
 1

Abstract—The Cray X1 supercomputer is a distributed shared
memory vector multiprocessor, scalable to 4096 processors and
up to 65 terabytes of memory. The X1’s hierarchical design uses
the basic building block of the multi-streaming processor (MSP),
which is capable of 12.8 GF/s for 64-bit operations. The
distributed shared memory (DSM) of the X1 presents a 64-bit
global address space that is directly addressable from every MSP
with an interconnect bandwidth per computation rate of one byte
per floating point operation. Our results show that this high
bandwidth and low latency for remote memory accesses
translates into improved application performance on important
applications. Furthermore, this architecture naturally supports
programming models like the Cray SHMEM API, Unified
Parallel C, and Co-Array Fortran. It can be important to select
the appropriate models to exploit these features, as our
benchmarks demonstrate.

I. INTRODUCTION
The Cray X1 supercomputer, introduced in 2002, has

several interesting architectural features. Two key features are
the X1’s distributed shared memory and its vector
multiprocessors. Recent studies of the X1’s vector
multiprocessors have shown significant performance
improvements on several applications [1, 7]. In this paper, we
characterize the performance of the X1’s distributed shared-
memory system and its interconnection network using
microbenchmarks and applications.

The X1’s distributed shared-memory architecture presents a
64-bit global address space, which is directly addressable from
every processor using traditional load and store instructions.
From the application perspective, this memory system behaves
like a nonuniform memory access (NUMA) architecture;
however, this memory system does not cache accesses
between symmetric multiprocessor (SMP) nodes. This
hardware support for global addressability naturally supports
programming models such as the Cray SHMEM API [2],
Unified Parallel C (UPC) [4], Co-Array Fortran [12], and
Global Arrays [11].

II. CRAY X1 OVERVIEW
The Cray X1 is an attempt to incorporate the best aspects of

previous Cray vector systems and massively parallel
processing systems into one design. Like the Cray T90, the X1
has high memory bandwidth, which is key to realizing a high
percentage of theoretical peak performance. Like the Cray
T3E [14], the X1 has a high-bandwidth, low-latency, scalable

1 This paper was accepted for publication and the final (edited, revised and
typeset) version of the paper was published in IEEE Micro, Volume 25, No. 1,
January/February 2005 by the IEEE Computer Society.

interconnect, and scalable system software. And, like the Cray
SV1, the X1 leverages commodity CMOS technology and
incorporates non-traditional vector concepts, such as vector
caches and multi-streaming processors (MSPs).

A. Multi-streaming Processor
The X1 has a hierarchical design with an MSP basic

building block capable of 12.8 Gflops/s for 64-bit operations
(or 25.6 Gflops/s for 32-bit operations). As Figure 1
illustrates, each MSP consists of four single-streaming
processors (SSPs), each with two 32-stage 64-bit floating-
point vector units and one 2-way superscalar unit. The SSP
uses two clock frequencies: 800 MHz for the vector units and
400 MHz for the scalar unit. Each SSP is capable of 3.2
Gflops/s for 64-bit operations. The four SSPs share a 2 Mbyte
Ecache.

S

VV

S

VV

S

VV

S

VV

0.5 MB

Ecache

0.5 MB

Ecache

0.5 MB

Ecache

0.5 MB

Ecache

S

VV

S

VV

S

VV

S

VV

0.5 MB

Ecache

0.5 MB

Ecache

0.5 MB

Ecache

0.5 MB

Ecache

MSP

SSP SSP SSP SSP

Figure 1: Cray MSP module.

Although the Ecache has sufficient single-stride bandwidth
(accessing consecutive memory locations) to saturate the
vector units of the MSP, the Ecache is necessary because the
bandwidth to main memory is insufficient to saturate the
vector units without data reuse. That is, memory bandwidth is
roughly half the saturation bandwidth. This design represents a
compromise between non-vector-cache systems, such as the
NEC SX-6, and cache-dependent systems, such as the IBM
p690, which has memory bandwidths that are an order of
magnitude less than the saturation bandwidth. The X1,
because of its short cache lines and extra cache bandwidth, has
a random-stride scatter/gather memory access that is just a
factor of two slower than stride-one access, not the factor of
eight or more typical of cache-based systems like those based
on the IBM Power4, Compaq Alpha, or Intel Itanium. The
X1's cache-based design only deviates slightly from the full-
bandwidth design model. Each X1 MSP has the single-stride

Performance Evaluation of the Cray X1
Distributed Shared Memory Architecture1

Thomas H. Dunigan, Jr., Jeffrey S. Vetter, James B. White III, Patrick H. Worley
Oak Ridge National Laboratory

 2

bandwidth of an SX-6 processor; it is the X1’s higher peak
performance that creates an imbalance. A relatively small
amount of data reuse, which most modern scientific
applications do exhibit, can enable the X1 to realize a very
high percentage of peak performance, and even during worst-
case data access, data reuse can still provide double-digit
efficiencies.

The X1 compiler has two options for using the eight vector
units of a single MSP. First, it can use all 8 when vectorizing a
single loop. Second, it can split up (or multistream) the work
in an unvectorized outer loop and assign it to the four SSPs,
each with two vector units and one scalar unit. (The compiler
can also vectorize a “long” outer loop and multistream a
shorter inner loop if the dependency analysis allows it.)

The effective vector length of the first option is 256
elements, the vector length of the NEC SX-6. The second
option, which attacks parallelism at a different level, allows a
shorter vector length of 64 elements for a vectorized loop.
Cray also supports the option of treating each SSP as a
separate processor.

Cray X1 Node

MSP MSP MSP MSP

16 M Chips

16 M Banks

I/O I/O

Figure 2: Cray X1 node.

As Figure 2 illustrates, four MSPs, 16 memory controller
chips (M-chips), and 32 memory daughter cards form a Cray
X1 node. A node’s memory banks provide 204 Gbytes/s of
bandwidth, enough to saturate the paths to the local MSPs and
service requests from remote MSPs. Local memory latency is
uniform for all processors within a node. These banks have
error-correcting-code memories, which provide reliability by
correcting single-bit errors, detecting multiple-bit errors, and
providing chip-kill error detection.

Each bank of shared memory connects to several banks on
remote nodes, with an aggregate bandwidth of roughly 50
Gbytes/s between nodes. This balance represents one byte per
floating-point operation (flop) of interconnect bandwidth per
computation rate, compared to 0.25 bytes per flop on the
Japanese Earth Simulator [15], and less than 0.1 bytes per flop
on an IBM p690 with the maximum number of High
Performance Switch (HPS) connections [9].

B. Interconnect Overview
X1 routing modules connect the Cray X1 nodes. Each node

has 32 1.6 Gbytes/s full duplex links. Each memory module
has an even and odd 64-bit (data) link forming a plane with
the corresponding memory modules on neighboring nodes.

Eight adjacent nodes connected in this way form a processor
stack. The local memory bandwidth per node is 204 Gbytes/s,
enough to service both local and remote memory requests.

An X1 cabinet consists of 16 node boards and four routing
boards (or two processor stacks). Each routing board has eight
routing modules. The routing module ASIC is an eight-way
nonblocking crossbar switch supporting worm hole routing.
The routing module supports prioritization based on credits or
aging. Ports connect to the node boards or other router ports
with 96-pin cables with a maximum length of 4 meters. Data
packets carry a cyclic redundancy code (CRC), and if the
receiver detects a CRC error, the sending node resends the
packet. Communication latency increases by about 500 ns per
router hop. The X1 routing module uses software-loaded
configuration tables for data flow mapping across the
interconnection network. At system boot, these tables are
initialized, but are reloadable, providing a means to
reconfigure the network around hardware failures.

Interstack connectivity allows several options. First, a four-
node X1 can interconnect directly via the memory modules
links. Second, with eight or fewer cabinets (up to 128 nodes or
512 MSPs), the interconnect topology is a 4D hypercube.
Larger configurations use an enhanced 3D torus, where one
dimension of the torus, the processor stack, is fully connected.

The 3D torus topology has relatively low bisection
bandwidth compared to crossbar-style interconnects [6], such
as those on the IBM SP and the Earth Simulator. Whereas
bisection bandwidth scales as the number of nodes, O(n), for
crossbar-style interconnects, it scales as the 2/3 root of the
number of nodes, O(n2/3), for a 3D torus. Despite this
theoretical limitation, mesh-based systems - such as the Intel
Paragon, the Cray T3E, and ASCI Red - have scaled to
thousands of processors.

Atomic in-memory operations (submicrosecond scalable
locks and barriers) provide synchronization [5]. In particular,
the X1 provides explicit memory ordering instructions for
local ordering (LSYNC), MSP ordering (MSYNC), and global
ordering (GSYNC). It also provides the basic atomic memory
operations like fetch&op. Although these operations are
efficient because they do not require a cache-line of data, they
are not ordered with respect to other memory references and
require synchronization using memory ordering instructions.

C. Local and Remote Memory Accesses
A single four-MSP X1 node behaves like a traditional SMP.

Like the T3E, each processor has the additional capability of
directly addressing memory on any other node. Different,
however, is the fact that the processors directly issue these
remote memory accesses as load and store instructions, which
go transparently over the X1 interconnect to the target
processor, bypassing the local cache. This mechanism is more
scalable than traditional shared memory, but it is not
appropriate for shared-memory programming models, such as
OpenMP [13], outside of a given four-MSP node. This
remote-memory access mechanism is a natural match for
distributed-memory programming models, particularly those
using one-sided put/get operations.

 3

As Figure 3 shows, the X1 64-bit global virtual address
decomposes into two parts: two bits to select the memory
region and 48 bits for a virtual page number, page boundaries,
and page offset. The page size can range from 64Kbytes to 4
Gbytes, selectable at execution time with different page sizes
possible for text and data areas.

64-bit Virtual Address

Memory Region (useg, kseg, kphys): 2 bits

Must Be Zero: 14 bits

Page Offset: 16 bits

Possible Page Boundaries (64K-4GB): 16 bits

Virtual Page Number (VPN): 16 bits

Offset: 36 bits

Physical address space (Main mem, MMR, I/O): 2 bits

48-bit Physical Address

Node: 10 bits

Figure 3: Cray X1 address translation.

The 48-bit physical address decomposes into a 2-bit
physical-address region marker, a 10-bit node number, and a
36-bit offset. The 10-bit node number limits the maximum X1
configuration to 1,024 nodes (4,096 MSPs). The address
translation scheme uses 256-entry translation look-aside
buffers (TLBs) on each node and allows noncontiguous
multinode jobs (though this mode typically degrades
performance). When a job uses contiguously numbered nodes,
it is possible to remotely translate page offsets, so the TLB
needs to hold translations for just one node. This design
scheme allows the system to scale with the number of nodes
with no additional TLB misses. Such a design can hide
memory latency with the compiler’s help; the hardware
dynamically unrolls loops, performs scalar and vector
renaming, and issues scalar and vector loads early. Vector load
buffers permit 2,048 outstanding loads for each MSP.
Nonallocating references can bypass the cache for remote
communication to avoid cache pollution and to provide
efficient large-stride (or scatter/gather) support.

III. PERFORMANCE
This section describes some of our results in evaluating the

Cray X1 and its memory hierarchy. We conducted these tests
on the eight-cabinet, 512-MSP X1 located at Oak Ridge
National Laboratory (ORNL). Our evaluation uses both
standard and custom benchmarks as well as application
kernels and full applications. Table 1 provides the basic
configurations of each platform used in this experimental
evaluation.

A. Programming models
An X1 node (four MSPs) supports a cache-coherent shared

memory, and Cray supports OpenMP, System V shared
memory, and POSIX threads shared-memory programming
models. In addition, the compilers can treat the node
processors as four streaming MSP’s (in MSP mode) or 16
individual SSPs (in SSP mode). Each node can have from 8 to
32 Gbytes of local memory.

Cray supports several distributed-memory programming

models for the X1, including the Message Passing Interface
(MPI) [16], SHMEM, Co-Array Fortran, and UPC. For MPI
message passing, the minimum addressable unit is an MSP (or
an SSP if the job is compiled in SSP mode). For UPC and Co-
Array Fortran, the compiler can overlap computation with
remote memory requests because the decoupled micro-
architecture allows the scalar unit to prepare operands and
addresses for the vector unit.

The programmer can mix node-level SMP with both MPI
and direct access (SHMEM, UPC, or Co-Array Fortran) to
remote memory. Hardware handles synchronization (locks and
barriers). Exploiting this diverse set of programming models is
one of the X1’s opportunities.

The compilers also provide directives to assist in
parallelization and external memory management (e.g., no
caching for designated variables). Scientific libraries provide
efficient management of the Ecache and vector pipes. The user
can specify page size for text and data areas when initiating an
executable. The resource management system provides
processor allocation, job migration, and batch scheduling.

B. Microbenchmarks
We use a collection of microbenchmarks to characterize the

performance of the underlying hardware, compilers, and
software libraries. The STREAM [10] triad memory
bandwidth is 24 Gbytes/s for a streaming MSP or 40 Gbytes/s
(aggregate) for 4 SSPs. The aggregate STREAM triad memory
bandwidth for an X1 SMP node is 84 Gbytes/s for 4 MSPs and
90 Gbytes/s for 16 SSPs. This compares favorably with the 30
Gbytes/s bandwidth for one processor of the modified NEC
SX-6 used in the Earth Simulator, and 213 Gbytes/s for an
eight-processor SMP. Remote memory access bandwidth
peaks at about 30 Gbytes/s for the X1 (using Co-Array
Fortran).

Table 1: Platform Configurations.

 SGI Altix Alpha SC Earth
Simulator

IBM SP4 Cray X1

Proc Itanium 2 Alpha EV67 NEC SX-6 POWER4 Cray X1
Interconnect Numalink Quadrics

(Elan3)
custom

crossbar
HPS or SP
Switch2

 Cray X1

MHz 1500 667 500 1300 800
Mem/Node 512GB 2GB 16GB 32GB 16GB
L1 32K 64K n/a 32K 16K (scalar)
L2 256K 8MB n/a 1.5MB 2MB (per

MSP)
L3 6MB n/a n/a 128MB n/a
Proc Peak
Mflops

6000 1334 8000 5200 12800

Peak mem BW 6.4 GB/s 5.2GB/s 32GB/s/
processor

51GB/s/
MCM

26GB/s/
MSP

 4

Figure 4: Stream triad with Co-Array Traffic.

Figure 4 illustrates the effect of remote accesses on local-
memory performance. Processor 0 is executing a STREAM
triad. With no memory interference, the triad runs at 24
Gbytes/second. The figure shows the effect of an increasing
number of processors doing Co-Array FORTRAN gets from
or puts to processor 0. If more than five processors are
executing gets, it reduces triad performance, but puts have no
effect on triad performance. The local-memory activity (triad)
has little effect on the aggregate throughput of the gets and
puts.

Figure 5: MPI intra-node bandwidth.

 Figure 5 and Figure 6 show the MPI intra-node and
internode bandwidths. We used the ParkBench comms1
benchmark code to measure MPI communication performance
between two processors on the same node and then two
different nodes. MPI latency was 7.3 microseconds (one-way)
for an 8-byte message between X1 nodes. Each additional hop
in the torus network requires less than 0.5 microseconds. MPI
bandwidth for ping-pong reaches 12 Gbytes/s between nodes.
The X1 demonstrates a significant advantage over the other
platforms when message sizes rise above 8Kbytes.

Figure 6: MPI inter-node bandwidth.

Figure 7: HALO exchange timings.

MPI is not yet fully optimized for the X1, and SHMEM and
Co-Array Fortran usually perform better for small message
sizes. Figure 7 shows how the various X1 programming
paradigms perform a HALO operation [17] on 16 MSPs. The
HALO benchmark simulates the nearest neighbor exchange of
a 1 to 2 row/column “halo” from a 2D array. This is a
common operation when using domain decomposition.
Latency dominates small message performance, whereas
bandwidth limits the performance for larger messages. The
Co-Array paradigm performs the best, partially because the
compiler can hide some of the latency.

 5

Figure 8: Allreduce Latency.

Figure 8 illustrates the time to perform an allreduce—a
common operation in scientific applications—using a double-
word sum operator implemented in various programming
paradigms. For the Co-Array Fortran, SHMEM, and UPC
implementations, the algorithm gathered data to a single
process, summed it, then broadcasted it. MPI_Allreduce may
use a different algorithm. As with the HALO operation, the
Co-Array Fortran implementation performed the best, and
Cray has not yet optimized the UPC performance. Viewed in
this light, it is clear that choosing the appropriate
programming paradigm can be important to efficiently using
the underlying hardware. However, barriers for the various
programming models use the same underlying hardware and
average about 5 microseconds, essentially independent of the
number of participating processors at the current scale (up to
512 MSPs).

Figure 9: Performance of the LANL Parallel Ocean Program

(POP 1.4.3).

C. Applications
These impressive performance results for microbenchmarks

on the X1 are uninteresting unless they also translate into
performance improvements in applications. Two such
application areas at ORNL are climate modeling and fusion
simulations.

Climate Modeling
The Parallel Ocean Program (POP) [8] is an ocean

modeling code developed at Los Alamos National Laboratory
(LANL); it serves as the ocean component in the Community
Climate System Model coupled climate model. Figure 9
compares the performance of this code on the X1 when using
a pure MPI implementation and when using Co-Array Fortran
for two routines: a halo update and an allreduce. Both routines
are used in a conjugate gradient linear system solver: the halo
update in calculating residuals and the allreduce in calculating
inner products. Figure 9 also shows performance on a
Hewlett-Packard AlphaServer SC, an IBM p690 cluster, the
Earth Simulator, and an SGI Altix. POP’s performance
scalability is very sensitive to latency, and MPI latency limits
performance on the Cray X1 compared to that achievable
using Co-Array Fortran.

Fusion Simulation
GYRO [3] is an Eulerian gyrokinetic-Maxwell solver

developed by R.E. Waltz and J. Candy at General Atomics. It
is used to study plasma microturbulence in fusion research.
Figure 10 compares the performance of GYRO on the X1, the
SGI Altix, and an IBM p690 cluster using both SP Switch2
and High Performance Switch (HPS) interconnects. GYRO
uses the MPI_ALLTOALL command to transpose the
distributed data structures; it is more sensitive to bandwidth
than to latency. As Figure 11 shows, the IBM results indicate
the sensitivity of performance to bandwidth, because the
primary difference in performance between the SP Switch2
and HPS results is in message-passing performance. For this
benchmark, MPI bandwidth on the X1 does not limit
scalability.

Figure 10: Performance of the GYRO Eulerian Gyrokinetic-

Maxwell Solver (64-mode GTC benchmark).

 6

Figure 11: Communication Fraction for the GYRO Eulerian
Gyrokinetic-Maxwell Solver (64-mode GTC benchmark).

IV. CONCLUSION

Our experiments show that the high bandwidth and the low

latency for X1 interconnect translates into improved
application performance on diverse applications, such as the
POP ocean model and the GYRO gyrokinetic-Maxwell solver.
Our benchmarks also demonstrate that it can be important to
select the appropriate programming models to exploit these
benefits. For the most recent results and additional
performance data comparing the X1 with other systems, see
www.ccs.ornl.gov/evaluation.

We plan to continue our investigations of other core
technologies for high-performance computing, which will
include future generations of Cray systems, including the X1E
and Black Widow. Most importantly, we plan to investigate
next-generation interconnects, such as Infiniband, and the
proprietary interconnects of the Cray XD1, the Cray XT3, and
the Cray Rainier architectures.

ACKNOWLEDGEMENTS
We gratefully acknowledge Cray Inc. for its ongoing

cooperation, and, in particular, Steve Scott, James
Schwarzmeier, and Nathan Wichmann. The work described in
this paper was sponsored by the Office of Mathematical,
Information, and Computational Sciences, Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes.

REFERENCES
[1] P.A. Agarwal, R.A. Alexander et al., “Cray X1

Evaluation Status Report,” ORNL, Oak Ridge, TN,
Technical Report ORNL/TM-2004/13, 2004,
http://www.csm.ornl.gov/evaluation/PHOENIX/PDF/C
RAYEvaluationTM2004-15.pdf.

[2] R. Barriuso and A. Knies, “SHMEM Users Guide,”
Cray Research, Inc. 1994.

[3] J. Candy and R. Waltz, “An Eulerian gyrokinetic-
Maxwell solver,” J. Comput. Phys., 186(545), 2003.

[4] W.W. Carlson, J.M. Draper et al., “Introduction to UPC
and language specification,” Center for Computing
Sciences, IDA, Bowie, MD, Technical Report CCS-TR-
99-157, 1999.

[5] Cray Incorporated, “Cray X1 System Overview,” Cray
Incorporated, Mendota Heights, MN, Technical Manual
S–2346–22, 2002.

[6] W.J. Dally and B. Towles, Principles and practices of
interconnection networks. San Francisco: Morgan
Kaufmann Publishers, 2003.

[7] T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation
of the Cray X1,” Proc. ACM/IEEE Conference on High
Performance Networking and Computing (SC03), 2003.

[8] P.W. Jones, P.H. Worley et al., “Practical performance
portability in the Parallel Ocean Program (POP),”
Concurrency and Computation: Experience and
Practice(in press), 2004.

[9] O. Lascu, Z. Borgosz et al., “An Introduction to the
New IBM pSeries High Performance Switch,” IBM
Corporation, IBM Redbook SG24-6978-00, 2004.

[10] J.D. McCalpin, Stream Benchmarks,
http://www.cs.virginia.edu/stream, 2002.

[11] J. Nieplocha, R.J. Harrison, and R.J. Littlefield, “Global
Arrays: A portable shared memory model for
distributed memory computers,” Proc. Supercomputing
94, 1994, pp. 340-9.

[12] R.W. Numrich and J. Reid, “Co-Array Fortran for
parallel programming,” ACM SIGPLAN FORTRAN
Forum, 17(1998):1-31, 1998.

[13] OpenMP, OpenMP Reference, http://www.openmp.org,
1999.

[14] S.L. Scott, “Synchronization and Communication in the
T3E Multiprocessor,” Proc. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 1996, pp. 26-36.

[15] S. Shingu, Y. Tsuda et al., “A 26.58 Tflops Global
Atmospheric Simulation with the Spectral Transform
Method on the Earth Simulator,” Proc. SC2002, 2002.

[16] M. Snir, S. Otto et al., Eds., MPI--the complete
reference, 2nd ed. Cambridge, MA: MIT Press, 1998.

[17] A.J. Wallcraft, “The NRL Layered Ocean Model Users
Guide,” Naval Research Laboratory, Stennis Space
Center, MS NOARL Report 35, 1991.

