
Early Evaluation of the IBM BG/P ?

P. H. Worley

Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

P.O. Box 2008, Bldg. 5600,
Oak Ridge, TN 37831-6016

worleyph@ornl.gov

Abstract. This paper describes early results of a performance evalua-
tion of the IBM BG/P recently installed at Oak Ridge National Labo-
ratory. We use microkernels to determine computation and communica-
tion performance, both with and without contention. We use the Paral-
lel Ocean Program to evaluate application scalability and to distinguish
BG/P performance from other High Performance Computing systems.

1 Introduction

In late October 2007, a two-rack IBM BlueGene/P system was installed at Oak
Ridge National Laboratory (ORNL). Each rack consists of 1024 compute nodes,
where each compute node contains four microprocessor cores and 2 GB of shared
RAM. Each core is an 850 MHz PowerPC 450 32-bit microprocessor with a 64-
bit dual-pipe floating point multiply-add unit (double FMA) that can deliver
four floating point operations per cycle. Each compute node runs a lightweight
kernel to execute user-mode applications only.

Compute nodes are connected via six networks, four of which are of impor-
tance to user applications.

– Three-dimensional torus network for point-to-point messaging between com-
pute nodes. Each node has 6 connections to the torus network, where each
link has a peak bidirectional bandwidth of 425 MB/s.

– Global collective network. Each node has 3 connections to the collective
network, where each link has a peak bidirectional bandwidth of 850 MB/s.

– Global barrier and interrupt network. Each node has 4 connections to the
interrupt network.

? This research was sponsored by the Climate Change Research Division of the Of-
fice of Biological and Environmental Research and by the Office of Mathematical,
Information, and Computational Sciences, both in the Office of Science, U.S. De-
partment of Energy, under Contract No. DE-AC05-00OR22725 with UT-Batelle,
LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

2 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

– 10 Gigabit Ethernet. The Ethernet network consists of all I/O nodes con-
nected via a standard 10 Gigabit Ethernet switch. Compute nodes are not
connected to this network directly.

This paper describes a subset of the performance data being collected by
performance researchers and application developers at ORNL. (The full evalu-
ation will be described in an ORNL technical report. The current draft of the
technical report is over 70 pages long, and so is not appropriate for this forum.)
We use kernels to examine basic computation performance and to evaluate the
impact of contention within the quad-core compute node. We use MPI [1] bench-
marks to determine basic point-to-point messaging performance, both with and
without contention. Finally, we use one application code, the Parallel Ocean
Program, to examine application scalability and to illuminate some significant
performance differences between the IBM BG/P and other High Performance
Computing (HPC) systems such as the Cray XT series. As this is an early eval-
uation, performance will change as the software stack evolves, and we expect
that performance for some of the benchmarks reported here will improve. In
addition, there are many settings (e.g. process mappings and system environ-
ment variables) that affect performance and that we have not fully exercised in
these initial studies. However, many of the basic performance characteristics are
obvious from these experiments.

2 Terminology and Experiment Details

To exploit both pipes in the floating point unit requires issuing special SIMD
instructions. If a code is compiled with -qarch=450d and a sufficiently high level
of optimization (-qhot or -O4 or -O5), the compiler will attempt to generate
these instructions.

The compute node kernel supports three different modes of execution:

– SMP: assign only one MPI process to a node;
– DUAL: assign two MPI processes to a node;
– VN: assign four MPI processes to a node.

For SMP and DUAL modes, OpenMP [2] parallelism can be used to generate threads
of execution for the unused cores. By default, processes are mapped to compute
nodes in XYZT ordering, i.e., assigning one process to each node in the X direc-
tion of the torus, then the Y, then the Z, then returning to the first node and
assigning a second process, etc. For most of our experiments we also used the
TXYZ ordering, which assigns processes 0-3 to the first node, 4-7 to the second
node (in the X direction), etc. Finally, for some experiments we mapped each
process to a compute node and to a core in that node explicitly using a mapping
file. Note that VN mode and an explicit mapping of processes to processors can
also be used to emulate SMP and DUAL modes.

By default, some MPI collectives have been optimized to take advantage of
the collective global and interrupt networks, or of special features of the torus

P.H. Worley - Perf. Eval. of the IBM BG/P 3

network. The optimized versions can be disabled by setting the environment
variable DCMF COLLECTIVE to 0, and reenabled by setting it to 1.

There are many MPI environment variables, including many that are specific
to the BG/P, that can affect performance. In this paper the only MPI environ-
ment variable with which we have experimented is DCMF COLLECTIVE.

Most BG/P performance data presented here were collected over a 3 month
period (November 2007 through January 2008). A number of bad nodes were
identified and replaced during this time. A number of software patches were
also installed. After major changes we reran a subset of the experiments to
determine whether performance was affected, and we present the latest results
here. During January 2008, the BG/P system at ORNL was running Linux
2.6.16.27-193 on the compute nodes and using version mpich-1.2.7p1-15.4 of the
MPI library, version 4.3.1-0 of the ESSL math library, version 11.01 of the XL
Fortran compiler, and version 9.00 of the XL C/C++ compiler.

For comparison purposes, we also present performance data collected on a
Cray XT4, a Cray X1E, and a Xeon cluster sited at ORNL and on an IBM p575
cluster at the National Energy Research Scientific Computing Center (NERSC).
The Cray XT4 data were collected in the Spring of 2007 on a system with
6296 compute nodes running the Catamount light weight kernel. Each compute
node is a 2.6 GHz dual-core Opteron processor with 4 GB of memory, where
each processor core is capable of 5.2 GFlop/s for 64-bit operations. The XT4
interconnect is a custom, three-dimensional toroidal network utilizing the Cray
SeaStar network interface controller to connect the compute node, via Hyper-
Transport, with the network. Further details on the XT4 and its performance can
be found in [3] and [4]. The Cray X1E data were collected in the Summer and Fall
of 2005 on a system consisting of 1024 Multi-Streaming Processors (MSP), each
capable of 18 GFlop/s for 64-bit operations. MSPs are fully connected within
32-MSP subsets, and are connected via a 2-D torus between subsets. Additional
details on the X1E and its performance can be found in [5]. The Xeon cluster
data were collected in December 2005 on a system with 80 nodes interconnected
with Gigabit Ethernet and running Linux. Each node consists of a 3.4 GHz
dual-core Intel Xeon processor and 4 GB of memory, where each processor core
is capable of 6.8 GFlop/s for 64-bit operations. The IBM p575 cluster data were
collected in the Fall of 2006 on a system with 122 8-way p575 SMP nodes (1.9
GHz POWER5 processors) and an HPS interconnect with 1 two-link adapter
per node. Each processor is capable of 7.6 GFlop/s for 64-bit operations.

3 Computation Kernels

3.1 Matrix Multiply

Figure 1 describes the double-precision floating point performance of a matrix
multiply using the DGEMM [6] routine from the IBM ESSL library. Matrix
multiply has a high ratio of floating point operations to operands and good
register and cache locality, when implemented carefully. A DGEMM benchmark

4 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

is often used to define the achievable peak performance of a processor. In these
experiments the matrix multiply was executed on a single core, on two cores
within the same compute node, and on all 4 cores. In the multi-core experiments
each core executed identical instances of the benchmark simultaneously. The per-
core performance is graphed in Fig. 1 as a function of matrix size, indicating no
performance degradation from contention between the simultaneous executions.
The peak performance observed was approximately 2.7 GFlop/sec, or 79% of
the peak when using both pipes on the floating point unit. (This performance is
greater than peak when using only one pipe, so the ESSL library is clearly able
to exploit both floating point pipes.)

Figure 2 compares the BG/P results with similar experiments on a dual-core
Cray XT4 node and on an 8-way IBM p575 node. Here the Opteron proces-
sor core in the XT4 node achieves 90% of peak on this benchmark and the
POWER5 processor in the p575 node achieves 95% of peak. Figure 3 compares
the performance of the ESSL DGEMM routine with that of a simple three loop
Fortran implementation of the matrix multiply. The original Fortran version was
also modified to reorder the two outer loops and to remove a scalar temporary.
These results show the gap between user code performance and a good library
implementation, and also indicate an inability in the current version of the com-
piler to permute loops and other scalar optimizations despite using aggressive
levels of compiler optimization.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

G
flo

ps

Matrix Order

DGEMM (ESSL)
 IBM BG/P (1 core)
 IBM BG/P (2 cores)
 IBM BG/P (4 cores)

Fig. 1. Matrix Multiply (DGEMM) Performance

P.H. Worley - Perf. Eval. of the IBM BG/P 5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000

G
flo

p/
se

c
pe

r c
or

e

Matrix Order

 IBM p575 (1.9 GHz POWER5, 1 proc., ESSL)
 IBM p575 (1.9 GHz POWER5, 8 proc., ESSL)
 Cray XT4 (1 core, libsci)
 Cray XT4 (2 cores, libsci)
 IBM BG/P (1 core, ESSL)
 IBM BG/P (4 cores, ESSL)

Fig. 2. Matrix Multiply (DGEMM) Platform Comparison

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000

G
flo

ps

Matrix Order

IBM BG/P (1 core)
 DGEMM (ESSL)
 Fortran (version 2)
 Fortran (version 1)

Fig. 3. Matrix Multiply (DGEMM and Fortran) Performance

6 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

3.2 PSTSWM

The Parallel Spectral Transform Shallow Water Model (PSTSWM) [7, 8] repre-
sents an important computational kernel in spectral global atmosphere models.
PSTSWM exhibits little reuse of operands as it sweeps through the field arrays;
thus it exercises the memory subsystem as the problem size is scaled and can be
used to evaluate the impact of memory contention in multi-core nodes. All array
sizes and loop bounds in PSTSWM are determined at runtime, which limits the
effectiveness of some compiler optimizations.

Figure 4 compares the performance of PSTSWM on a single core when using
a number of different compiler optimizations. The computational rate is plotted
as a function of an increasing number of vertical levels for a fixed horizontal
grid resolution of 128x256 (T85). The vertical level index is second (between the
longitude and latitude indices), and the tightest coupling is in the longitude and
latitude directions. Thus increasing the number of vertical levels increases the
traffic to main memory. These data describe performance when using routines
in the ESSL library to compute Fourier transforms. From these results, we see
that specifying a “strict” interpretation of the numerics (-qstrict) degrades
performance by approximately 20%. Overall -O3 with higher order transforma-
tions (-qhot) produces the fastest code when applied globally, but the advantage
over -O2 optimization is not great. In data not shown here, experiments using
Fortran implementations of the (fast) Fourier transform operators show qual-
itatively similar results. However, using the ESSL Fourier transform routines
improves performance by approximately 30% for this problem resolution, re-
flecting a much greater increase in the performance of the FFT operators. (Note
that the ESSL FFT routines may be using both floating point pipes. In these
experiments the Fortran implementations are not.)

In other data not shown here, compiling with -qarch=450d, i.e., telling the
compiler to attempt to use the second pipe of the floating point unit, decreases
the best performance for the T85 benchmark by approximately 5% when com-
pared to compiling with -qarch=450. In contrast, T85 performance when using
strict numerics was nearly 10% better when compiled with -qarch=450d than
with -qarch=450. This is still 10% slower than the best performance when com-
piling with -qarch=450.

Figure 5 compares the performance on a single core as a function of the
number of vertical levels for a number of different horizontal resolutions: T5
(8× 16 horizontal computational grid), T10 (16× 32), T21 (32× 64), T42 (64×
128), T85 (128×256), and T170 (256×512). Performance is somewhat sensitive
to the number of vertical levels for small horizontal grids and for small numbers
of vertical levels, but this sensitivity disappears quickly as the number of levels
increases. This sensitivity is further diminished in experiments (not shown here)
using the Fortran implementations of the Fourier transforms. Performance is also
sensitive to the size of the horizontal grid, up to size T42. However, performance
is nearly identical for the larger horizontal grids (T42, T85, and T170).

Figure 6 compares per core performance when executing independent in-
stances of the T85 benchmark problem on 1, 2, and 4 processor cores in the

P.H. Worley - Perf. Eval. of the IBM BG/P 7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18

M
Fl

op
s

/ s
ec

on
d

Vertical Levels

T85 benchmark problem
-qarch=450, with ESSL FFT
-np 1 -mode SMP -env ’OMP_NUM_THREADS=1’
 -O3 -qhot
 -O2
 -O5
 -O3
 -O2 -qstrict
 -O3 -qstrict

Fig. 4. PSTSWM Performance: Optimization Comparisons

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

M
Fl

op
s

/ s
ec

on
d

Vertical Levels

-qarch=450, -O3 -qhot, with ESSL FFT
 T5
 T10
 T21
 T42
 T85
 T170

Fig. 5. PSTSWM Performance: Problem Size Analysis

8 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18

M
Fl

op
s

/ s
ec

on
d

Vertical Levels

T85 benchmark problem
-qarch=450, -O3 -qhot, with ESSL FFT
 1 core
 2 neighboring cores
 2 separated cores
 4 cores

Fig. 6. PSTSWM Performance with Contention

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18

M
Fl

op
 /

se
co

nd
 /

co
re

Vertical Levels (T85 horizontal resolution)

Cray XT4 (Fortran FFT, 1 core)
Cray XT4 (Fortran FFT, 2 cores)
IBM BG/P (ESSL FFT, 1 core)
IBM BG/P (ESSL FFT, 4 cores)
IBM BG/P (Fortran FFT, 1 core)
IBM BG/P (Fortran FFT, 4 cores)

Fig. 7. PSTSWM Platform Comparison

P.H. Worley - Perf. Eval. of the IBM BG/P 9

same compute node. When running on all 4 cores, there is a small, but measur-
able, decrease in per core performance that grows with the number of vertical
levels. This probably reflects memory contention, but is a mild performance
degradation compared to most other systems with which we have experience.
Finally, Figure 7 compares PSTSWM per core performance on the BG/P with
that on the Cray XT4. The Cray XT4 results use only the Fortran Fourier
transform implementations. Memory access patterns and contention have larger
performance impacts on the XT4 than on the BG/P for this problem resolution.
However, performance on the XT4 is between 4 and 3 times better than that of
the BG/P for comparable experiments without memory contention and between
3 and 2.3 times better for comparable experiments with contention. The ratio of
peak processor performance between the two systems is approximately 3 (when
disregarding the second pipe on the BG/P floating point unit), which appears
to be reflected in these results.

In summary, the PSTSWM benchmark as currently written is able to use the
second floating point unit to some advantage when specifying strict numerics, but
not otherwise. Versions of PSTSWM that run efficiently on vector systems such
as the NEC SX-6 and the Cray X1E are not competitive with the version used
in these experiments, so it is not simply an issue of vectorization. The BG/P
shows little performance degradation due to memory contention or increased
dependence on access to main memory. The ESSL Fourier transform routines
provide a significant performance boost over the Fortran equivalents, which may
partially reflect the utilization of the second floating point pipe within the math
library routines.

4 Communication Benchmarks

4.1 Clock and Barrier Benchmarks

Experiments sampling MPI WTIME across cores within a compute node and across
the compute nodes indicate that MPI WTIME is synchronized across all processor
cores. The cost of reading the clock was never observed to be more than 0.24
microseconds, and was on the average 0.18 microseconds.

Figure 8 compares the performance of MPI BARRIER when assigning only one
MPI process to each node and when assigning 4 MPI processes to each node. It
also compares performance when using the (default) optimized MPI collective
and when setting DCMF COLLECTIVE = 0 to disable the use of the optimized
collective.

We used the worst case timing over 10000 experiments for each data point
in the figure. The performance of the optimized collective is consistent from
experiment to experiment. For example, the minimum and maximum timings
differed by less than 20% over 10000 experiments when using 8192 processes.
The performance of the unoptimized collective is subject to large, but infre-
quent, perturbations. However, performance is consistent (20% spread between
minimum and maximum timings for the the 8192 process experiment) other-

10 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

 1

 2

 4

 8

 16

 32

 64

 128

 0 500 1000 1500 2000

m
ic

ro
se

co
nd

s

Nodes

4 cores/node, unoptimized
1 core/node, unoptimized
4 cores/node, default
1 core/node, default

Fig. 8. MPI Barrier Performance

wise. We removed unrepresentative outliers from the data for the unoptimized
collective before identifying the “worst case” timings that are used in the figure.

As can be seen, using the optimized collectives (and the barrier network)
is more than 20 times faster than not doing so for larger node counts. Also,
executing a barrier using all (4) of the cores in a node is approximately twice as
expensive as when using only one core per node.

4.2 MPI Benchmarks

To examine MPI communication performance, we use a custom MPI communi-
cation benchmark developed at ORNL in 1997 and used in our evaluation studies
for the past 10 years. (See, for example, [3, 9–11].) The foci in these experiments
are on examining performance of the many different MPI-1 point-to-point com-
munication protocols for the exchange of data between two processes, on exam-
ining the performance impact of different types of contention, and on conducting
the experiments in ways that reflect common usage. In particular, experiments
are run in three modes: single exchange, a cache invalidation followed by a single
exchange, and the average performance of 10 identical exchanges (without cache
invalidation).

Figure 9 contains two graphs with the same data, the first using a linear
y-axis and a logarithmic x-axis and the second being a log-log graph. Here we
are comparing the bidirectional bandwidth observed by a pair of processes under

P.H. Worley - Perf. Eval. of the IBM BG/P 11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

0-2 (1 node, VN)
i-(i+2), i=0,1 (1 node, VN)
0-1 internode (2 nodes, SMP)
i-(i+2), i=0,1 (2 nodes, DUAL, TXYZ ordering)
i-(i+4), i=0,..,3 (2 nodes, VN, TXYZ ordering)
i-(i+8), i=0,..,7 (4x1x1 nodes, VN, TXYZ ordering)
i-(i+128), i=0,..,127 (4x4x4 nodes, VN, TXYZ ordering)
i-(i+128), i=0,..,127 (4x4x4 nodes, VN, inverse ordering)

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

0-2 (1 node, VN)
i-(i+2), i=0,1 (1 node, VN)

0-1 internode (2 nodes, SMP)
i-(i+2), i=0,1 (2 nodes, DUAL, TXYZ ordering)
i-(i+4), i=0,..,3 (2 nodes, VN, TXYZ ordering)

i-(i+8), i=0,..,7 (4x1x1 nodes, VN, TXYZ ordering)
i-(i+128), i=0,..,127 (4x4x4 nodes, VN, TXYZ ordering)

i-(i+128), i=0,..,127 (4x4x4 nodes, VN, inverse ordering)

Fig. 9. MPI Bidirectional Bandwidth

12 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

a variety of circumstances. In these figures the maximum performance over all
examined communication protocols for the single exchange experiment is used.

a) 0-2 (1 node, VN) describes the bandwidth when processes assigned to core
0 and core 2 within the same compute node exchange data.

b) i-(i+2), i=0,1 (1 node, VN) describes the bandwidth achieved by a sin-
gle pair of processes assigned to cores in the same compute node when two
pairs are communicating simultaneously (process 0 with process 2 and pro-
cess 1 with process 3).

c) 0-1 internode (2 nodes, SMP) describes the bandwidth when processes
assigned to core 0 in two neighboring compute nodes exchange data.

d) i-(i+2), i=0,1 (2 node, DUAL, TXYZ ordering) describes the bandwidth
achieved by a single pair of processes assigned to cores in neighboring nodes
when two pairs are communicating simultaneously.

e) i-(i+4), i=0,3 (2 node, VN, TXYZ ordering) describes the bandwidth
achieved by a single pair of processes assigned to cores in neighboring nodes
when four pairs are communicating simultaneously. In this case, every core
in one node is communicating simultaneously with the analogous core in the
same neighboring node.

f) i-(i+8), i=0,7 (4x1x1 nodes, VN, TXYZ ordering) describes the per
pair bandwidth when each core in node i, i=0 or 1, is communicating with
the analogous core in node i+2 in a 4x1x1 linear array of nodes, and all four
nodes are running this experiment simultaneously.

g) i-(i+128), i=0,127 (4x4x4 nodes, VN, TXYZ ordering) describes the
per pair bandwidth when each core in node i, i<32, is communicating with
the analogous core in node i+32 in a 4x4x4 cube of nodes, and all 64 nodes
are running this experiment simultaneously.

h) i-(i+128), i=0,127 (4x4x4 nodes, VN, inverse ordering) describes the
same experiment as (g) except that the node numbering is inverted for nodes
33 to 64. This forces node 0 to communicate with the most distant node in
the 4x4x4 cube, and maximizes link contention for all pairs.

From these data we see that performance for small messages is identical for
all of the above scenarios. For larger messages intranode bandwith without con-
tention is highest, followed by intranode bandwidth with contention, followed by
internode bandwidth without contention, etc., as would be expected. In particu-
lar, the intranode bandwidth with contention is half that of intranode bandwith
without contention, so the two pairs of processes are sharing a fixed intranode
bandwidth capacity. Similarly, a single pair of processes in two different nodes
achieves twice the internode bandwidth as two pairs and four times as much as
four pairs, indicating equal sharing of available internode bandwidth. The 4x1x1
node experiments, where all 8 process pairs contend for a single network link,
demonstrates another halving of performance per process pair, or the same to-
tal bandwidth shared between all 8 process pairs. The first 32 node experiment
achieves identical performance with that of the 4x1x1 experiment, reflecting the
network contention in the 4x4x4 cube with the TXYZ node ordering. Forcing

P.H. Worley - Perf. Eval. of the IBM BG/P 13

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Cray X1E: 0-8 (2 modules)
Cray XT4: 0-1 (2 nodes, SN)
IBM BG/P: 0-1 (2 nodes, SMP)
Intel Xeon w/gigE: 0-2 (2 nodes)

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Cray X1E: i-(i+8), i=0,...,7 (2 modules)
Cray XT4: i-(i+2), i=0,1 (2 nodes, VN)
IBM BG/P: i-(i+4), i=0,..,3 (2 nodes, VN)
Intel Xeon w/gigE: i-(i+2), i=0,1 (2 nodes)

Fig. 10. MPI Bidirectional Bandwidth Platform Comparison

14 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

additional contention as in experiment (h) further halves the per process pair
performance. The results described in Figure 9 are very consistent and regular,
providing a simple performance model based solely on network topology and
number of cores per compute node.

Figure 10 compares MPI bidirectional bandwidth performance on the BG/P
with that on the Cray X1E, Cray XT4, and an Intel Xeon cluster with a Gigabit
Ethernet network. In the first graph the comparison is between single process pair
internode bandwidth. For small messages, up to 1024 bytes, the BG/P achieves
the best MPI-1 performance, and is over twice as fast as the Cray systems for
most of this range of message sizes. For large messages, the Cray X1E achieves 6
times the bidirectional bandwidth of the Cray XT4, and 31 times that of the IBM
BG/P. The second graph in Figure 10 compares MPI bidirectional bandwidth
under various levels of contention for the same four systems. The performance
comparison for small message sizes is unchanged. For large messages, all of the
systems show contention, with the Cray X1E and IBM BG/P demonstrating the
most predictable behavior. The 2-node internode performance comparison is a
simple function of the single pair performance and the number of processes per
compute node. In this case the X1E is now only 15 times faster than the BG/P
for large message sizes, while the XT4 is now 10 times faster. For the multiple
node experiments, the network and process layout becomes a factor, but nothing
is mysterious about these data.

In summary, BG/P MPI-1 point-to-point latency is very good, while MPI-1
bidirectional bandwidth on the torus network is significantly less than that on
the Cray systems. These experiments do not, however, evaluate the ability of
the BG/P (and the other systems) to avoid link contention and maintain high
appregate bandwidth in real application codes at scale.

Comparing performance between the different MPI protocols, MPI SENDRECV
and MPI ISEND/MPI RECV protocol are typically the best performers for intranode
communication for small messages and for large messages without contention.
For larger message sizes, the MPI IRECV/MPI SEND and MPI IRECV/MPI RSEND
protocols are fastest for intranode with contention. For internode communica-
tion, MPI SENDRECV and MPI ISEND/MPI RECV are among the fastest protocols,
with or without contention. The sensitivity of performance to the choice of pro-
tocol is a function of message size and contention, and can not be addressed
adequately in this paper. However, the sensitivity is greatest for small messages,
where the fastest protocol can be twice as fast as the slowest protocol. For the
largest messages, performance for most protocols differs by less than 1%.

5 Application Benchmarks

5.1 POP

The Parallel Ocean Program (POP) [12, 13] is a global ocean circulation model
developed and maintained at Los Alamos National Laboratory. It is used for
high resolution studies and as the ocean component in the Community Climate

P.H. Worley - Perf. Eval. of the IBM BG/P 15

System Model (CCSM). The code is based on a finite-difference formulation of
the 3D flow equations on a shifted polar grid. POP performance is character-
ized by the performance of a baroclinic phase and a barotropic phase. The 3D
baroclinic phase typically scales well on all platforms due to its limited nearest-
neighbor communication. In contrast, the barotropic phase is dominated by the
solution of a 2D, implicit system whose performance is sensitive to network la-
tency and typically scales poorly on all platforms. For our evaluation we used
version 1.4.3 of POP with a few additional parallel algorithm tuning options (due
to Yoshida) [14]. The current production version of POP is version 2.0.1. While
version 1.4.3 and version 2.0.1 have similar performance characteristics, the in-
tent here is to use version 1.4.3 to evaluate system performance characteristics,
not to evaluate the performance of POP.

We consider results for both one degree and tenth degree fixed size benchmark
problems. Both benchmark problems use a displaced-pole longitude-latitude hor-
izontal grid with the pole of the grid shifted into Greenland to avoid computa-
tions near the singular points. For the one degree problem the grid spacing is
approximately one degree in longitude (100km) around the equator, utilizing
a 320 × 384 horizontal grid and 40 vertical levels. This benchmark problem is
configured as closely as possible to the way that POP is used for long climate
simulations in the CCSM. For the tenth degree problem the grid spacing is 0.1
degree in longitude (10km) around the equator, utilizing a 3600× 2400 horizon-
tal grid and 40 vertical levels. This resolution resolves eddies for effective heat
transport and is used for ocean-only or ocean and sea ice experiments.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

O0 O2 O3strict O3 O3hot O5 O3hot_d O5_d

Se
co

nd
s

pe
r S

im
ul

at
io

n
Da

y

POP 1.4.3 compiler optimization comparison
 1 degree benchmark, 1024 MPI tasks, quad core BGP

Fig. 11. POP Performance: Compiler Optimization Comparisons

16 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

We began by evaluating the impact of different compiler optimizations. Fig-
ure 11 compares seconds per simulation day for the one degree benchmark when
using 1024 processes for the following compiler options: -O0, -O2, -O3 -qstrict,
-O3, -O3 -qhot, -O5, -O3 -qhot -qarch=450d, and -O5 -qarch=450d. Other
optimization flags were also examined, but these capture the major issues in
the comparison. The -O0 value is over 10 seconds. As can be seen, -O3 -qhot
and -O3 -qhot -qarch=450d achieve the best performance. Experiments us-
ing executables compiled with -qarch=450d led to execution time errors for
certain benchmark configurations. Consequently, we tried executables compiled
with both -O3 -qhot and -O3 -qhot -qarch=450d in all experiments and re-
port the best observed performance. Qualitatively, results were identical for a
similar comparison of compiler optimizations using the tenth degree benchmark
and 4000 processes.

Figures 12 and 13 describe POP performance for the one degree benchmark
problem. Executables compiled with -qarch=450d were (slightly) faster than
executables compiled with -qarch=450d up to 1024 processes, but not for larger
process counts. Performance when using the TXYZ ordering was comparable to
that when using the XYZT ordering.

The first graph in Figure 12 compares POP performance in simulated years
per day when using only one core per compute node (SMP mode) and when
using all cores per node (VN mode). It also compares using a standard conjugate
gradient algorithm solver for the linear system in the Barotropic phase with using
the Chronopoulos-Gear variant (C-G) [15]. C-G halves the number of calls to
MPI Allreduce used to compute inner products at the cost of some additional
computation. On a per process basis, SMP-mode performance is slightly better
than VN mode, though not on a per node basis. The C-G variant of the linear
solver improves performance by approximately 5% when running in VN mode.
The second graph in Figure 12 compares the performance of the Barotropic and
Baroclinic phases in seconds per simulated day for the SMP and VN modes, both
using the C-G-based solver. Here we can see that SMP and VN modes achieve
the same performance for the Baroclinic phase, while the communication-bound
Barotropic phase is scaling much better when run in SMP mode. It appears that
the halo updates used in the residual calculations and the reduction operations
used in the inner product calculations are not as efficient when using all cores in
a compute node. However, because the cost of the Baroclinic phase dominates,
this performance degradation in the Barotropic phase in VN mode does not have
a significant impact on VN-mode performance.

The first graph in Figure 13 compares performance on the quad-core BG/P
system with performance on the dual-core XT4 system. The XT4 shows a much
stronger preference for running on a single core per compute node (SN mode),
achieving higher maximum throughput than when running on both cores (VN
mode), with SN-mode Barotropic performance twice that of VN mode for the
same process count. Performance on the XT4 peaks at between 2000 and 3000
processes, while performance on the BG/P continues to improve out to at least
8192 processes. Achieved performance on the XT4 is still higher up to 8192

P.H. Worley - Perf. Eval. of the IBM BG/P 17

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Tasks

 IBM BG/P (SMP, C-G)
 IBM BG/P (SMP)
 IBM BG/P (VN, C-G)
 IBM BG/P (VN)

 0.25

 0.5

 1

 2

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Se
co

nd
s

pe
r S

im
ul

at
io

n
Da

y

MPI Tasks

IBM BG/P (VN, C-G)
 Barotropic
 Baroclinic
IBM BG/P (SMP, C-G)
 Barotropic
 Baroclinic

Fig. 12. POP Performance: One-Degree Benchmark

18 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Tasks

Cray XT4 (SN, C-G)
Cray XT4 (VN, C-G)
IBM BG/P (SMP, C-G)
IBM BG/P (VN, C-G)

 0.125

 0.25

 0.5

 1

 2

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Se
co

nd
s

pe
r S

im
ul

at
io

n
Da

y

MPI Tasks

IBM BG/P (VN, C-G)
 Barotropic
 Baroclinic
Cray XT4 (VN, C-G)
 Barotropic
 Baroclinic

Fig. 13. POP Platform Comparison: One-Degree Benchmark

P.H. Worley - Perf. Eval. of the IBM BG/P 19

processes. The second graph in Figure 13 compares BG/P and XT4 performance
for the Barotropic and Baroclinic phases when using all cores per compute node.
Differences in performance characteristics in the two systems are clear in this
figure. The Baroclinic performance is much better on the XT4 than on the
BG/P, and it even appears to scale better. In contrast, Barotropic performance
is much better on the BG/P than on the XT4, though performance is essentially
flat on both platforms for more than 1024 processes. While there is potential for
continued scaling on the BG/P for larger process counts, Baroclinic performance
improved by only 30% when doubling from 4096 processes to 8192 processes, so
we do not expect performance to increase significantly when using more than
8192 processes.

Figures 14 and 15 describe the POP performance for the tenth degree bench-
mark problem. Executables compiled with -qarch=450d were 10% faster than
executables compiled with -qarch=450 when run with 1280 processes, but the
performance advantage decreased to less than 2% for runs with 8000 processes.
As with the one degree benchmark, performance when using the TXYZ ordering
was comparable to that when using the XYZT ordering. Experiments with other
orderings likewise did not show any significant performance advantage over TXYZ.

The first graph in Figure 14 compares POP performance for VN and SMP
modes, and with and without the C-G variant of the linear solver. For this large
problem, scaling is linear out to 8000 processes and performance is insensitive
to the execution modes and to the linear system solver variant. The second
graph in Figure 14 compares the performance of the Barotropic and Baroclinic
phases in seconds per simulated day for the SMP and VN modes, both using
the C-G-based solver. The Baroclinic timings are for process 0 only. While this
was sufficient for the one degree problem, there is some load imbalance in the
Baroclinic phase that would normally be mistakenly attributed to the Barotropic
phase (whose timings are also reported only for process 0). To disambiguate the
timings, the experiments were rerun with a barrier placed just before the start
of the Barotropic phase. The process-0 time spent in the barrier is also plotted.
(This additional barrier decreases overall POP performance very little.) As with
the one degree benchmark results, the Baroclininc performance is not sensitive
to execution mode. The C-G solver variant is a little slower than the standard
formulation of the conjugate gradient solver for this problem size and these
process counts, but the Baroclinic phase is the dominant contributer to total
execution time and the performance difference between the two solver algorithms
has little impact. In particular, the Baroclinic load imbalance, as measured by
the process-0 timing barrier, is as large as the total cost of the Barotropic phase
for 8000 processes.

The first graph in Figure 15 compares performance on the quad-core BG/P
system with performance on the dual-core XT4 system for the tenth degree
benchmark. The XT4 again shows more sensitivity to the execution mode than
the BG/P, but using all of the cores in a compute node is now preferable to
using only one. (Performance for 20000 processes, not plotted, is 19.6 years per
day, while SN mode on the same number of compute nodes achieves 15.8 years

20 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Tasks

 IBM BG/P (SMP, C-G)
 IBM BG/P (SMP)
 IBM BG/P (VN, C-G)
 IBM BG/P (VN)

 8

 16

 32

 64

 128

 256

 512

 1024 2048 4096 8192 16384

Se
co

nd
s

pe
r S

im
ul

at
io

n
Da

y

MPI Tasks

IBM BG/P (VN, C-G)
 Baroclinic
 Barotropic
 Bar. Barrier
IBM BG/P (SMP, C-G)
 Baroclinic
 Barotropic
 Bar. Barrier

Fig. 14. POP Performance: Tenth-Degree Benchmark

P.H. Worley - Perf. Eval. of the IBM BG/P 21

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Tasks

Cray XT4 (SN, C-G)
Cray XT4 (VN, C-G)
IBM BG/P (SMP, C-G)
IBM BG/P (VN, C-G)

 4

 8

 16

 32

 64

 128

 256

 512

 1024 2048 4096 8192 16384

Se
co

nd
s

pe
r S

im
ul

at
io

n
Da

y

MPI Tasks

IBM BG/P (VN, C-G)
 Baroclinic
 Barotropic
 Bar. Barrier
Cray XT4 (VN, C-G)
 Baroclinic
 Barotropic

Fig. 15. POP Platform Comparison: Tenth-Degree Benchmark

22 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

per day.) The XT4 performance is approximately 3.6 times that of the BG/P
for 8000 processes. The second graph in Figure 15 compares BG/P and XT4
performance for the Barotropic and Baroclinic phases. In this figure, a timing
barrier was not used to remove load imbalances from the XT4 Barotropic phase
timings. For example, load imbalances may be the source of the somewhat erratic
behavior in the Barotropic phase performance on the XT4. As with the one
degree benchmark, the Baroclinic phase runs much faster on the XT4 than on
the BG/P, and it appears to scale better on the XT4 as well. Performance of
the Barotropic phase on the BG/P continues to increase out to 8000 processes,
though it is still somewhat slower than on the XT4. XT4 Barotropic performance
has stopped improving beyond 8000 processes, and is the dominant phase when
using more than 10000 processes. It appears that performance would continue to
scale out to much larger process counts on the BG/P, especially since the load
imbalance in the Baroclinic phase should decrease as the cost of the Baroclinic
phase decreases.

In summary, the POP benchmarks scale well on the BG/P architecture. Per-
formance is less than on the XT4 when running on the same number of processes,
particular for the large computation-bound benchmark. When communication
cost dominates on the XT4, performance on the BG/P becomes competitive for
large process counts.

6 Conclusions

These performance results are preliminary, and provide at best a snapshot of the
performance characteristics of the IBM BG/P architecture. However, our pre-
liminary evaluation indicates that the multiple networks and the compute node
design and software stack do enhance application scalability, much like on the
BG/L system [16]. The processor is relatively slow compared to HPC systems
from other vendors, which puts a premium on the scalability of the application
codes. The relatively low bandwidth of the torus network also makes it important
to consider the assignment of processes to processors (and the exploitation of
OpenMP parallelism within the compute node) in order to minimize the commu-
nication requirements for applications with high bandwidth requirements. The
larger ORNL evaluation effort, and similar activities at Argonne National Labo-
ratory and other sites with BG/P systems, are investigating system performance
with additional microbenchmarks and with a large number of application codes.
This additional information will be available soon and should provide a more
comprehensive evaluation of BG/P performance.

7 Acknowledgements

This research used resources (Xeon cluster) of Oak Ridge National Laboratory
and resources (Cray X1E, Cray XT4, and IBM BG/P) of the National Center

P.H. Worley - Perf. Eval. of the IBM BG/P 23

for Computational Sciences at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of Energy under Con-
tract No. DE-AC05-00OR22725. It also used resources (IBM p575 cluster) of the
National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098. We thank our performance research colleagues at Oak Ridge
National Laboratory for support in collecting these data, in particular Michael
Bast for his efforts in getting the IBM BG/P system installed and running.

References

1. Gropp, W., Snir, M., Nitzberg, B., Lusk, E.: MPI: The Complete Reference. MIT
Press, Boston (1998) second edition.

2. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Computational Science & Engineering 5 (1998) 46–55

3. Alam, S.R., Barrett, R.F., Fahey, M.R., Kuehn, J.A., Larkin, J.M., Sankaran, R.,
Worley, P.H.: Cray XT4: An Early Evaluation for Petascale Scientific Simulation.
In: Proceedings of the ACM/IEEE Intl. Conf. for High Performance Computing,
Networking, Storage and Analysis (SC07), Nov. 10-16, 2007. IEEE Computer
Society Press, Los Alamitos, CA (2007)

4. Worley, P.H.: Comparison of the Cray XT3 and XT4 Scalability. In R. Winget
and K. Winget, ed.: Proceedings of the 49th Cray User Group Conference, May
7-10, 2007, Eagan, MN, Cray User Group, Inc. (2007)

5. Oliker, L., Carter, J., Wehner, M., Canning, A., Ethier, S., Mirin, A., Bala, G.,
Parks, D., Worley, P., Kitawaki, S., Tsuda, Y.: Leading Computational Methods
on Scalar and Vector HEC Platforms. In: Proceedings of the ACM/IEEE Intl.
Conf. for High Performance Computing, Networking and Storage (SC05), Nov.
12-18, 2005. IEEE Computer Society Press, Los Alamitos, CA (2005)

6. Dongarra, J., Croz, J.D., Duff, I., Hammarling, S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Software 16 (1990) 1–17

7. Worley, P.H., Foster, I.T.: Parallel Spectral Transform Shallow Water Model: a
runtime–tunable parallel benchmark code. In Dongarra, J.J., Walker, D.W., eds.:
Proc. Scalable High Performance Computing Conf. IEEE Computer Society Press,
Los Alamitos, CA (1994) 207–214

8. Worley, P.H., Toonen, B.: A users’ guide to PSTSWM. Technical Report
ORNL/TM–12779, Oak Ridge National Laboratory, Oak Ridge, TN (1995)

9. Drake, J.B., Hammond, S., James, R., Worley, P.H.: Performance tuning and eval-
uation of a parallel community climate model. In: Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing (SC99), Nov. 13-19,
1999. IEEE Computer Society Press, Los Alamitos, CA (1999)

10. Dunigan, Jr., T.H., Fahey, M.R., White III, J.B., Worley, P.H.: Early Evaluation of
the Cray X1. In: Proceedings of the ACM/IEEE Conference on High Performance
Networking and Computing (SC03), Nov. 15-21, 2003. IEEE Computer Society
Press, Los Alamitos, CA (2003)

11. Worley, P.H., Dunigan, Jr., T.H., Fahey, M.R., White III, J.B., Bland, A.S.: Early
evaluation of the IBM p690. In: Proceedings of the IEEE/ACM SC2002 Conference,
Nov. 16-22, 2002. IEEE Computer Society Press, Los Alamitos, CA (2002)

12. Smith, R.D., Dukowicz, J.K., Malone, R.C.: Parallel ocean general circulation
modeling. Phys. D 60 (1992) 38–61

24 Proc. of the 9th LCI Intl. Conf. on High Perf. Clustered Comput. (4/2008)

13. Jones, P.W., Worley, P.H., Yoshida, Y., White III, J.B., Levesque, J.: Practical
performance portability in the Parallel Ocean Program (POP). Concurrency and
Computation: Practice and Experience 17 (2005) 1317–1327

14. Worley, P.H., Levesque, J.: The performance evolution of the Parallel Ocean Pro-
gram on the Cray X1. In R. Winget and K. Winget, ed.: Proceedings of the 46th
Cray User Group Conference, May 17-21, 2004, Eagan, MN, Cray User Group, Inc.
(2004)

15. Chronopoulos, A., Gear, C.: s-step iterative methods for symmetric linear systems.
J. Comput. Appl. Math. 25 (1989) 153–168

16. de Supinski, B.R., Schulz, M., Bulatov, V.V., Cabot, W., Chan, B., Cook, A.W.,
Draeger, E.W., Glosli, J.N., Greenough, J.A., Henderson, K., Kubota, A., Louis,
S., Miller, B.J., Patel, M.V., Spelce, T.E., Streitz, F.H., Williams, P.L., Yates,
R.K., Yoo, A., Almasi, G., Bhanot, G., Gara, A., Gunnels, J.A., Gupta, M., Mor-
eira, J., Sexton, J., Walkup, B., Archer, C., Gygi, F., Germann, T.C., Kadau, K.,
Lomdahl, P.S., Rendleman, C., Welcome, M.L., McLendon, W., Hendrickson, B.,
Franchetti, F., Kral, S., Lorenz, J., Uberhuber, C.W., Chow, E., Catalyurek, U.:
Bluegene/l applications: Parallelism on a massive scale. International Journal of
High Performance Computing Applications 22 (2008) 33–51

