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Abstract—The Cray X1 supercomputer is a distributed shared 
memory vector multiprocessor, scalable to 4096 processors and 
up to 65 terabytes of memory. The X1’s hierarchical design uses 
the basic building block of the multi-streaming processor (MSP), 
which is capable of 12.8 GF/s for 64-bit operations. The 
distributed shared memory (DSM) of the X1 presents a 64-bit 
global address space that is directly addressable from every MSP 
with an interconnect bandwidth per computation rate of one byte 
per floating point operation. Our results show that this high 
bandwidth and low latency for remote memory accesses 
translates into improved application performance on important 
applications. Furthermore, this architecture naturally supports 
programming models like the Cray SHMEM API, Unified 
Parallel C, and Co-Array Fortran. It can be important to select 
the appropriate models to exploit these features, as our 
benchmarks demonstrate. 

I. INTRODUCTION 
The Cray X1 supercomputer, introduced in 2002, has 

several interesting architectural features. Two key features are 
the X1’s distributed shared memory and its vector 
multiprocessors. Recent studies of the X1’s vector 
multiprocessors have shown significant performance 
improvements on several applications [1, 7]. In this paper, we 
characterize the performance of the X1’s distributed shared-
memory system and its interconnection network using 
microbenchmarks and applications. 

The X1’s distributed shared-memory architecture presents a 
64-bit global address space, which is directly addressable from 
every processor using traditional load and store instructions. 
From the application perspective, this memory system behaves 
like a nonuniform memory access (NUMA) architecture; 
however, this memory system does not cache accesses 
between symmetric multiprocessor (SMP) nodes. This 
hardware support for global addressability naturally supports 
programming models such as the Cray SHMEM API [2], 
Unified Parallel C (UPC) [4], Co-Array Fortran [12], and 
Global Arrays [11]. 

II. CRAY X1 OVERVIEW 
The Cray X1 is an attempt to incorporate the best aspects of 

previous Cray vector systems and massively parallel 
processing systems into one design. Like the Cray T90, the X1 
has high memory bandwidth, which is key to realizing a high 
percentage of theoretical peak performance. Like the Cray 
T3E [14], the X1 has a high-bandwidth, low-latency, scalable 
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interconnect, and scalable system software. And, like the Cray 
SV1, the X1 leverages commodity CMOS technology and 
incorporates non-traditional vector concepts, such as vector 
caches and multi-streaming processors (MSPs). 

A. Multi-streaming Processor 
The X1 has a hierarchical design with an MSP basic 

building block capable of 12.8 Gflops/s for 64-bit operations 
(or 25.6 Gflops/s for 32-bit operations). As Figure 1 
illustrates, each MSP consists of four single-streaming 
processors (SSPs), each with two 32-stage 64-bit floating-
point vector units and one 2-way superscalar unit. The SSP 
uses two clock frequencies: 800 MHz for the vector units and 
400 MHz for the scalar unit. Each SSP is capable of 3.2 
Gflops/s for 64-bit operations. The four SSPs share a 2 Mbyte 
Ecache. 
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Figure 1: Cray MSP module. 

Although the Ecache has sufficient single-stride bandwidth 
(accessing consecutive memory locations) to saturate the 
vector units of the MSP, the Ecache is necessary because the 
bandwidth to main memory is insufficient to saturate the 
vector units without data reuse. That is, memory bandwidth is 
roughly half the saturation bandwidth. This design represents a 
compromise between non-vector-cache systems, such as the 
NEC SX-6, and cache-dependent systems, such as the IBM 
p690, which has memory bandwidths that are an order of 
magnitude less than the saturation bandwidth. The X1, 
because of its short cache lines and extra cache bandwidth, has 
a random-stride scatter/gather memory access that is just a 
factor of two slower than stride-one access, not the factor of 
eight or more typical of cache-based systems like those based 
on the IBM Power4, Compaq Alpha, or Intel Itanium. The 
X1's cache-based design only deviates slightly from the full-
bandwidth design model. Each X1 MSP has the single-stride 
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bandwidth of an SX-6 processor; it is the X1’s higher peak 
performance that creates an imbalance. A relatively small 
amount of data reuse, which most modern scientific 
applications do exhibit, can enable the X1 to realize a very 
high percentage of peak performance, and even during worst-
case data access, data reuse can still provide double-digit 
efficiencies. 

The X1 compiler has two options for using the eight vector 
units of a single MSP. First, it can use all 8 when vectorizing a 
single loop. Second, it can split up (or multistream) the work 
in an unvectorized outer loop and assign it to the four SSPs, 
each with two vector units and one scalar unit. (The compiler 
can also vectorize a “long” outer loop and multistream a 
shorter inner loop if the dependency analysis allows it.)  

The effective vector length of the first option is 256 
elements, the vector length of the NEC SX-6. The second 
option, which attacks parallelism at a different level, allows a 
shorter vector length of 64 elements for a vectorized loop. 
Cray also supports the option of treating each SSP as a 
separate processor. 
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Figure 2: Cray X1 node. 

As Figure 2 illustrates, four MSPs, 16 memory controller 
chips (M-chips), and 32 memory daughter cards form a Cray 
X1 node. A node’s memory banks provide 204 Gbytes/s of 
bandwidth, enough to saturate the paths to the local MSPs and 
service requests from remote MSPs. Local memory latency is 
uniform for all processors within a node. These banks have 
error-correcting-code memories, which provide reliability by 
correcting single-bit errors, detecting multiple-bit errors, and 
providing chip-kill error detection. 

Each bank of shared memory connects to several banks on 
remote nodes, with an aggregate bandwidth of roughly 50 
Gbytes/s between nodes. This balance represents one byte per 
floating-point operation (flop) of interconnect bandwidth per 
computation rate, compared to 0.25 bytes per flop on the 
Japanese Earth Simulator [15], and less than 0.1 bytes per flop 
on an IBM p690 with the maximum number of High 
Performance Switch (HPS) connections [9].  

B. Interconnect Overview 
X1 routing modules connect the Cray X1 nodes. Each node 

has 32 1.6 Gbytes/s full duplex links. Each memory module 
has an even and odd 64-bit (data) link forming a plane with 
the corresponding memory modules on neighboring nodes. 

Eight adjacent nodes connected in this way form a processor 
stack. The local memory bandwidth per node is 204 Gbytes/s, 
enough to service both local and remote memory requests.  

An X1 cabinet consists of 16 node boards and four routing 
boards (or two processor stacks). Each routing board has eight 
routing modules. The routing module ASIC is an eight-way 
nonblocking crossbar switch supporting worm hole routing. 
The routing module supports prioritization based on credits or 
aging. Ports connect to the node boards or other router ports 
with 96-pin cables with a maximum length of 4 meters. Data 
packets carry a cyclic redundancy code (CRC), and if the 
receiver detects a CRC error, the sending node resends the 
packet. Communication latency increases by about 500 ns per 
router hop. The X1 routing module uses software-loaded 
configuration tables for data flow mapping across the 
interconnection network. At system boot, these tables are 
initialized, but are reloadable, providing a means to 
reconfigure the network around hardware failures. 

Interstack connectivity allows several options. First, a four-
node X1 can interconnect directly via the memory modules 
links. Second, with eight or fewer cabinets (up to 128 nodes or 
512 MSPs), the interconnect topology is a 4D hypercube. 
Larger configurations use an enhanced 3D torus, where one 
dimension of the torus, the processor stack, is fully connected.  

The 3D torus topology has relatively low bisection 
bandwidth compared to crossbar-style interconnects [6], such 
as those on the IBM SP and the Earth Simulator. Whereas 
bisection bandwidth scales as the number of nodes, O(n), for 
crossbar-style interconnects, it scales as the 2/3 root of the 
number of nodes, O(n2/3), for a 3D torus. Despite this 
theoretical limitation, mesh-based systems - such as the Intel 
Paragon, the Cray T3E, and ASCI Red - have scaled to 
thousands of processors. 

Atomic in-memory operations (submicrosecond scalable 
locks and barriers) provide synchronization [5]. In particular, 
the X1 provides explicit memory ordering instructions for 
local ordering (LSYNC), MSP ordering (MSYNC), and global 
ordering (GSYNC). It also provides the basic atomic memory 
operations like fetch&op. Although these operations are 
efficient because they do not require a cache-line of data, they 
are not ordered with respect to other memory references and 
require synchronization using memory ordering instructions. 

C. Local and Remote Memory Accesses 
A single four-MSP X1 node behaves like a traditional SMP. 

Like the T3E, each processor has the additional capability of 
directly addressing memory on any other node. Different, 
however, is the fact that the processors directly issue these 
remote memory accesses as load and store instructions, which 
go transparently over the X1 interconnect to the target 
processor, bypassing the local cache. This mechanism is more 
scalable than traditional shared memory, but it is not 
appropriate for shared-memory programming models, such as 
OpenMP [13], outside of a given four-MSP node. This 
remote-memory access mechanism is a natural match for 
distributed-memory programming models, particularly those 
using one-sided put/get operations. 



 3 

As Figure 3 shows, the X1 64-bit global virtual address 
decomposes into two parts: two bits to select the memory 
region and 48 bits for a virtual page number, page boundaries, 
and page offset. The page size can range from 64Kbytes to 4 
Gbytes, selectable at execution time with different page sizes 
possible for text and data areas. 

 
64-bit Virtual Address

Memory Region (useg, kseg, kphys): 2 bits

Must Be Zero: 14 bits

Page Offset: 16 bits

Possible Page Boundaries (64K-4GB): 16 bits

Virtual Page Number (VPN): 16 bits

 
 

Offset: 36 bits

Physical address space (Main mem, MMR, I/O): 2 bits

48-bit Physical Address

Node: 10 bits

 
Figure 3: Cray X1 address translation. 

The 48-bit physical address decomposes into a 2-bit 
physical-address region marker, a 10-bit node number, and a 
36-bit offset. The 10-bit node number limits the maximum X1 
configuration to 1,024 nodes (4,096 MSPs). The address 
translation scheme uses 256-entry translation look-aside 
buffers (TLBs) on each node and allows noncontiguous 
multinode jobs (though this mode typically degrades 
performance). When a job uses contiguously numbered nodes, 
it is possible to remotely translate page offsets, so the TLB 
needs to hold translations for just one node. This design 
scheme allows the system to scale with the number of nodes 
with no additional TLB misses. Such a design can hide 
memory latency with the compiler’s help; the hardware 
dynamically unrolls loops, performs scalar and vector 
renaming, and issues scalar and vector loads early. Vector load 
buffers permit 2,048 outstanding loads for each MSP. 
Nonallocating references can bypass the cache for remote 
communication to avoid cache pollution and to provide 
efficient large-stride (or scatter/gather) support. 

III. PERFORMANCE 
This section describes some of our results in evaluating the 

Cray X1 and its memory hierarchy. We conducted these tests 
on the eight-cabinet, 512-MSP X1 located at Oak Ridge 
National Laboratory (ORNL). Our evaluation uses both 
standard and custom benchmarks as well as application 
kernels and full applications. Table 1 provides the basic 
configurations of each platform used in this experimental 
evaluation. 

A. Programming models 
An X1 node (four MSPs) supports a cache-coherent shared 

memory, and Cray supports OpenMP, System V shared 
memory, and POSIX threads shared-memory programming  
models. In addition, the compilers can treat the node 
processors as four streaming MSP’s (in MSP mode) or 16 
individual SSPs (in SSP mode). Each node can have from 8 to 
32 Gbytes of local memory.  

Cray supports several distributed-memory programming 

models for the X1, including the Message Passing Interface 
(MPI) [16], SHMEM, Co-Array Fortran, and UPC. For MPI 
message passing, the minimum addressable unit is an MSP (or 
an SSP if the job is compiled in SSP mode). For UPC and Co-
Array Fortran, the compiler can overlap computation with 
remote memory requests because the decoupled micro-
architecture allows the scalar unit to prepare operands and 
addresses for the vector unit.  

The programmer can mix node-level SMP with both MPI 
and direct access (SHMEM, UPC, or Co-Array Fortran) to 
remote memory. Hardware handles synchronization (locks and 
barriers). Exploiting this diverse set of programming models is 
one of the X1’s opportunities. 

The compilers also provide directives to assist in 
parallelization and external memory management (e.g., no 
caching for designated variables). Scientific libraries provide 
efficient management of the Ecache and vector pipes. The user 
can specify page size for text and data areas when initiating an 
executable. The resource management system provides 
processor allocation, job migration, and batch scheduling. 

B. Microbenchmarks 
We use a collection of microbenchmarks to characterize the 

performance of the underlying hardware, compilers, and 
software libraries. The STREAM [10] triad memory 
bandwidth is 24 Gbytes/s for a streaming MSP or 40 Gbytes/s 
(aggregate) for 4 SSPs. The aggregate STREAM triad memory 
bandwidth for an X1 SMP node is 84 Gbytes/s for 4 MSPs and 
90 Gbytes/s for 16 SSPs. This compares favorably with the 30 
Gbytes/s bandwidth for one processor of the modified NEC 
SX-6 used in the Earth Simulator, and 213 Gbytes/s for an 
eight-processor SMP. Remote memory access bandwidth 
peaks at about 30 Gbytes/s for the X1 (using Co-Array 
Fortran).  

Table 1: Platform Configurations. 

 SGI Altix Alpha SC Earth 
Simulator 

IBM SP4 Cray X1 

Proc Itanium 2 Alpha EV67 NEC SX-6   POWER4         Cray X1 
Interconnect Numalink Quadrics 

(Elan3) 
custom 

crossbar 
HPS or SP    
Switch2 

        Cray X1 

MHz 1500 667 500 1300 800 
Mem/Node 512GB 2GB 16GB 32GB 16GB 
L1 32K 64K n/a 32K 16K (scalar) 
L2 256K 8MB n/a 1.5MB 2MB (per 

MSP) 
L3 6MB n/a n/a 128MB n/a 
Proc Peak 
Mflops 

6000 1334 8000 5200 12800 

Peak mem BW 6.4 GB/s 5.2GB/s 32GB/s/ 
processor 

51GB/s/ 
MCM 

26GB/s/ 
MSP 
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Figure 4: Stream triad with Co-Array Traffic. 

Figure 4 illustrates the effect of remote accesses on local-
memory performance. Processor 0 is executing a STREAM 
triad. With no memory interference, the triad runs at 24 
Gbytes/second. The figure shows the effect of an increasing 
number of processors doing Co-Array FORTRAN gets from 
or puts to processor 0. If more than five processors are 
executing gets, it reduces triad performance, but puts have no 
effect on triad performance. The local-memory activity (triad) 
has little effect on the aggregate throughput of the gets and 
puts. 

 

 
Figure 5: MPI intra-node bandwidth. 

 Figure 5 and Figure 6 show the MPI intra-node and 
internode bandwidths. We used the ParkBench comms1 
benchmark code to measure MPI communication performance 
between two processors on the same node and then two 
different nodes. MPI latency was 7.3 microseconds (one-way) 
for an 8-byte message between X1 nodes. Each additional hop 
in the torus network requires less than 0.5 microseconds. MPI 
bandwidth for ping-pong reaches 12 Gbytes/s between nodes. 
The X1 demonstrates a significant advantage over the other 
platforms when message sizes rise above 8Kbytes.  

 

 
Figure 6: MPI inter-node bandwidth. 

 

 
Figure 7: HALO exchange timings. 

MPI is not yet fully optimized for the X1, and SHMEM and 
Co-Array Fortran usually perform better for small message 
sizes. Figure 7 shows how the various X1 programming 
paradigms perform a HALO operation [17] on 16 MSPs. The 
HALO benchmark simulates the nearest neighbor exchange of 
a 1 to 2 row/column “halo” from a 2D array. This is a 
common operation when using domain decomposition. 
Latency dominates small message performance, whereas 
bandwidth limits the performance for larger messages. The 
Co-Array paradigm performs the best, partially because the 
compiler can hide some of the latency.  
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Figure 8: Allreduce Latency. 

Figure 8 illustrates the time to perform an allreduce—a 
common operation in scientific applications—using a double-
word sum operator implemented in various programming 
paradigms. For the Co-Array Fortran, SHMEM, and UPC 
implementations, the algorithm gathered data to a single 
process, summed it, then broadcasted it. MPI_Allreduce may 
use a different algorithm. As with the HALO operation, the 
Co-Array Fortran implementation performed the best, and 
Cray has not yet optimized the UPC performance. Viewed in 
this light, it is clear that choosing the appropriate 
programming paradigm can be important to efficiently using 
the underlying hardware. However, barriers for the various 
programming models use the same underlying hardware and 
average about 5 microseconds, essentially independent of the 
number of participating processors at the current scale (up to 
512 MSPs). 

 

 
Figure 9: Performance of the LANL Parallel Ocean Program 

(POP 1.4.3). 

C. Applications 
These impressive performance results for microbenchmarks 

on the X1 are uninteresting unless they also translate into 
performance improvements in applications. Two such 
application areas at ORNL are climate modeling and fusion 
simulations.  

Climate Modeling 
The Parallel Ocean Program (POP) [8] is an ocean 

modeling code developed at Los Alamos National Laboratory 
(LANL); it serves as the ocean component in the Community 
Climate System Model coupled climate model. Figure 9 
compares the performance of this code on the X1 when using 
a pure MPI implementation and when using Co-Array Fortran 
for two routines: a halo update and an allreduce. Both routines 
are used in a conjugate gradient linear system solver: the halo 
update in calculating residuals and the allreduce in calculating 
inner products. Figure 9 also shows performance on a 
Hewlett-Packard AlphaServer SC, an IBM p690 cluster, the 
Earth Simulator, and an SGI Altix. POP’s performance 
scalability is very sensitive to latency, and MPI latency limits 
performance on the Cray X1 compared to that achievable 
using Co-Array Fortran. 

Fusion Simulation 
GYRO [3] is an Eulerian gyrokinetic-Maxwell solver 

developed by R.E. Waltz and J. Candy at General Atomics. It 
is used to study plasma microturbulence in fusion research. 
Figure 10 compares the performance of GYRO on the X1, the 
SGI Altix, and an IBM p690 cluster using both SP Switch2 
and High Performance Switch (HPS) interconnects. GYRO 
uses the MPI_ALLTOALL command to transpose the 
distributed data structures; it is more sensitive to bandwidth 
than to latency. As Figure 11 shows, the IBM results indicate 
the sensitivity of performance to bandwidth, because the 
primary difference in performance between the SP Switch2 
and HPS results is in message-passing performance. For this 
benchmark, MPI bandwidth on the X1 does not limit 
scalability. 

 

 
Figure 10: Performance of the GYRO Eulerian Gyrokinetic-

Maxwell Solver (64-mode GTC benchmark). 
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Figure 11: Communication Fraction for the GYRO Eulerian 
Gyrokinetic-Maxwell Solver (64-mode GTC benchmark). 

IV. CONCLUSION 
 
Our experiments show that the high bandwidth and the low 

latency for X1 interconnect translates into improved 
application performance on diverse applications, such as the 
POP ocean model and the GYRO gyrokinetic-Maxwell solver. 
Our benchmarks also demonstrate that it can be important to 
select the appropriate programming models to exploit these 
benefits. For the most recent results and additional 
performance data comparing the X1 with other systems, see 
www.ccs.ornl.gov/evaluation. 

We plan to continue our investigations of other core 
technologies for high-performance computing, which will 
include future generations of Cray systems, including the X1E 
and Black Widow. Most importantly, we plan to investigate 
next-generation interconnects, such as Infiniband, and the 
proprietary interconnects of the Cray XD1, the Cray XT3, and 
the Cray Rainier architectures. 
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