
with no communication between grid cells other than in the computation of
input fields to the river-routing module. Memory scaling, however, is very
poor because of numerous non-distributed arrays and the absence of a par-
allel I/O implementation. Current CLM development efforts are addressing
these problems with the goal that tenth-degree (10-km grid spacing) resolution
stand-alone simulations will be run in 2007.

16.4.5 Community Sea Ice Model

The sea-ice component (CSIM) is based on the Los Alamos CICE model.
It simulates the dynamics of sea ice using an elastic-viscous-plastic formula-
tion [20] with an energy-conserving model of ice thermodynamics [2]. Ice is
transported using an incremental remapping scheme [26]. Though the ice is
mostly two-dimensional at the surface of the ocean, the ice is divided into
several thickness categories to better simulate its behavior. The sea-ice com-
ponent is run using the same horizontal grid as the ocean (see Sec. 16.4.3), and
the parallel infrastructure of CICE version 4.0 is based on that of POP [25].

The sea ice poses several challenges for petascale computation. The two-
dimensional nature of the sea-ice model implies fewer degrees of parallelism.
In addition, ice does not cover the globe uniformly, and the ice extent has a
strong seasonal variation. While part of the global domain can be eliminated
for some simulations based on climatology, a substantial area must be retained
in case ice extends beyond known boundaries in climate-change scenarios. To
reduce computational work, the ice model is structured to check for active
ice regions and gather only ice points for further calculation based on this
dynamic ice mask.

It is likely that future high-resolution ice modeling may require new model
formulations, since treating ice as a viscous-plastic material may be less valid
at these resolutions. More discrete algorithms may be required that can track
individual ice floes and their interactions.

16 Petascale Computing: Algorithms and Applications

16.4.6 Model Coupling

As described eariler, CCSM currently runs as five separate concurrent exe-
cutables, four component models communicating through a fifth, flux-coupling
component. Recent creation of a single-executable concurrent CCSM provides
a model that is simpler to port and debug, but one that still exhibits the load
imbalances and associated performance penalties inherently associated with
a concurrent configuration of components that run partly serialized in time.
Development efforts are further targeting alternative full sequential and se-
quential/hybrid designs that aim to address this load-balancing problem, es-
pecially as it relates to petascale computation. In a full sequential system,
a top-level application driver replaces the current flux coupler as the coor-
dinator of component communications and the controller of time evolution.
The driver runs each parallel component model sequentially, where only one
component runs at a given time and utilizes all the CCSM processors. Regrid-
ding and redistribution of boundary data between any two model components
occur through coupler modules that are invoked from the top-level driver and
that span the processors associated with the two model components (which
in this case corresponds to the full set of CCSM processors).

The full sequential implementation has several distinct advantages over the
current concurrent design. First, it improves communication efficiency by
eliminating the separate coupler component. In the concurrent flux-coupler
configuration, the atmosphere-to-ocean exchange involves an M-to-N com-
munication between the atmosphere and coupler components, a regridding
calculation on the coupler processors, and another N-to-P communication be-
tween the coupler and ocean components. In the sequential system, regridding
and redistribution are performed in one step across all processors spanning
the source and destination components. This also has the additional advan-
tage that MPI communication is eliminated for source and destination grid
cells that reside on the same processor. Secondly, the sequential configura-
tion eliminates the component load balancing process required to optimize
concurrent throughtput. Since load balancing of model components is cur-
rently a process that involves expert knowledge of the system, the sequential
CCSM greatly simplifies the performance-tuning process. Finally, the sequen-
tial implementation makes it generally possible to construct a coupled model
system where some data can be communicated between model components
by memory copies whereas the remainder are obtained from a small number
of neighboring processes. This feature is expected to prove very beneficial for
running CCSM on petascale architectures.

Despite the above advantages, a sequential configuration also imposes addi-
tional scaling requirements. In a concurrent configuration, components that
do not scale well can use fewer processors, and the full load can be balanced
to take this limitation into account. The sequential configuration will be less
forgiving of sub-optimal component scaling.

As a generalization of the sequential configuration, a hybrid configuration

Software Design for Petascale Climate Science 17

will permit a subset of the components (e.g. the land and ice components) to
run concurrently with each other, but sequentially with the other components
(e.g. atmospheric and ocean components). This hybrid configuration should
provide the greatest flexibility in creating a model system that will address
scalability requirements while minimizing the inefficiencies inherent in the
original concurrent design.

Petascale computation will require scalability improvements in more than
just communication. Undistributed data structures and I/O will require par-
allelization. As an example, in the current CCSM, mapping weights are read
in by the flux coupler on only a single processor and are subsequently scat-
tered to the other coupler processors. As the model resolution increases, this
mechanism will eventually hit local-memory limitations. Flexible, parallel
I/O functionality (both binary and NetCDF [3]) will have to be implemented
across the CCSM.

16.5 Conclusions

Prediction of the Earth’s climate is a computational grand-challenge prob-
lem, one that will require computers at the petascale and beyond. CCSM is
a modern world-class climate code, and the CCSM research community has
mapped out needs that could exploit a factor of 1012 increase in computing
capability. Over the past few decades, exponential increases in computing
capability have been accessible through sequential or modestly parallel exe-
cution, but petascale computers will require significantly greater parallelism.
The various CCSM components expose parallelism at multiple levels using
a few common strategies, including block-oriented computation, hybrid par-
allelism, and modularity. These strategies are designed for flexibility and
tune-ability in the face of rapidly changing computer architectures.

Beyond these shared strategies, each component has unique features and
challenges for exploiting petascale computers. For example, in CAM, the com-
putation is divided into “physics” and “dynamics” phases, and the introduc-
tion of atmospheric chemistry will affect these differently. The well-defined in-
terface between physics and dynamics will allow the execution of these phases
on different numbers of processors, as it allows dycores and physics modules
to be interchanged independently. POP already scales to thousands of pro-
cessors, but the barotropic solver is starting to limit scalability even at high
resolutions. A new load-balancing data structure improves scalability and
may be worth incorporating in the baroclinic phase as well. CLM, which
uses land points coupled only through their interaction with the atmosphere,
poses little algorithmic limitation on scalability. CICE, on the other hand,
does pose some limitation because of the dynamic extent of its domain and

18 Petascale Computing: Algorithms and Applications

its limited inherent parallelism. To enable simpler and more flexible tuning
of the load among these various components, the coupler component is now
under development to allow concurrent, sequential, and hybrid execution of
the model components.

Challenges for all the components include elimination of most remaining
incompletely decomposed data structures, parallelization of I/O, and potential
changes in model formulations required at higher resolutions. Development
work to meet these challenges is underway, driven by the continuing need for
more computing capability.

16.6 Acknowledgements

This research used resources (Cray X1E and Cray XT4) of the National
Center for Computational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. It used resources (IBM p690 cluster) of
the Center for Computational Sciences, also at Oak Ridge National Labora-
tory. It used resources (IBM SP, IBM p575 cluster) of the National Energy
Research Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

The work of Drake, White, and Worley was supported by the Climate
Change Research Division of the Office of Biological and Environmental Re-
search and by the Office of Mathematical, Information, and Computational
Sciences, both in the Office of Office of Science, U.S. Department of Energy,
under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC.

The work of Jones was supported by the Climate Change Research Divi-
sion of the Office of Biological and Environmental Research in the Office of
Office of Science, U.S. Department of Energy, under Contract No. DE-AC52-
06NA25396 with Los Alamos National Security, LLC.

The work of Vertenstein was supported by the National Science Founda-
tion under contract No. NSF0001, by the U.S. Department of Energy under
contract No. 2ER6338 and by NASA under contract No. NCC5623.

Accordingly, the U.S. Government retains a nonexclusive, royalty-free li-
cense to publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

References 19

References

[1] L. Bachega, S. Chatterjee, K. A. Dockser, J. A. Gunnels,

M. Gupta, F. G. Gustavson, C. A. Lapkowski, G. K. Liu, M. P.

Mendell, C. D. Wait, and T. J. C. Ward, A high-performance
SIMD floating point unit for BlueGene/L: Architecture, compilation,
and algorithm design, in PACT ’04: Proceedings of the 13th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
Washington, DC, USA, 2004, IEEE Computer Society, pp. 85–96.

[2] C. M. Bitz and W. H. Lipscomb, An energy-conserving thermody-
namic model of sea ice, Journal of Geophysical Research, 104 (1999),
pp. 15669–15677.

[3] S. A. Brown, M. Folk, G. Goucher, and R. Rew, Software for
portable scientific data management, Computers in Physics, 7 (1993),
pp. 304–308. http://www.unidata.ucar.edu/packages/netcdf/.

[4] W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S.

Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. H. Hack,

T. B. Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna,

B. D. Santer, and R. D. Smith, The Community Climate System
Model Version 3 (CCSM3), J. Climate, 19 (2006), pp. 2122–2143.

[5] W. D. Collins, P. J. Rasch, B. A. Boville, J. J. Hack, J. R.

McCaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S.-J.

Lin, and M. Zhang, The Formulation and Atmospheric Simulation of
the Community Atmosphere Model: CAM3, Journal of Climate, 19(11)
(2006).

[6] W. D. Collins, P. J. Rasch, and et. al., Description of the
NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech Note
NCAR/TN-464+STR, National Center for Atmospheric Research, Boul-
der, CO 80307, 2004.

[7] Community Climate System Model. http://www.ccsm.ucar.edu/.

[8] Cray Inc., Cascade. http://www.cray.com/products/programs/cascade.

[9] , Cray X1E. http://www.cray.com/products/x1e.

[10] Cubed-Sphere Finite-Volume Dynamical Core.
http://sivo.gsfc.nasa.gov/cubedsphere.html.

0-8493-0052-5/00/$0.00+$.50
c© 2007 by CRC Press LLC 19

20 References

[11] L. Dagum and R. Menon, OpenMP: an industry-standard API for
shared-memory programming, IEEE Computational Science & Engineer-
ing, 5 (1998), pp. 46–55.

[12] J. M. Dennis, Inverse space-filling curve partitioning of a global ocean
model, in Proceedings International Parallel and Distributed Processing
Symposium IPDPS07, Long Beach, California, March 2007. Submitted.

[13] J. M. Dennis and E. R. Jessup, Applying automated memory analysis
to improve iterative algorithms, SIAM Journal on Scientific Computing:
Copper Mountain Special Issue on iterative methods, Submitted, (2006).
Also published as Department of Computer Science, University of Col-
orado, Technical Report CU-CS-1012-06.

[14] R. E. Dickinson, K. W. Oleson, G. Bonan, F. Hoffman,

P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, The
Community Land Model and its climate statistics as a component of the
Climate System Model, Journal of Climate, 19 (2006), pp. 2032–2324.

[15] J. B. Drake, P. W. Jones, and G. Carr, Overview of the software
design of the Community Climate System Model, International Journal
of High Performance Computing Applications, 19 (2005), pp. 177–186.

[16] D. K. Dukowicz and R. D. Smith, Implicit free-surface method
for the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99 (1994),
pp. 7991–8014.

[17] K. Feind, Shared Memory Access (SHMEM) Routines, in CUG 1995
Spring Proceedings, R. Winget and K. Winget, ed., Eagen, MN, 1995,
Cray User Group, Inc., pp. 303–308.

[18] C. Fonlupt, P. Marquet, and J.-L. Dekeyser, Analysis of
synchronous dynamic load balancing algorithms, in Parallel Comput-
ing: State-of-the-Art and Perspectives, Proceedings of the Conference
ParCo’95, 19-22 September 1995, Ghent, Belgium, E. H. D’Hollander,
G. R. Joubert, F. J. Peters, and D. Trystram, eds., vol. 11 of Advances
in Parallel Computing, Amsterdam, 1996, Elsevier, North-Holland,
pp. 455–462.

[19] W. Gropp, M. Snir, B. Nitzberg, and E. Lusk, MPI: The Complete
Reference, MIT Press, Boston, 1998. second edition.

[20] E. C. Hunke and J. K. Dukowicz, An elastic-viscous-plastic model
for sea ice dynamics, J. Phys. Oceanogr., 27 (1997), pp. 1849–1867.

[21] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White III, and

J. Levesque, Practical performance portability in the Parallel Ocean
Program (POP), Concurrency and Computation: Practice and Experi-
ence, 17 (2005), pp. 1317–1327.

References 21

[22] J. T. Kiehl, J. J. Hack, G. Bonan, B. A. Boville, D. L.

Williamson, and P. J. Rasch, The National Center for Atmospheric
Research Community Climate Model: CCM3, J. Climate, 11 (1998),
pp. 1131–1149.

[23] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallaghar, and M. Zingale, Parallel
netCDF: A high-performance scientific I/O interface, in Proceedings
of the ACM/IEEE Conference on High Performance Networking and
Computing (SC03), Nov. 15-21, 2003, Los Alamitos, CA, 2003, IEEE
Computer Society Press. http://www-unix.mcs.anl.gov/parallel-netcdf.

[24] S.-J. Lin, A ‘vertically Lagrangian’ finite-volume dynamical core for
global models, Mon. Wea. Rev., 132 (2004), pp. 2293–2307.

[25] W. H. Lipscomb. personal communication.

[26] W. H. Lipscomb and E. C. Hunke, Modeling sea ice transport using
incremental remapping, Mon. Wea. Rev., 132 (2004), pp. 1341–1354.

[27] R. D. Loft, S. J. Thomas, and J. M. Dennis, Terascale spectral
element dynamical core for atmospheric general circulation models, in
Proceedings of the ACM/IEEE Conference on High Performance Net-
working and Computing (SC01), Nov. 10-16, 2001, Los Alamitos, CA,
2001, IEEE Computer Society Press. http://www.homme.ucar.edu.

[28] M. E. Maltrud and J. L. McClean, An eddy resolving global 1/10
degree ocean simulation, Ocean Modelling, 8 (2005), pp. 31–54.

[29] A. Mirin and W. B. Sawyer, A scalable implemenation of a finite-
volume dynamical core in the Community Atmosphere Model, Interna-
tional Journal of High Performance Computing Applications, 19 (2005),
pp. 203–212.

[30] G. E. Moore, Cramming more components onto integrated circuits,
Electronics Magazine, 38 (1965).

[31] R. J. Murray, Explicit generation of orthogonal grids for ocean models,
J. Comp. Phys., 126 (1996), pp. 251–273.

[32] R. W. Numrich and J. K. Reid, Co-Array Fortran for parallel pro-
gramming, ACM Fortran Forum, 17 (1998), pp. 1–31.

[33] Office of Science, U.S. Department of Energy, A
Science-Based Case for Large-Scale Simulation. (available from
http://www.pnl.gov/scales/), July 30 2003.

[34] W. Putman, S. J. Lin, and B. Shen, Cross-platform performance of
a portable communication module and the NASA finite volume general
circulation model, International Journal of High Performance Comput-
ing Applications, 19 (2005), pp. 213–224.

22 References

[35] D. A. Randall, T. D. Ringler, R. P. Heikes, P. W. Jones,

and J. Baumgardner, Climate modeling with spherical geodesic grids,
Computing in Science and Engg., 4 (2002), pp. 32–41.

[36] R. D. Smith, J. K. Dukowicz, and R. C. Malone, Parallel ocean
general circulation modeling, Phys. D, 60 (1992), pp. 38–61.

[37] R. D. Smith and P. Gent, Ed., Reference manual for the Paral-
lel Ocean Program (POP), ocean component of the Community Climate
System Model (CCSM2.0), Tech. Rep. LAUR-02-2484, Los Alamos Na-
tional Laboratory, Los Alamos, NM, 2002.

[38] R. D. Smith, S. Kortas, and B. Meltz, Curvilinear coordinates for
global ocean models, Tech. Rep. LAUR-95-1146, Los Alamos National
Laboratory, Los Alamos, NM, 1995.

[39] S. Thakkar and T. Huff, The internet streaming SIMD extensions,
Intel Technology Journal, Q2 (1999), pp. 1–8.

[40] J. Tyler, J. Lent, A. Mather, and H. Nguyen, AltiVec: bringing
vector technology to the PowerPC processor family, in Proceedings of
the Performance, Computing and Communications Conference, IEEE
International, February 10-12 1999, pp. 437–444.

[41] W. Washington and C. Parkinson, An Introduction to Three-
Dimensional Climate Modeling, University Science Books, Sausalito,
CA, second ed., 2005.

[42] D. L. Williamson and J. G. Olson, Climate simulations with a
semi-lagrangian version of the NCAR Community Climate Model, Mon.
Wea. Rev., 122 (1994), pp. 1594–1610.

[43] P. H. Worley and J. B. Drake, Performance portability in the phys-
ical parameterizations of the Community Atmosphere Model, Interna-
tional Journal of High Performance Computing Applications, 19 (2005),
pp. 187–202.

