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Abstract

Application performance models provide 
insight to designers of high performance computing 
(HPC) systems on the role of subsystems such as the 
processor or the network in determining application 
performance and allow HPC centers to more accurately 
target procurements to resource requirements. 
Performance models can also be used to identify 
application performance bottlenecks and to educate
users on scalability issues. The suitability of a 
performance model, however, for a particular 
performance investigation is a function of both the 
accuracy and the cost of the model.

       A semi-empirical model developed in an 
earlier publication for an astrophysics application was 
shown to be inaccurate when predicting communication 
cost for large numbers of processors. It was 
hypothesized that this deficiency was due to the 
inability of the model to adequately capture 
communication contention (threshold effects) as well as 
other unmodeled components such as noise and I/O 
contention.  In this paper we present a new approach to 
capture these unknown features to improve the 
predictive capabilities of the model. We adopted a 
black-box model error correction procedure that uses 
evolutionary algorithms to find an error correction 
component to augment the existing model. Four 
variations of this procedure were investigated and all 
were shown to produce improved results than the old 
model.

I.  INTRODUCTION

Achieving high performance on parallel 
applications can be challenging. Performance of a 
parallel application depends primarily on two 
characteristics, one pertaining to the application and the 
other pertaining to the machine. Application 
characteristics include the primary algorithmic kernels, 
programming language, parallelization strategy, 

problem size and other input parameters. Machine 
characteristics include hardware metrics, such as
processor performance, memory performance and 
network performance, and software metrics, including
compiler performance and efficiency of communication 
and math libraries. Producing applications that work
well across a wide range of high performance 
computing (HPC) platforms is a non-trivial task 
because the machine characteristics and their 
interdependence on application characteristics vary 
from platform to platform. The aforementioned reasons 
also make performance prediction a difficult task. In 
recent years, performance prediction for parallel 
architectures has attracted considerable attention,
ranging from kernel benchmarking studies, application 
performance studies, performance modeling, and 
detailed comparative analysis of newer architectures 
[e.g., [1], [7], [8], [6]].

This paper uses the finite-difference 
astrophysics code EVH1 (Enhanced version of Virginia 
Hydrodynamics) containing over 6500 lines of Fortran 
and MPI (Message Passing Interface, Gropp et al. 1999) 
[3]. In earlier work [5], EVH1 runtime was modeled for 
2-Dimensional (2D) and 3-Dimensional (3D) problems
on two different architectures. A semi-empirical model 
was used in this study involving a set of machine and 
application parameters. These model parameters were 
then fitted using a Levenberg-Marquadt procedure 
using a subset of the measured data. In this paper we 
restrict our attention to modeling communication time 
for 2D problems on a single architecture. While EVH1 
deals with a specific application area, the algorithmic 
kernels used are representative of many numerically 
intensive finite-difference codes. Therefore modeling 
methodologies used in this paper have more general 
applicability.

Model error correction for performance models

Parallel performance models typically have 
several components (e.g., communication contention, 
non-uniform memory access, I/O, etc) that are not 
adequately represented by terms in the performance 



model or not adequately captured by the model 
parameters. One way to address these deficiencies is to 
create another function (model error correction term) 
that augments the original model by capturing these 
unmodeled features. In this paper, the Model Error 
Correction Procedure (MECP) [9] is used to identify a 
model error correction term while tuning the original 
model parameters. MECP uses an evolutionary 
computation-based implementation to improve the 
predictability of the original model by conducting these 
numeric and symbolic searches simultaneously. 

Evolutionary algorithms (EA) are search 
methods that operate on a population of solutions and 
mimic the mechanisms of natural selection to find 
optimal solutions for a defined problem. In the EA-
based MECP used in this paper, genetic programming 
(GP) operators are used for generating the error 
correction term (ect) and genetic algorithm (GA) 
operators are used for determining the model parameter
values. GA performs a numeric search by representing 
a solution as a string of real, binary or integer values.
GP conducts a symbolic search over a set of 
mathematical operators, such as +, - , x and /, to 
construct a function that minimizes the error between a 
set of data and a function output

Fig 1 shows an example of how GP works on 
a set of data to form a function. GP works with two sets 
of variables. One set is called the terminal set, which 
contains independent constants and variables, such as x
and y. The other set, known as the functional set, 
contains the operators, which are included based on the 
perceived degree of complexity of the regression. 
Symbolic regression is performed using these two 
variable sets. GP explores a large number of possible 
functional relationships to identify the function that best 
fits the data.

Terminal set (X, Y)                 
                             
                             Genetic Programming                   

                                                                                   

                                                                
                                                
                                                                                                                                                                      
                                                        Fitted Function                   
Data set for                                     
  training                                

  Functional set

Figure 1. Example of GP procedure

In the GP procedure, each potential solution 
(i.e., error correction term), composed of a subset of the 
terminal set variables and functional set elements, is 
represented by a tree data structure as shown in Fig 2. 
These potential solutions in a population undergo 
crossover, mutation, and selection as in any EA-based 
search.

.

Figure 2. A sample solution representation in GP

MECP for EVH1 communication model

As derived in [5], a semi-empirical 
performance model of EVH1 consisted of two 
components: computation and communication. While 
the prediction from the computation component was 
shown to be satisfactory, the communication model 
prediction, particularly for large processor counts, was 
poor. Hence the communication model was corrected 
using MECP. The results we present in this paper are 
for the 2D communication model for the IBM P690 
architecture at Oak Ridge National Laboratory 
(Cheetah). The original EVH1 2D communication 
model is given by [5]:
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where,
     g,  h, i and j are the constants to be fitted and  f, is 
      fixed.

       T =  Stop time
      nx = Horizontal resolution
      np = Number of processors
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Figure 3. Model Error Correction Procedure

All parameters to be fitted are machine 
dependent. Here f represents the number of cycles 
proportional to the simulation time, g represents the per 
word memory-to-memory copy time, i represents the 
message latency, j represents the message bandwidth, 
and h represents non-linearity due to message 
contention. The value of f, which is obtained from the 
computation model, was fixed equal to 4965 [5]. In the 
original model, these fitted machine parameters were
bounded based on acceptable values for the IBM P690 
architecture (see [5] for details) as shown in Table 2.
The same guidelines are adopted here with slight 
variations as described next. Four variations of MECP 
based communication models are investigated. These 
cases are described below.

Case-1: The ect includes the function of the original
model and the parameter values are fixed to those of the 
original model. 

( , )calculated commt f t ect (1)

Case-2: The ect is added to the function of the original
model and the parameter values are fixed are fixed to 
those of the original model.

calculated commt t ect   (2)

Case-3: The ect includes the function of the original 
model and the parameter values are not fixed, but
bounded around the original values (Table 2).           

( , )calculated commt f t ect  (3)

Case-4: The ect is added to the function of the original
model and the parameter values are not fixed, but
bounded around the original values (Table 2).

calculated commt t ect       (4)

where,  
       ect = Error correction term  
      tcomm  = original communication model
     ( , , )ect f nx np T      

The error correction term is a function of input 
parameters nx, np, T. Since the parameters are not fixed 
in equations (1) and (2), the unknown machine 
parameters are found by GA for these cases. The ect is 
considered as a black-box and is not shown here. The 
objective function to be minimized in the GA/GP 
procedure is a measure of the error between the 
calculated and measured communication times and is 
given by:
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where, 
             n   = Number of data points
     tobserved  = Observed communication time 
     tcalculated = Calculated communication time

The observed communication times (tobserved) 
used in this process are called the “training data”. The 
combined GA/GP procedure is depicted in Fig 3.  The 
parameters nx,, np, T and the measured communication 
time are the inputs to the current model for estimating 
tcomm. GA searches for the new values for the model 
parameter g, h, i and j in the original model tcomm. GP 
searches over symbols and constants to construct the 
error correction term.  These two searches in concert 
provide the improved communication time model that 
tends to minimize the error.

II. RESULTS AND DISCUSSION

A total of 32 data points used in [5] are used 
for demonstrating the application of MECP. Half the 
data was used for fitting and the other half for testing 
the prediction accuracy. 

Table 1 summarizes the parameters and 
settings used in the GA/GP procedure. As GA and GP 
are based on probabilistic operators, the robustness of 
the GA/GP procedure was first tested for 30 random 
trials for each of the four cases [Eqns (1), (2), (3), (4)]
As the procedure did not converge in four out of the 
120 trials, they were excluded from these calculations.  
These results are based on a validation data set 
consisting of 16 data points that were used for testing 
the predictive capability. 

A comparison of the prediction errors for the 
original model and the best models obtained (out of the 
random trials) for the four cases are shown in Fig 4. 
This figure shows that the best solutions for all 4 cases 
outperform the original model. Also, case-1 results in 
the best model with an error less than half of the 
original model. The frequency of each of the cases 
performing better than the original model in the random 
trials is compared in Fig 5. This gives an estimate of the 
robustness of each approach. This shows that case-1,
case-2, case-3 and case-4 out perform the original 
model in 77%, 73%, 50% and 90%, of the trials 
respectively, indicating that case-4 is the most robust. 
From these two comparisons, we observe that, overall, 
model corrections obtained for cases 1 and 3 perform 

the better than cases 2 and 4 where the correction 
function is limited to only an additive term. 

The predictive capability of the best model 
found for each case is shown in Fig 6-9. Each figure 
compares for the 16 validation data points the predicted 
values from the original model and the new model. The
observed values are also shown in these figures. Note 
that the timings (y-axis) are in log scale. The data point 
numbers represent different problem instances (i.e., 
different sizes or different number of time steps) and 
different processor counts.  Generally, the larger data 
point numbers (>4) correspond to larger problem sizes 
or larger processor counts hence exhibiting larger 
communication times. Fig 6-9 show that while the 
original model prediction is better for smaller data point 
numbers (corresponding to smaller communication 
times), models obtained using MECP are better for 
larger data point numbers (for larger communication 
times). From a modeling point of view, a model that 
performs well for larger communication times is more 
valuable as these times contribute more to the overall 
time. Therefore we conclude that the model obtained 
using MECP is more useful.

  Parameters                                    Settings 
=======================================
  Function set                           +, - , x, /, ^ ,  log, exp
  Terminal set                                R, nx, np, T, tcomm
  Population Size            3000
  Max. No. Generations            100
  Crossover           90 %
  Mutation            10 %
  Selection Strategy             Graduated Elitist
  Max. Initial depth              7

Table 1. GA/GP parameter settings for MECP
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Figure 4. Prediction errors for the different models
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Figure 5. Frequency of improved prediction than the 
original model in the random trials
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Figure 6. Comparison of the observed values, and 
predicted values by the original model and the best 
model for Case-1
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Figure 7. Comparison of the observed values, and 
predicted values by the original model and the best 
model for Case-2
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Figure 8. Comparison of the observed values, and 
predicted values by the original model and the best 
model for Case-3
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Figure 9. Comparison of the observed values, and 
predicted values by the original model and the best 
model for Case-4

Fitted
Parameters

Original 
model

Prediction

Lower 
Bound

Upper
Bound

g 2.45E-08 2.00E-09 2.00E-07

h 1.13216 1 1.5

i 1.69E-05 1.00E-06 1.00E-04

j 1.62E-07 1.00E-08 1.00E-06

Table 2. Summary of fitted values for the model 
parameters



III. CONCLUSIONS

The GA/GP Model Error Correction procedure 
used in this paper demonstrates a promising approach to 
correct model errors in a parallel performance model. 
This approach works by augmenting an existing model 
either by adding an error correction term (cases 2 and 4) 
or by including an error correction term in the function
(cases 1 and 3). The strength of this procedure is that it 
can potentially capture difficult to model features such 
as noise, message contention, or I/O contention.   For 
the EVH1 code, this procedure resulted in a 
significantly improved model for predicting 
communication times (particularly for large processor 
counts) on the IBM P690 architecture. All four 
variations of this approach (cases 1-4) showed 
improved results than the original model. In comparing 
these cases, case-1 produced the best model and case-4 
was the most robust. While the semi-empirical 
component of the model contains certain specificities to 
the target application, the approach used to obtain the 
error correction component of the model is very generic 
and could be easily used to model other codes running 
on parallel architectures. Therefore we conclude that 
this approach shows promise and could be used in other 
applications.
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