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Abstract.
The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five

high performance computing systems. First, a manual approach is taken, using custom scripts
to analyze the output of embedded wallclock timers, floating point operation counts collected
using hardware performance counters, and traces of user and communication events collected
using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis
are then repeated or extended using a number of sophisticated performance analysis tools:
IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses
what has been discovered via this manual analysis process, what performance analyses are
inconvenient or infeasible to attempt manually, and to what extent the tools show promise in
accelerating or significantly extending the manual performance analyses.

1. Introduction
Performance tool development is an active research area, driven by changing processor, memory,
and network technologies, increasing system size, increasing application code complexity,
evolving programming languages and paradigms, new messaging layers, etc. This paper is an
overview of an ongoing study on the benefits of using modern performance tools. The approach
taken is to perform detailed performance analyses of a number of scientific application codes.
The first code being examined is GYRO [2], an Eulerian gyrokinetic-Maxwell solver developed
by J. Candy and R.E. Waltz at General Atomics. GYRO is used by researchers worldwide to
study plasma microinstabilities and turbulence relevant to controlled fusion research. The first
step in the study was to establish a baseline, collecting and analyzing performance data using
only the most basic tools. In subsequent steps, aspects of the baseline analysis were repeated
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using more sophisticated tools, identifying what analysis activities could be accelerated and what
additional insights could be gained. As there are many tools, we currently focus on performance
tools developed by or used in the Performance Evaluation Research Center (PERC) project [12].

In this paper we use data collected on the Cray X1 at Oak Ridge National Laboratory
(ORNL) [8], the IBM p690 cluster at ORNL [8], the IBM SP at the National Energy Research
Scientific Computing Center (NERSC) [10], the SGI Altix 3700 at ORNL [8], and the TeraGrid
Linux cluster at the National Center for Supercomputing Applications (NCSA) [9] for the Waltz
standard case benchmark [15], which we refer to as B1-std. The B1-std grid is 16×140×8×8×20,
which is the same resolution used in many production runs, e.g.[1].

The GYRO baseline studies are of three types. First, GYRO comes with embedded wallclock
timers and both cumulative and sampled runtime data are collected automatically. The timers
surround events that characterize the developers’ view of the code. We analyzed these timing
data using custom PERL scripts and results were plotted with gnuplot. For the second baseline
study we instrumented the code with calls to HPMLIB [4] f hpmstart and f hpmstop routines at
the same locations as the embedded timers. Runs on the p690 cluster were used to collect floating
point operation counts for each user event for a number of different processor counts. These data
were combined with timing data to determine computational rates and to examine operation
count scaling. For the third study, we instrumented the code with calls to the MPICL [7]
traceevent routine at the same locations as the embedded timers. Runs on the X1 and the p690
cluster were used to collect trace data for both MPI calls and the user-defined events that were
used to determine event-specific communication overhead. Visualizations using ParaGraph [3]
were used to look for performance bottlenecks.

After the baseline studies were complete, we began applying the following tools and techniques
to GYRO.

• Integrated Performance Monitor (IPM) [5]. IPM is a lightweight profiling tool for parallel
applications, automatically reporting runtime, communication time, computation rate, and
memory requirements, both aggregate and per process, as well as detailed profile data on
MPI routine calls and data from system-supported hardware performance counters.

• KOJAK [6, 16]. KOJAK is an automatic trace-analysis toolkit for parallel applications
using MPI and/or OpenMP, generating event traces during execution and searching them
offline for execution patterns indicating inefficient performance behavior.

• Performance Modeling and Characterization (PMaC) [13]. PMaC is a suite of tools for
characterizing system and application performance and for using these characterizations to
build performance models suitable for performance optimization and extrapolation.

• SvPablo [11]. SvPablo is a graphical environment for instrumenting application source code
and browsing and analyzing the resulting performance data.

• Tuning and Analysis Utilities (TAU) [14]. TAU is framework and toolkit for performance
instrumentation, measurement, and analysis of parallel applications.

It is beyond the scope of this paper to describe the full capabilities of any of these tools. Rather
we briefly relate what aspects of the baseline studies could be improved or superceded by using
these tools.

2. Results
The remainder of the paper is concerned with the following question. For which performance
analysis and optimization activities are the examined tools and methodologies (a) not needed,
(b) useful but not required, and (c) difficult to do without.
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Figure 1. GYRO runtime performance.

2.1. Analyses for which tools are not needed.
There are a number of standard analyses for which an in-depth understanding of the performance
is not needed. We mention two here.

Many codes have embedded tuning options that allow the algorithms or implementation to
be modified at compile- or runtime. The optimal choice is often a function of the computer
system, problem specification, or runtime configuration (e.g., number of processors). If the
search space is small, it is simplest to determine the optimum by measuring the performance of
each option directly. For example, GYRO supports two methods for evaluating nonlinear terms
in the underlying equations: direct and FFT-based. The FFT-based method is slower on small
grids, but faster on large grids. However, the direct method achieves higher computational rates
than the FFT-based method, and the crossover point varies from system to system. The left
graph in Figure 1 shows the performance differences in terms of timesteps per second on the
Cray X1 for the two methods, and for running out of two different file systems. Here the direct
method is approximately 10% faster than the FFT method, and the choice of file system makes a
30% difference in performance. Other options found to be important to GYRO include settings
for system-specific environment variables that impact memory, OpenMP, or MPI performance.

Another standard activity is benchmarking. The benchmark timings should represent what
would be observed in a production run, i.e., without performance tools. The right graph in
Figure 1 is an inter-platform comparison of GYRO performance. Note that even these “simple”
analyses were not inexpensive. Over 175 experiments were run, on processor counts up to 1024,
and the number of experiments on a given system was constrained by resource availability. We
were not able to collect all of the data that we would have liked on any of the target systems.

2.2. Analyses for which tools are useful.
A number of common performance analyses did not require sophisticated performance tools, but
were time consuming without them. Examples include (in order of increasing difficulty) (a) user
event profiling, (b) computational rate calculations (both whole code and per user event), and
(c) communication rates calculations (both whole code and per MPI command). To calculate
computational rates we ran 13 additional experiments, while to calculate communication rates
we ran 31 additional experiments and collected over 700 MB of trace data (compressed). Both
required writing scripts to combine timing data with the operation count and MPI data.

An example of user event profiling appears in the left graph of Figure 2, where the percentage
of runtime spent in each user event is plotted as a function of processor count (“phase diagram”)
on the Altix. These data indicate that performance scales poorly in Coll tr, a user event
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Figure 2. Phase diagram for B1-std on the SGI Altix and inter-platform comparison of time
spent in tranpose events

dominated by MPI communication, when increasing the number of processors from 128 to 192.
The analysis does not indicate why, however, and additional data are needed to determine
the reason for the poor performance. The right figure compares the fraction of time spent in
the two user events most dominated by MPI communication (Coll tr and NL tr) across the
platforms. Because the catastrophic scaling behavior is unique to the Altix, additional data on
the application characteristics are unlikely to be sufficient to diagnose the problem.

It is in the collection, analysis, and presentation of multiple related measurements that
performance tools begin to show their worth. For example, SvPablo and TAU both support
calculating communication rates while collecting profile data, not requiring the postprocessing of
trace data. Manually collected data can also be loaded into the performance database component
of TAU, called PerfDMF, facilitating subsequent multi-experiment, multi-data-type, analyses.

2.3. Analyses for which tools are important.
The previous analyses address only implicitly the real question, i.e., whether performance is
acceptable, and, if not, why not. However, the tools KOJAK, SvPablo and TAU can be used for
(d) identifying critical paths (potential performance bottleneck) and (e) global view analysis, e.g.
examining load balancing or the impact of system noise. For example, KOJAK, by comparing
event traces for different runs, identified particular MPI AlltoAll calls as the location of the
Altix performance problem, though it has not yet led to a resolution. Comparative analysis of
trace files is clearly not a manual activity.

SvPablo and TAU can also be used for the iterative process of (f) detailed performance
debugging, i.e., identifying and tracking performance problems down to individual routines and
lines of code. When performed by hand, detailed performance debugging is time consuming
and fraught with problems due to instrumentation perturbation and global effects (e.g., load
imbalances) masquerading as local performance problems.

The performance questions mentioned previously were all concerned with understanding and
optimizing current performance. Another class of questions include (g) estimating performance
when changing the problem size, number of processors, or moving to a different system and (h)
finding the optimal tuning parameters within a large search space. Both of these questions can
be addressed by performance models, i.e., parameterized representations of application runtime.
Depending on the form of the model, it may be easily manipulated “manually”. The difficulty
with the model is its generation. There are a number of modeling methodologies described in
the literature, including the PMaC tools and methodology examined in these studies.
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3. Conclusions
Our study indicates that there are a number of common performance analyses for which
sophisticated performance tools are not necessary. However, many of these analyses are
expensive, in both system resources and labor, and a number of useful analyses are simply
not practical to perform manually, thus requiring tool support. The contribution of this work is
in characterizing some of the costs for a real application code on current parallel systems. One
issue that has become obvious during the course of the study is that performance tools need to be
in the hands of developers. Too much time was spent by the performance experts in discovering
performance characteristics that the developer already knew about. Because most developers
do not do performance analyses every day, it is difficult for them to be comfortable with any
performance tool, much less a suite of them. There is clearly a tradeoff between tool functionality
and usability. Tools such as KOJAK, SvPablo, and TAU require considerable effort to install
and set up for use with an application in order to collect the desired performance metrics at an
appropriate level of granularity. Similarly, while models are wonderful tools that a developer
could use for many activities, generating the model is something few people are willing to do,
and efficient ways of updating and maintaining models are still open questions. In conclusion,
there is still more to do in performance tool development, but tools make performance analysis
and optimization feasible in instances when it would not be otherwise, especially when running
with many processors and working with complex applications.
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