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Abstract.
The Community Atmosphere Model (CAM) is the atmospheric component of the

Community Climate System Model (CCSM) and is the primary consumer of computer resources
in typical CCSM simulations. Performance engineering has been an important aspect of CAM
development throughout its existence. This paper briefly summarizes these efforts and their
impacts over the past five years.

1. Introduction
The Community Climate System Model (CCSM) is a fully-coupled, global climate model that
provides state-of-the-art computer simulations of the Earth’s past, present, and future climate
states [1]. CCSM development is the primary activity of the Department of Energy (DOE)
Scientific Discovery through Advanced Computing (SciDAC) project Collaborative Design and
Development of the Community Climate System Model for Terascale Computers. Performance
and performance portability have been major foci of this project since its inception in July 2001.

CCSM is constantly evolving to incorporate new science. The target computer platforms
change periodically as well. The project performance engineering goals are addressed by
an iterative process that includes porting CCSM to new platforms, collecting and analyzing
performance data, optimizing performance, and modifying code to improve performance
portability. Performance portability refers to the capability of a code to be optimized on a new
platform or for a new problem instance quickly, and is an important enabler of this iterative
process. These performance engineering activites are performed in close collaboration with
the SciDAC Integrated Software Infrastructure Center on performance engineering Performance
Evaluation Research Center.

CCSM is made up of a coupler and four component models: atmosphere, ocean, land, and sea
ice. The Community Atmosphere Model (CAM) is the atmospheric component of the CCSM
and is the primary consumer of computer resources in typical CCSM simulations. This paper
briefly summarizes the impact of the above mentioned SciDAC projects on both performance
and performance portability of CAM over the past five years. For information on performance
engineering in other CCSM component models, see the special issue of the International Journal
on High Performance Computer Applications (2005, volume 19, number 3) on climate modeling.
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2. Community Atmosphere Model
CAM is a global atmosphere model developed at the National Science Foundation’s National
Center for Atmospheric Research (NCAR) with contributions from researchers funded by DOE
and by the National Aeronautics and Space Administration (NASA) [2]. CAM is a mixed-mode
parallel application code, using both the Message Passing Interface (MPI) [6] and OpenMP
protocols [5]. CAM is characterized by two computational phases: the dynamics, which advances
the evolution equations for the atmospheric flow, and the physics, which approximates subgrid
phenomena such as precipitation processes, clouds, long- and short-wave radiation, and turbulent
mixing [3]. The approximations in the physics are referred to as the physical parameterizations.
Control moves between the dynamics and the physics at least once during each model simulation
timestep.

CAM includes multiple options for the dynamics, referred to as dynamical cores or dycores,
one of which is selected at compile-time. Three dycores are currently supported: a spectral
Eulerian (EUL) [7], a spectral semi-Lagrangian (SLD) [12], and a finite volume semi-Lagrangian
(FV) [8]. The spectral and finite volume dycores use different computational grids. An explicit
interface exists between the dynamics and the physics, and the physics data structures and
parallelization strategies are independent from those in the dynamics. A dynamics-physics
coupler moves data between data structures representing the dynamics state and the physics
state.

The development of CAM is a large community-wide effort, with software engineering led by
the CCSM Software Engineering Group at NCAR. The authors were instrumental in much of the
performance engineering of CAM [9, 14], including all three dycores and the physics. However,
some of the performance portability features in the FV dycore were developed at NASA [10]
and David Parks of NEC Solutions America, in partnership with the Japanese Earth Simulator
Center, was responsible for the initial vectorization of many of the routines in CAM.

3. Performance Engineering
The general performance engineering goals are to (1) maximize single processor performance,
e.g., optimize memory access patterns and maximize vectorization or other fine-grain parallelism,
and (2) minimize parallel overhead, e.g., minimize communication costs, load imbalance, and
redundant computation. These goals need to be achieved for a variety of target computer
systems, a range of problem specifications, and a range of processor counts, all while preserving
maintainability and extensibility. There is no optimal solution for all desired configurations of
platform, problem, and processor count, and we rely on performance portability techniques. We
have been successful in delaying decisions that affect performance until compile-time or run-time
by hiding performance options in utility layers or in initialization routines. The code seen by
developers has not been significantly impacted. The current set of CAM tuning options are
discussed in [13].

Most of our optimization efforts can be categorized as either (1) eliminating unnecessary
work, (2) cache blocking and/or vectorization, (3) exposing additional parallelism, (4) load
balancing, (5) interprocessor communication optimizations, or (6) evaluating different compiler
optimization options and exploiting optimized libraries. The largest impact on the code,
in terms of number of lines modified, has come from exposing additional parallelism, e.g.,
by introducing a two-dimensional domain decomposition where before there was only a one-
dimensional decomposition, and from enabling vectorization, e.g., by reordering loops and
changing data structures to increase loop lengths.

4. Experimental Platforms
Performance data are presented for a number of different high performance computing systems,
as described below.



Performance Engineering in CAM

• Cray X1 at Oak Ridge National Laboratory (ORNL): 512 Multi-Streaming Processors
(MSP), each capable of 12.8 GFlop/s for 64-bit operations. MSPs are fully connected
within 16-MSP subsets, and are connected via a 2-D torus between subsets.

• Cray X1E at ORNL: 1024 MSPs, each capable of 18 GFlop/s for 64-bit operations. MSPs
are fully connected within 32-MSP subsets, and are connected via a 2-D torus between
subsets. This system is an upgrade of the original Cray X1 at ORNL.

• Cray XT3 at ORNL: 5294 single processor nodes (2.4 GHz AMD Opteron) and a 3-D torus
interconnect. Each processor is capable of 4.8 GFlop/s for 64-bit operations.

• Earth Simulator: 640 8-way symmetric multiprocessor (SMP) nodes and a 640x640 single-
stage crossbar interconnect. Each processor has 8 64-bit floating point vector units running
at 500 MHz, and is capable of 8 GFlop/s for 64-bit operations.

• IBM p575 cluster at the National Energy Research Scientific Computing Center (NERSC):
122 8-way p575 SMP nodes (1.9 GHz POWER5 processors) and an HPS interconnect with
1 two-link adapter per node. Each processor is capable of 7.6 GFlop/s for 64-bit operations.

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes (1.3 GHz POWER4 processors)
and an HPS interconnect. Each node has two HPS adapters, each with two ports. Each
processor is capable of 5.2 GFlop/s for 64-bit operations.

• IBM SP at NERSC: 184 Nighthawk II 16-way SMP nodes (375 MHz POWER3-II
processors) and an SP Switch2. Each node has two interconnect interfaces. Each processor
is capable of 1.5 GFlop/s for 64-bit operations.

• Itanium2 cluster at Lawrence Livermore National Laboratory: 1024 4-way Tiger4 nodes
(1.4 GHz Intel Itanium 2) and a Quadrics QsNetII Elan4 interconnect. Each processor is
capable of 5.6 GFlop/s for 64-bit operations.

• SGI Origin 3800 at NASA Ames Research Center: 1024 600 MHz MIPS R14000 processors
and a NUMAlink switch that supports nonuniform memory access global shared memory.
Each processor is capable of 1.2 GFlop/s for 64-bit operations.

5. Performance History
Documenting performance improvements in an evolving code can be difficult. Changes that
add, for example, new processes to the physics can increase the amount of work required
in a simulation. Such complexity-changing modifications invalidate performance optimization
comparisons between versions of the code before and after the modification. Periodically the
problem specification or dynamical core of most interest also changes. It is often not possible to
run the new problem specification using older versions of the code, requiring the redefinition of
baseline performance using the current production version of the code. A version control system
is essential for this type of study as it documents the code evolution. Subversion [4] is used with
CAM currently, having replaced CVS in December 2005. One positive side effect of introducing
performance optimizations as compile-time and run-time options is that new versions of the
code can be run in the “old way”, so that the performance impact of the introduction of a
performance tuning option can still be quantified.

The left graph in Figure 1 describes the performance improvement between June 2001 and
November of 2002 on the IBM p690 cluster. During this time period the p690 cluster had
an IBM SP Switch2 interconnect between nodes. The benchmark problem T42 L26 uses a
64x128x26 (latitude by longitude by vertical) computational grid and the EUL dycore, which
were the production settings at the time of the experiments. The “original settings” curve is the
performance when setting the optimization options to emulate the way that CAM version 1.0
was run in June 2001. Note that the performance improvements include increasing the number
of processors that could be used effectively from 64 to more than 256.



Proc. of the 2006 SciDAC Conf., June 26-29, 2006 (J. Phys.: Conf. Ser. 46 356–362)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  4  8  16  32  64  128  256

Si
m

ul
at

io
n 

Ye
ar

s 
pe

r D
ay

Processors

Community Atmosphere Model, versions 2.0 - 2.0.1.dev10

IBM p690 cluster, T42 L26
  load bal., MPI/OpenMP, improved dyn., land, and physics
  load bal., MPI/OpenMP, improved dyn. and land
  load bal., MPI/OpenMP, improved dynamics
  v2.0, load bal., MPI/OpenMP
  v2.0, load balanced, MPI-only
  version 2.0, original (2001) settings

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600

Si
m

ul
at

io
n 

Ye
ar

s 
pe

r D
ay

Processors

Community Atmosphere Model, version 3.0

T85 L26
  Cray X1E
      opt. settings
      orig. settings (2001)
  IBM p575 cluster
      opt. settings
      orig. settings (2001)
  IBM p690 cluster
      opt settings
      orig. settings (2001)

Figure 1. CAM EUL Performance History.

The right graph in Figure 1 describes the performance improvement attributable to the
performance optimization options introduced between June 2001 and May 2004 on the IBM
p690 cluster, now using the IBM HPS interconnect, on the IBM p575 cluster, and on the Cray
X1E. Results are for the new production problem size of T85 L26, which uses the EUL dycore
and a computational grid of size 128x256x26.

So far we have described the impact of performance optimizations in the physics and in the
EUL dycore. Over the same period of time the NASA FV dycore was integrated with CAM,
a two-dimensional (2D) domain decomposition option was implemented, and a number of FV
communication optimization options were added. FV was not available in CAM prior to this
work and many of the optimizations were introduced simultaneously. In consequence, no baseline
exists against which to evaluate these optimizations. Figure 2 contains plots examining CAM
performance sensitivities to two of the FV-specific tuning options.

The left graph in Figure 2 compares CAM performance when using MPI-2 one-sided and MPI-
1 two-sided communication requests with varying levels of thread parallelism. The experimental
platform is the SGI Origin3800. The benchmark problem (1x1.25 L26) uses a 181x288x26
computational grid. Note that MPI-2 one-sided communications and thread level parallelism
are not performance enhancers on all target platforms, and it is important for performance
portability that the communication protocol be an option.

The right graph in Figure 2 illustrates the performance impact of the 2D domain
decomposition on performance on three platforms: the Cray X1E, the Cray XT3, and the IBM
p690 cluster. The benchmark problem (0.5x0.625 L26) uses a 361x576x26 computational grid.
Performance is graphed for the original one-dimensional (1D) decomposition, a 2D decomposition
where four processes are applied to the new dimension, and a 2D decomposition in which
seven processes are applied to the new dimension. The 1D decomposition is limited to 120
MPI processes for this benchmark. The 2D domain decomposition increases MPI scalability
significantly, but with diminishing performance returns for high processor counts. For the
IBM p690 cluster, the 1D domain decomposition with OpenMP parallelism is more efficient
at increasing scalability than is the 2D decomposition with OpenMP parallelism up to the
indicated number of processors.

The most recent performance engineering efforts involved (re)vectorizing CAM while not
degrading performance on the nonvector systems. The target vector systems are the Cray X1E
and the Earth Simulator. These two systems have somewhat different performance sensitivities,
and maintaining performance portability between them has required careful testing. Figure 3
illustrates the performance history for three benchmark problems and processor counts on the
X1E from May 2005 to May 2006. The versions named on the X-axis were developed on the
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Figure 2. CAM FV Performance Optimizations.
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Figure 3. CAM Vector Performance History: March 2005 to March 2006.

X1E, and often include changes that eliminate performance degradations that crept in since the
previous X1E-oriented modification. For each named version, we also measured performance
for the immediately preceding version. The name of each version is of the form “3.X Y”. The
“3.” is dropped from the name in the graph where it improves readability. The two graphs
contain the same data, but the one on the right uses a logarithmic Y-axis. From this it should
be clear that maintaining vectorization is a significant performance advantage, and requires
ongoing monitoring as new code is introduced. The new benchmark problem, 1.9x2.5 L26, has a
96x144x26 computational grid and is the initial production resolution for the FV dycore within
CCSM.

6. Future Challenges
As shown in Section 5, performance engineering efforts over the past five years have resulted
in significant performance improvements in CAM. The graphs in Figure 4 describe current
CAM performance, where recent performance optimizations have been backported into versions
3.0 and 3.1. While performance on the current production platforms is very good, scalability
is still limited. CAM is evolving quickly. It will soon include comprehensive treatments of
the processes governing well-mixed greenhouse gases, natural and anthropogenic aerosols, the
aerosol indirect effect and trapospheric ozone for climate change studies. These improvements
come at the cost of significant increases in computational complexity, minimally 3-5 times as
costly per vertical column. A vertical column refers to to all grid points with a given horizontal
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Figure 4. CAM Performance, May 2006

location, differing only in the vertical coordinate. In order to maintain the required simulation
throughput rates, we are investigating whether additional domain decompositions with respect to
chemical constituent and the vertical coordinate can be used to improve scalability. We are also
examining the performance and scalability of new dycores utilizing computational grids, such
as the cubed sphere [11], that avoid the polar singularity of the traditional latitude-longitude
approach and lend themselves more naturally to 2-D and 3-D domain decompositions. We will
continue to address load imbalance in the physics and communication overhead in the dynamics
as the new processes are incorporated into CAM. We will also continue to emphasize algorithmic
flexibility and peformance portability in our work, believing these to be vital to achieving CAM
performance goals.
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