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Abstract— Performance models of high performance 

computing (HPC) applications are important for several 
reasons. First, they provide insight to designers of HPC 
systems on the role of subsystems such as the processor or the 
network in determining application performance. Second, they 
allow HPC centers to more accurately target procurements to 
resource requirements. Third, they can be used to identify 
application performance bottlenecks and to provide insights 
about scalability issues. The suitability of a performance 
model, however, for a particular performance investigation is 
a function of both the accuracy and the cost of the model.  

       A semi-empirical model previously published by the 
authors for an astrophysics application was shown to be 
inaccurate when predicting communication cost for large 
numbers of processors. It is hypothesized that this deficiency is 
due to the inability of the model to adequately capture 
communication contention (threshold effects) as well as other 
unmodeled components such as noise and I/O contention.  In 
this paper we present a new approach to capture these 
unknown features to improve the predictive capabilities of the 
model. This approach uses a systematic model error 
correction procedure that uses evolutionary algorithms to find 
an error correction term to augment the existing model. Four 
variations of this procedure were investigated and all were 
shown to produce improved results than the original model. 
Successful cross-platform application of this approach showed 
that it adequately captures machine dependent characteristics.  
This approach was then successfully demonstrated for a 
second application, further showing its versatility.  

 
 

Index Terms— Error correction procedure, Genetic 
programming, Performance modeling. 

I.  INTRODUCTION 

CHIEVING high performance on parallel applications 
can be challenging. Performance of a parallel 

application depends primarily on two characteristics, one 
pertaining to the application and the other pertaining to the 
machine. Application characteristics include the primary 
algorithmic kernels, programming language, parallelization 
strategy, problem size and other input parameters. Machine 
characteristics include hardware metrics, such as processor 
performance, memory performance and network 
performance, and software metrics, including compiler 
performance and efficiency of communication and math 
libraries. Producing applications that work well across a 
wide range of high performance computing (HPC) 

platforms is a non-trivial task because the machine 
characteristics and their interdependence on application 
characteristics vary from platform to platform. The 
aforementioned reasons also make performance prediction a 
difficult task. In recent years, performance prediction for 
parallel architectures has attracted considerable attention, 
ranging from kernel benchmarking studies, application 
performance studies, performance modeling, and detailed 
comparative analysis of newer architectures (e.g., [1] [3] 
[15] [16] [17] [18] [19]). Other related work include 
automatic performance analysis [4] [10] and automatic 
tuning [9]. Performance prediction across platforms is 
increasingly important for developers and scientists to 
determine the performance of their specific applications on 
a plethora of platforms in deciding the system that best fits 
their needs in the long run. If scientists were provided with 
performance estimations for their applications on several 
large clusters, the process of choosing and gaining accesses 
to suitable platforms would be considerably simplified. 

Standard modeling methodologies may include 
semi-empirical or empirical modeling [2] [11] [13] and use 
of modeling assertion tools [1] [17]. Both methodologies 
have advantages and caveats. In the former approach, 
application characteristics are captured well but do not 
adequately model machine dependencies such as noise, IO 
contention, and/or message contention. In the latter 
approach, machine parameters are captured well but do not 
adequately capture application/problem specific 
dependencies. In this paper, we develop and demonstrate a 
general approach for modeling performance of parallel 
applications. This approach starts by developing a semi-
empirical model and then improving this further by using a 
genetic programming-based model error correction 
procedure (MECP).  

The term “semi-empirical” is used to describe a 
parallel performance model that has both mechanistic and 
empirical components. The mechanistic component is a 
functional form that is specific to an application containing 
known application and machine parameters. The empirical 
component is represented by the set of parameters that 
appear in the model that will be fitted using measured data. 
A semi-empirical parallel performance model can be split 
into two parts: computation time model and communication 
time model. Earlier work [13] involving standard semi-
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empirical modeling for an astrophysics code EVH1 
(Enhanced Virginia Hydrodynamics code) showed that 
while the computation model prediction was satisfactory, 
the communication model prediction, particularly for large 
processor counts, was poor. This deficiency is probably due 
to the inability of a typical semi-empirical model to capture 
difficult-to-model components such as message contention 
and noise. The MECP procedure demonstrated in this paper 
seeks to address this deficiency by augmenting an existing 
model with an error correction term (ect).  

The overall structure of this paper is as follows. 
First we describe the overall MECP approach, followed by 
a section that shows the application of this approach to our 
first application code EVH1. Then we extend this approach 
to a second application GYRO [6].  Then both performance 
models are validated across two parallel platforms. Finally, 
the major conclusions are summarized. 

II.  MODEL ERROR CORRECTION PROCEDURE 

Parallel performance models typically have several 
components (e.g., communication contention, non-uniform 
memory access, I/O, etc) that are not adequately 
represented by terms in the performance model or not 
adequately captured by the model parameters.  One way to 
address these deficiencies is to augment the original model 
by constructing another function (hereafter referred to as 
the model error correction term) that can capture these un-
modeled features.  In this paper, the Model Error Correction 
Procedure (MECP) [21] is used to construct the model error 
correction term while tuning the original model parameters.  

Missing or misrepresented processes in the 
construction of a model will result in a systematic error in 
modeled predictions (i.e., modeled communication time).  
The model error correction procedure is designed to 
improve capabilities of mechanistic models through 
simultaneous tuning of parameter values and construction 
of an error correction term (ect), which is a function that 
represents the systematic error and appropriately adjusts the 
model outputs to match the observed data.  The systematic 
error is dependent on the input conditions and the errors in 
the simulated outputs.  Thus, the error correction term 
should be constructed accordingly as a function of both the 
model inputs and outputs to more accurately predict for 
new input conditions.  A simultaneous search for model 
parameter values and the ect forms the basis for MECP to 
construct the appropriate correction of each source of error.  
This requires a numeric search method for the parameter 
estimation and a symbolic search method for ect 
determination. In this paper MECP is implemented using 
evolutionary computation (EC) procedures, namely genetic 
algorithms (GAs) and genetic programming (GP), to enable 
the numeric and symbolic searches, respectively.   

 Evolutionary algorithms (EA) are search methods 
that operate on a population of solutions and mimic the 

mechanisms of natural selection to find optimal solutions 
for a defined problem. In the EA-based MECP used in this 
paper, GP algorithmic steps are used for generating a 
function to represent the error correction term (ect) and GA 
algorithmic steps are used for determining the unknown or 
uncertain model parameter values (e.g., message 
bandwidth, communication latency, etc.). GA performs a 
numeric search by representing these parameters as a string 
of real, binary or integer values. GP conducts a symbolic 
search over a set of mathematical operators to construct a 
function that minimizes the error between a set of data and 
the output from that function. For the performance 
modeling application considered in this paper, the GP 
procedure is used to identify a function to represent ect 
using mathematical operators, including +, −, ×, /, exp, and 
log, that operate on a set of known input variables, such as 
number of processors, problem size, and number of time 
steps.  

Figure 1 shows a generic example of how GP 
works on a set of data to form a function that fits the data. 
GP works with two sets of unknowns. One set is called the 
terminal set, which contains the independent variables {X}, 
and model constants {C}. The other set contains the 
mathematical operators used to construct the function. A 
symbolic search is performed using these two sets. GP 
explores a large number of possible functional relationships 
to identify the function that best fits the data. 

A tree data structure (see example in Figure 2) is 
used to represent each potential solution for ect, which is 
composed of a combination of elements of the terminal set 
consisting of the variables and constants, and the set of 
operators. These potential solutions in a population undergo 
crossover, mutation, and selection as in any EA-based 
search. 

 
 

Figure 1 Example of GP procedure 
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III. GENERAL APPROACH AND CASE STUDIES 

The general approach consists of developing a 
semi-empirical model and then correcting its deficiencies 
(if needed) by including an empirical error correction term 
using MECP. Figure 4 shows the flowchart of the general 
approach.  The first step is to develop the semi-empirical 
model. If the semi-empirical model predictions are 
satisfactory, we use these models to validate the rest of the 
data. If the semi-empirical model predictions are not 
satisfactory, it is corrected using MECP to improve its 
predictive capability. 

a. Semi-empirical modeling 

The semi-empirical model has a mechanistic 
functional form with empirical parameters that are fitted 
using available data for computation and communication 
times. The mechanistic functional form is based on some 
preliminary knowledge of the application: i.e., how 
computation and communication time approximately scale 
with various application and machine parameters such as 
grid size, number of time steps, number of processors, etc. 
A set of data for developing the semi-empirical model is 
collected by recording the total run time and 
communication times for several executions of the 
application code using different application parameters 
(problem size, simulation time) and machine parameters 
(different processor speeds, number of processors). The 
model parameter values are determined using an 
optimization search procedure to best fit the data by 
minimizing the error between the observed values and the 
model predicted values. In this paper Levenberg-Marquadt 
(LM) search procedure is used for semi-empirical 
modeling. LM is adequate as the model function is smooth 
and the number of parameters to be determined is small. 
Lower and upper bounds were specified to constrain the 

parameter values within acceptable ranges. A subset of the 
data is used for fitting the model parameters and the 
remainder is used for testing the predictive effectiveness of 
the model. The procedure for modeling using semi- 
empirical approach is shown in Figure 3.  

 
 

Figure 3  Semi-empirical modeling 

 

b. Application of MECP 

MECP can be applied in different ways depending 
on how effective the semi-empirical model is in capturing 
the timing behavior of an application. This in turn depends 
on the user’s knowledge of the application and the 
architecture. In this paper we have investigated four 
variations of MECP-based models. These variations depend 
on whether ect is embedded in the model or simply appear 
as an additive term and whether the original parameter 
values of the semi-empirical model are preserved or 
adjusted. These cases are summarized in Table 1 and are 
described below. Generally, we can start with any of these 
four variations for a particular model.  In the first two cases, 
the parameter values of the semi-empirical model are 
preserved (as determined by the LM procedure) and ect is 
generated either as a simple additive term (Case 2) or as an 
inclusive term (Case 1). In these cases only a symbolic 
search is performed (using GP) and the numeric search is 
excluded. For Case 1, ect is integrated in the model and its 
output replaces the modeled output.  In Case 2, ect is 
determined as a term that is added to the modeled output.  
In the next two cases (Cases 3 and 4), the parameter values 
dictating the semi-empirical model are adjusted using a 
numeric search (using GA) and a symbolic search (using 
GP) to determine ect, which is either inclusive (Case 3) or 
additive (Case 4). To preserve the mechanistic 
characteristics of the original semi-empirical model to the 
extent possible, the numeric search is constrained by 
allowing the parameters to vary within a small range around 
the values determined by the LM procedure.  
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Figure 2 A sample tree representation of the function 
 shown in Figure 1 

 
 
 
                                                                             
                                                                                      Minimize                                                                                      
                     Model                                              Error 
            Parameters      
                                      Change                                                                      
                                      Parameters 
 
 
 
 
       
 
 
 
 
 [ Problem Size,  
     No. Processors, etc…] 
 

LM search 

Input 
Paramet

ers 

Observed 
Communic

ation 
Time 

Approxi
mate 

Model 
 

Modeled 
Commun

ication 
Time 



 4

 
 
 
 

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Apply MECP to 
improve the 

model 

Use for 
Prediction 

HPC 
Application 

Does the model 
perform well? 

NO 

YES 

Semi-Empirical 
Model 

Figure 4 Flow chart of the overall approach 

 
Set  

  
Case -2 

Parameter 
Values 

Improved 
communicate-

on time 

 
Cases 

 
Set 

  
Case -1 ( , )=calculated commt f t ect

calculated comm ectt t= +

 
Search 

 
Case -3 ( , )=calculated commt f t ect

 
  Search 

  
Case -4 = +calculated commt t ect

Table 1 Summary of different cases:  ect = error correction 
term, tcomm = original communication model, 

( , )=calculated commt f t ect  

                                                              GP/GA Procedure 
 
 
 
 
 
 
 
 
                                                                                      
                                                                                                     
                                                                                                          
                                                                                                                                                                                                                 
                          
                                
                                        Model design                                                 
                                          Parameters          Change 
                                                                    Parameters 
 
 
 
 
 
 
 
 
  [Problem Size,    
    No. Processors, etc…] 

GP 
PROCEDURE 
To Determine 

ect 

 GA Procedure 

Input 
Parameters 

Observed 
Communication 

Time 
(tobserved) 

Approximate 
Model 

 

Modeled 
Communication 

Time 
(tcomm) 

 

Improved 
Modeled 

Communication 
Time 

(tcalculated) 

n

1

2(t -t )
=Error

n

∑ observed calculated

Figure 5 Model Error Correction Procedure 

 



 5

The error correction term ect is a function of the 
input parameters problem size, number of processors, and 
number of time steps. The ect function form is constructed 
using the set of mathematical operators +, −, ×, /, exp and 
log. The objective function to be minimized in the GA/GP 
procedure is a measure of the error between the calculated 
and measured communication times, which is given as: 

2( )observed calculatedError
n

t t−
= ∑

  (1) 

                                                            

In equation (1), n   = number of data points, tobserved   = 
observed communication time, and tcalculated = calculated 
communication time. 

III.  MECP APPLIED TO EVH1 COMMUNICATION MODEL 

EVH1 (Enhanced version of Virginia 
Hydrodynamics) is a finite-difference astrophysics code 
containing over 6500 lines of Fortran and MPI (Message 
Passing Interface) [8].  Even though EVH1 deals with a 
specific application area, the algorithmic kernels used are 
representative of many numerically intensive finite-
difference codes. Therefore modeling methodologies used 
in this paper have more general applicability. In earlier 
work [13] EVH1 runtime was modeled for 2-Dimensional 
(2D) and 3-Dimensional (3D) problems on two different 
architectures. Semi-empirical models were developed in 
this study involving a set of machine and application 
parameters for predicting computation and communication 
times. These model parameters were then determined using 
the LM procedure based on a subset of the measured data. 
Prediction tests performed in this paper indicated that 
although the semi-empirical model predicted computation 
times well, it was inadequate in predicting the 
communication times. Thus, the communication model 
would benefit most from the application of MECP. In this 
paper we restrict our attention to modeling communication 
time for 2D problems on a single architecture.  

The original EVH1 2D semi-empirical 
communication model [13], which is dominated by 
MPIALLTOALL calls involved in a matrix transpose 
operation, is given as: 

2

2

2

2
( 1)

comm
h

gnx nx
np

t T nx
n
n

f
xp i jn
p

  
−  

  = ⋅ ⋅ ⋅  
  + − +    

                                                           
                                                             (2) 

where, g, h, i and j are the constants to be fitted and f is   
fixed, T = stop time, nx = horizontal resolution, and np = 

number of processors. It is noted that the communication 
time includes the memory copy time (the term with the g 
parameter) involved in the matrix transpose operation. 

Application parameters such as nx and T are 
known and are input to the model that is described by 
equation (2). All machine dependent parameters that are to 
be fitted are unknown. Here f represents the number of 
cycles proportional to the simulation time, g represents the 
per word memory-to-memory copy time, i represents the 
message latency, j represents the message bandwidth, and h 
represents non-linearity due to message contention. The 
value of f, which is obtained from the computation model, 
was fixed equal to 4965 [13]. In this model, the fitted 
machine parameters were bounded based on acceptable 
values for the IBM P690 architecture (see [13] for details) 
as shown in Table 3. 

The observed communication times (tobserved) used 
in this process are called the “training data.” The combined 
GA/GP procedure is depicted in Figure 5.  The parameters 
nx,, np, T and the measured communication time are the 
inputs to the current model for estimating tcomm. GA 
searches for the new values for the model parameters g, h, i 
and j in the original model tcomm. GP searches over symbols 
and constants to construct the error correction term.  These 
two searches in concert to provide an improved 
communication time model that minimizes the error. 

a. EVH1 Model Results  

A total of 32 data points reported in [13] are used 
for demonstrating the application of MECP. Half the data 
was used for fitting and the remaining half was used for 
testing the prediction accuracy.  

Table 2 summarizes the GA/GP parameters and 
settings used in MECP. As GA and GP are based on 
probabilistic operators, the robustness of the procedure was 
first tested for 30 random trials for each of the four cases 
(Cases 1, 2, 3 and 4 (see Table 1)). The procedure did not 
converge in four out of the 120 trials, and they were 
excluded from these calculations.  These results are based 
on a validation data set consisting of 16 data points that 
were used for testing the predictive capability. For Cases 1 
and 2 the fitted parameter values reported in Table 3 were 
obtained by the LM procedure. For Cases 3 and 4 the model 
parameter values fitted by MECP falls well within the range 
of the bounded values. 

A comparison of the prediction errors for the 
original model and the best models obtained (out of the 
random trials) for the four cases are shown in Figure 6. This 
figure shows that the best solutions for all four cases 
outperform the original model. Also, Case 1 yields the best 
model with an error less than half of that of the original 
model. The frequency of each of the cases performing 
better than the original model in the random trials is 
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compared in Figure 7. This gives an estimate of the 
robustness of each approach. This shows that Cases 1, 2, 3 
and 4 outperform the original model in 77%, 73%, 50% and 
90%, respectively, of the trials, indicating that Case 4 is the 
most robust.  

The predictive capability of the best model found 
for each case is shown in Figure 8. This figure compares for 
the 16 validation data points the predicted values from the 
original model and the new models. The observed values 
are also shown in this figure.  Note that the timings (y-axis) 
are in log scale. The data points on the x-axis represent 
different problem instances (i.e., different sizes or different 
number of time steps) and different processor counts.  
Generally, the larger data point numbers (>4) correspond to 
larger problem sizes or larger processor counts, hence 
representing larger communication times. Figure 8 shows 
that while the original model prediction is better for smaller 
data point numbers (corresponding to smaller 
communication times), models obtained using MECP 
perform better for larger data point numbers (i.e., for larger 
communication times). From a modeling point of view, a 
model that performs well for larger communication times is 
more valuable as these times contribute more to the overall 
time. Therefore we conclude that the models obtained using 
MECP are more useful. 

We also tested a fifth variation where we exclude 
the original model and develop a fully empirical model 
using a symbolic search. Even though this search produced 
some good results, multiple trials (recall that our symbolic 
search uses GP, a probabilistic method) using different 
starting random seeds indicated that this approach is not 
robust. For instance, out of 50 random trials, this variation 
produced only 3 functions that yielded better predictions 
than the original semi-empirical model. Hence we conclude 
that MECP is best applied when an approximate 
performance model already exists or can be developed. 

Table 2 GA/GP parameter settings for MECP 
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Fitted 
Parameters 

Lower 
bound 

Upper 
bound 

Fitted 
Value 

g 1.00E-09 1.00E-03 2.45E-08 

h 1 1.5 1.13216 

i 1.00E-09 1.00E-03 1.69E-05 

j 1.00E-09 1.00E-03 1.62E-07 

Table 3  Summary of fitted values for model parameters for 
EVH1 

   
Parameters                                Settings  
======================================== 
  Function set                              +, - , x, /, ^ ,  log, exp 
  Terminal set                               R, nx, np, T, tcomm 
  Population Size             3000 
  Max. No. Generations            100 
  Crossover            90 % 
  Mutation             10 % 
  Selection Strategy             Graduated Elitist 
  Max. Initial depth            7  
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IV.  EXTENSION OF MECP TO SECOND APPLICATION 
GYRO 

GYRO [6], an Eulerian gyrokinetic-Maxwell solver, 
computes numerical simulation of tokamak micro-
turbulence by solving time-dependent, nonlinear equations. 
GYRO comes with three standard test problems B1-std, B2-
cy, and B3-gtc. A total of 24 data points were generated for 
these three problems using various processor counts. Of 
these 24 data points, points 1-8 correspond to B1-std with 
processor count increasing from 16 to 512, points 9-16 
correspond to B2-cy with processor count increasing from 
16 to 512, and data points 17-24 correspond to B3-gtc with 
processor count increasing from 64 to 512. The 
communication time was obtained using the mpiP profiling 
tool [14] that gives the MPI communication time as a 
percentage of total runtime.  

 
a. Computation Timing Model 

The semi-empirical model for computation time 
for GYRO application is developed by considering the 
input parameters that contribute significantly to the 
computation time (grid dimensions, time steps, etc.). The 
model for computation time is expressed as:  

( )1
comp s ct Tg a krg

n

b t
p

t = ⋅ ⋅ ⋅ ⋅ ⋅
  (3) 

In the above equation, a, b and tc are constants to be fitted, 
k is a known constant, np = number of processors, ts = time 
step, Tg = toroidal grid, rg = radial grid, k = 1 for the B1-std 
and B2-cy problems, and k = 2 for the B3-gtc problem.  The 
three parameters a, b, and tc were estimated using a single 
measured computation time from each problem (B1-std, 
B2-cy, and B3-gtc). Thus, there were three unknowns, three 
equations, and three data points. The three unknown 
parameters were readily solved using the standard nonlinear 
algebraic solver, fsolve, in MATLAB.  The model was then 
validated for the remaining data points. The model results 
shown in Figure 9 indicate that the semi-empirical model 
described by equation (3) has excellent predictive 
capabilities for computation time and MECP is not needed 
(see flowchart in Figure 3). 

b. Communication Timing Model 

The semi-empirical communication timing model 
is developed by considering both application characteristics 
(the number and size of the messages) and machine 
characteristics (bandwidth, latency, number of processors). 
It is based on the following simple expression:  

_.

.

Message sizecomm no cycles Latency
Bandwidth

no processors e

t
       

= × +

×

 

                               

      

  
(4) 

where no. of cycles represents the total number of messages 
and e is an exponent that accounts for message contention. 
Equation (4) could be used in an expanded form as follows:  

( )( )

1 1

 ⋅ + ⋅ ⋅ 
    = ⋅ ⋅ ⋅ ⋅ +      ⋅ ⋅         

comm
e

rg

k

tg pg eg Tg

ob np nt

wnp

tl

b

t

 
                                                                 

(5) 

where e is a constant to be fitted, tl = latency, bw = 
bandwidth, np = number of processors,   ob = orbit grid, ts 
= time step, tg = trap grid, Tg = toroidal grid, pg = pass 
grid, eg = energy grid, rg = radial grid, and k = a known 
constant that could be different for each of the three 
problems. In equation (5), e, bw, and tl are fitted and the 
other parameters are known inputs. Table 4 shows the 
bounds and the fitted parameter values for this model. 
Again, the model parameter values were obtained by using 
the Levenberg-Marquadt procedure.                        
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c. Model Results 

Out of the 24 data points, the odd 12 were used for 
fitting and the even 12 were used for prediction. Figure 10 
shows the model performance for fitting and Figure 11 
shows its performance for prediction. The semi-empirical 
model, which is also called as the original model in the 
graph, fitted and predicted well for B1-std and B2-cy 
problems.  For the B3-gtc problem, however, the model 
failed in both fitting and prediction. Further investigation 
using mpiP profiling indicated that the semi-empirical 
model does not correctly capture message size for the B3-
gtc problem. It was assumed that the message size is 
approximately a scalar multiple of the product of the grid 
sizes divided by the number of processors. While this is 
true for the B1-std and B2-cy problems, it is not correct for 
the B3-gtc problem. Message sizes for the B3-gtc problem 
were significantly larger as it uses the FFT method for 
solution as opposed to the default direct method. B3-gtc 
problem has nearly three-times larger message size than 
that assumed by the semi-empirical model.   

Since we were interested in a single model that 
predicts well for all three problems of GYRO, we applied 
MECP to improve the prediction performance of the semi-
empirical model. As in EVH1, we tested all 4 cases (see 
Table 1) of MECP for the GYRO communication model. 
All four cases performed nearly equally well (Figures 10 
and 11). Thirty random trials were conducted for each case. 
Out of these 30 trails, in terms of frequency, Case 1 showed 
improved results than the original model 93% of the time, 
Case 2 83%, Case 3 90% and Case 4 80%. The best model 
out of 30 trials for each case and the frequency of improved 
prediction for each case is shown in Figure 12. In terms of 
error reduction, when compared to the semi-empirical 
model, Case 1 best model showed 81% reduction in error, 
Case 2 80%, Case 3 78% and Case 4 75% error reduction. 
This indicates that for GYRO, Case 1 is superior even 
though other cases are not far behind. 

Figure 9 Gyro computation time model for B1-std, B2-cy 
and B3-gtc problems 
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Figure 11 Gyro communication time model for B1-std, B2-
cy and B3-gtc problems (prediction) 
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Figure 12 Comparison of Semi-empirical model with four 
cases of MECP model for GYRO: Frequency of trials 
performing better than the original model and best 
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Fitted 
Parameters 

Lower 
bound 

Upper 
bound 

Fitted 
Value 

ex 1.00E-02 5.00E-01 4.96E-01 

tl 1.00E-08 1.00E-02 1.12E-08 

bw 1.00E+03 1.00E+06 9.85E+05 

Table 4  Summary of fitted values for model parameters for 
GYRO 

V.  CROSS PLATFORM PREDICTION 

In the preceding sections the MECP models were 
developed and validated using data from a single 
architecture (IBM P690). The question remains whether 
these same models could be applied to a different 
architecture simply by fitting or adjusting only the machine 
parameters (i.e., latency, bandwidth, etc.)  A test of this 
hypothesis would indicate how well our previously 
developed models delineated the application specific 
parameters from machine specific ones. The Teragrid Linux 
cluster at NCSA was chosen for this test as the timing data 
for both applications were already available for this 
architecture [20][13]. This cluster consists of 1024 Itanium 
II processors connected by a Myrinet network. We could 
predict the performance of our models either by fitting the 
machine parameters or by using the published MPI latency 
and bandwidth values for the Myrinet network. In this paper 
we demonstrate the use of both approaches. For EVH1, we 
used the IBM P690 model and only the machine parameters 
were fitted (using the Teragrid data), instead of using 
published values for the Teragrid architecture. As shown in 
Figure 13, Case 2 and Case 4 models for EVH1 predict well 
for the Teragrid architecture, while Case 1 and Case 3 
predictions are not as satisfactory. This implies that keeping 
the base model separate from ect (as in Cases 2 and 4) 
yields a better model for cross platform prediction. This is 
expected as it would be difficult to delineate machine 
characteristics from application characteristics in a 
combined model (Cases 1 and 3). It is also noted that all 
cases under-predict data point 1 that corresponds to np = 1, 
which is dominated by the memory-to-memory copy 
operation. This means that the fitted parameter value g is 
too small for the Teragrid architecture. This is expected 
since some data points have a strong dependence on this 
parameter (the first two or three points). 

The above tests show that MECP approach could 
be effectively used to predict performance of an application 
on a completely different architecture by simply changing 
the appropriate machine values. The main caveat for using 
this approach is that unless existing data is available for 
fitting, accurate values for machine parameters, such as 
latency and bandwidth, memory-to-memory copy time, etc., 
can be difficult to obtain.               
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For the GYRO application, the MECP-based 
model was developed in the previous section using the data 
from the Teragrid architecture. The IBM P690 architecture 
was chosen for testing the cross platform prediction. Unlike 
EVH1, here we applied the average MPI published tl and 
bw values for IBM P690 to the MECP-based GYRO 
models. As shown in Figure 14, all four models predict well 
for the IBM P60 architecture, indicating the versatility of 
these models for cross-platform application. 
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Teragrid MECP models for the GYRO application 

 

Figure 13 Cross platform prediction for Teragrid using 
IBM P690 MECP-based models for EVH1 application 
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VI.  CONCLUSIONS 

The following points summarize the results and 
conclusions from this paper: 

§ We have developed a new ‘GA/GP Model Error 
Correction Procedure’ approach for modeling 
performance of parallel applications and 
demonstrated if through two HPC applications across 
two platforms.  

§ Four variations of this approach were investigated 
and all variations showed improved results than a 
standard semi-empirical approach.  

§ The MECP approach captures difficult to model 
features such as noise, message contention, or I/O 
contention thus providing improved results than a 
standard semi-empirical approach. 

§ This approach augments an existing semi-empirical 
model either by adding an error correction term 
(Cases 2 and 4) or by including the error correction 
term in the function (Cases 1 and 3).  

§ Overall, Case 1 performed reasonably well for both 
applications across both platforms even though in 
several specific instances other models performed 
better. This suggests that an integrated model that 
uses parameter values from the original model will 
work well most of the time. 

§ While the semi-empirical component of the model 
contains certain specificities to the target application, 
the approach used to obtain the error correction term 
of the model is generic and could be easily extended 
to model performance of other parallel applications. 

Therefore we conclude that the MECP approach shows 
promise for wider applicability in parallel performance 
modeling. 
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