
PARALLEL PERFORMANCE MODELING USING A GENETIC PROGRAMMING BASED ERROR

CORRECTION PROCEDURE

Kavitha Raghavachar, North Carolina State University, kraghav@ncsu.edu
Kumar Mahinthakumar, North Carolina State University, gmkumar@ncsu.edu

Patrick Worley, Oak Ridge National Laboratory, worleyph@ornl.gov
Emily Zechman, North Carolina State University, emzechma@unity.ncsu.edu

Ranji Ranjithan, North Carolina State University, ranji@ncsu.edu

Keywords: Error correction procedure, genetic
programming.

Abstract

Application performance models provide
insight to designers of high performance computing
(HPC) systems on the role of subsystems such as the
processor or the network in determining application
performance and allow HPC centers to more accurately
target procurements to resource requirements.
Performance models can also be used to identify
application performance bottlenecks and to educate
users on scalability issues. The suitability of a
performance model, however, for a particular
performance investigation is a function of both the
accuracy and the cost of the model.

 A semi-empirical model developed in an
earlier publication for an astrophysics application was
shown to be inaccurate when predicting communication
cost for large numbers of processors. It was
hypothesized that this deficiency was due to the
inability of the model to adequately capture
communication contention (threshold effects) as well as
other unmodeled components such as noise and I/O
contention. In this paper we present a new approach to
capture these unknown features to improve the
predictive capabilities of the model. We adopted a
black-box model error correction procedure that uses
evolutionary algorithms to find an error correction
component to augment the existing model. Four
variations of this procedure were investigated and all
were shown to produce improved results than the old
model.

I. INTRODUCTION

Achieving high performance on parallel
applications can be challenging. Performance of a
parallel application depends primarily on two
characteristics, one pertaining to the application and the
other pertaining to the machine. Application
characteristics include the primary algorithmic kernels,
programming language, parallelization strategy,

problem size and other input parameters. Machine
characteristics include hardware metrics, such as
processor performance, memory performance and
network performance, and software metrics, including
compiler performance and efficiency of communication
and math libraries. Producing applications that work
well across a wide range of high performance
computing (HPC) platforms is a non-trivial task
because the machine characteristics and their
interdependence on application characteristics vary
from platform to platform. The aforementioned reasons
also make performance prediction a difficult task. In
recent years, performance prediction for parallel
architectures has attracted considerable attention,
ranging from kernel benchmarking studies, application
performance studies, performance modeling, and
detailed comparative analysis of newer architectures
[e.g., [1], [7], [8], [6]].

This paper uses the finite-difference
astrophysics code EVH1 (Enhanced version of Virginia
Hydrodynamics) containing over 6500 lines of Fortran
and MPI (Message Passing Interface, Gropp et al. 1999)
[3]. In earlier work [5], EVH1 runtime was modeled for
2-Dimensional (2D) and 3-Dimensional (3D) problems
on two different architectures. A semi-empirical model
was used in this study involving a set of machine and
application parameters. These model parameters were
then fitted using a Levenberg-Marquadt procedure
using a subset of the measured data. In this paper we
restrict our attention to modeling communication time
for 2D problems on a single architecture. While EVH1
deals with a specific application area, the algorithmic
kernels used are representative of many numerically
intensive finite-difference codes. Therefore modeling
methodologies used in this paper have more general
applicability.

Model error correction for performance models

Parallel performance models typically have
several components (e.g., communication contention,
non-uniform memory access, I/O, etc) that are not
adequately represented by terms in the performance

model or not adequately captured by the model
parameters. One way to address these deficiencies is to
create another function (model error correction term)
that augments the original model by capturing these
unmodeled features. In this paper, the Model Error
Correction Procedure (MECP) [9] is used to identify a
model error correction term while tuning the original
model parameters. MECP uses an evolutionary
computation-based implementation to improve the
predictability of the original model by conducting these
numeric and symbolic searches simultaneously.

Evolutionary algorithms (EA) are search
methods that operate on a population of solutions and
mimic the mechanisms of natural selection to find
optimal solutions for a defined problem. In the EA-
based MECP used in this paper, genetic programming
(GP) operators are used for generating the error
correction term (ect) and genetic algorithm (GA)
operators are used for determining the model parameter
values. GA performs a numeric search by representing
a solution as a string of real, binary or integer values.
GP conducts a symbolic search over a set of
mathematical operators, such as +, - , x and /, to
construct a function that minimizes the error between a
set of data and a function output

Fig 1 shows an example of how GP works on
a set of data to form a function. GP works with two sets
of variables. One set is called the terminal set, which
contains independent constants and variables, such as x
and y. The other set, known as the functional set,
contains the operators, which are included based on the
perceived degree of complexity of the regression.
Symbolic regression is performed using these two
variable sets. GP explores a large number of possible
functional relationships to identify the function that best
fits the data.

Terminal set (X, Y)

 Genetic Programming

 Fitted Function
Data set for
 training

 Functional set

Figure 1. Example of GP procedure

In the GP procedure, each potential solution
(i.e., error correction term), composed of a subset of the
terminal set variables and functional set elements, is
represented by a tree data structure as shown in Fig 2.
These potential solutions in a population undergo
crossover, mutation, and selection as in any EA-based
search.

.

Figure 2. A sample solution representation in GP

MECP for EVH1 communication model

As derived in [5], a semi-empirical
performance model of EVH1 consisted of two
components: computation and communication. While
the prediction from the computation component was
shown to be satisfactory, the communication model
prediction, particularly for large processor counts, was
poor. Hence the communication model was corrected
using MECP. The results we present in this paper are
for the 2D communication model for the IBM P690
architecture at Oak Ridge National Laboratory
(Cheetah). The original EVH1 2D communication
model is given by [5]:

2

2

2

2

(1)
comm

h

g
nx

nx
np

t T nx
n

n

f
x

p i jn
p

  
  

       
        

where,
 g, h, i and j are the constants to be fitted and f, is
 fixed.

 T = Stop time
 nx = Horizontal resolution
 np = Number of processors

GP

y = x*log(3.0+x)+
-
*
/

exp
log

4.55

3.44

2.33

1.42

0.61

Yx

-

* cos

y y

y

/

x

 
y

xy
C t

pred

cos2 


Figure 3. Model Error Correction Procedure

All parameters to be fitted are machine
dependent. Here f represents the number of cycles
proportional to the simulation time, g represents the per
word memory-to-memory copy time, i represents the
message latency, j represents the message bandwidth,
and h represents non-linearity due to message
contention. The value of f, which is obtained from the
computation model, was fixed equal to 4965 [5]. In the
original model, these fitted machine parameters were
bounded based on acceptable values for the IBM P690
architecture (see [5] for details) as shown in Table 2.
The same guidelines are adopted here with slight
variations as described next. Four variations of MECP
based communication models are investigated. These
cases are described below.

Case-1: The ect includes the function of the original
model and the parameter values are fixed to those of the
original model.

(,)calculated commt f t ect (1)

Case-2: The ect is added to the function of the original
model and the parameter values are fixed are fixed to
those of the original model.

calculated commt t ect  (2)

Case-3: The ect includes the function of the original
model and the parameter values are not fixed, but
bounded around the original values (Table 2).

(,)calculated commt f t ect (3)

Case-4: The ect is added to the function of the original
model and the parameter values are not fixed, but
bounded around the original values (Table 2).

calculated commt t ect  (4)

where,
 ect = Error correction term
 tcomm = original communication model
 (, ,)ect f nx np T

The error correction term is a function of input
parameters nx, np, T. Since the parameters are not fixed
in equations (1) and (2), the unknown machine
parameters are found by GA for these cases. The ect is
considered as a black-box and is not shown here. The
objective function to be minimized in the GA/GP
procedure is a measure of the error between the
calculated and measured communication times and is
given by:

 GP/GA Procedure

 New Modeled
 Parameters

 +
 GP Error Correction
 Function

Send Input
Parameters Minimize
 Change Send Modeled Error
 Parameters Output
 Model design
 Parameters

 [Problem Size,
 No. Processors, etc…]

Input
Parameters

Improved
Modeled

Communication
Time

Observed
Communication

Time
Approximate

Model

Modeled
Communication

Time

GP
PROCEDURE

GA Procedure

2()observed calculated
Error

n

t t  


where,
 n = Number of data points
 tobserved = Observed communication time
 tcalculated = Calculated communication time

The observed communication times (tobserved)
used in this process are called the “training data”. The
combined GA/GP procedure is depicted in Fig 3. The
parameters nx,, np, T and the measured communication
time are the inputs to the current model for estimating
tcomm. GA searches for the new values for the model
parameter g, h, i and j in the original model tcomm. GP
searches over symbols and constants to construct the
error correction term. These two searches in concert
provide the improved communication time model that
tends to minimize the error.

II. RESULTS AND DISCUSSION

A total of 32 data points used in [5] are used
for demonstrating the application of MECP. Half the
data was used for fitting and the other half for testing
the prediction accuracy.

Table 1 summarizes the parameters and
settings used in the GA/GP procedure. As GA and GP
are based on probabilistic operators, the robustness of
the GA/GP procedure was first tested for 30 random
trials for each of the four cases [Eqns (1), (2), (3), (4)]
As the procedure did not converge in four out of the
120 trials, they were excluded from these calculations.
These results are based on a validation data set
consisting of 16 data points that were used for testing
the predictive capability.

A comparison of the prediction errors for the
original model and the best models obtained (out of the
random trials) for the four cases are shown in Fig 4.
This figure shows that the best solutions for all 4 cases
outperform the original model. Also, case-1 results in
the best model with an error less than half of the
original model. The frequency of each of the cases
performing better than the original model in the random
trials is compared in Fig 5. This gives an estimate of the
robustness of each approach. This shows that case-1,
case-2, case-3 and case-4 out perform the original
model in 77%, 73%, 50% and 90%, of the trials
respectively, indicating that case-4 is the most robust.
From these two comparisons, we observe that, overall,
model corrections obtained for cases 1 and 3 perform

the better than cases 2 and 4 where the correction
function is limited to only an additive term.

The predictive capability of the best model
found for each case is shown in Fig 6-9. Each figure
compares for the 16 validation data points the predicted
values from the original model and the new model. The
observed values are also shown in these figures. Note
that the timings (y-axis) are in log scale. The data point
numbers represent different problem instances (i.e.,
different sizes or different number of time steps) and
different processor counts. Generally, the larger data
point numbers (>4) correspond to larger problem sizes
or larger processor counts hence exhibiting larger
communication times. Fig 6-9 show that while the
original model prediction is better for smaller data point
numbers (corresponding to smaller communication
times), models obtained using MECP are better for
larger data point numbers (for larger communication
times). From a modeling point of view, a model that
performs well for larger communication times is more
valuable as these times contribute more to the overall
time. Therefore we conclude that the model obtained
using MECP is more useful.

 Parameters Settings
=======================================
 Function set +, - , x, /, ^ , log, exp
 Terminal set R, nx, np, T, tcomm
 Population Size 3000
 Max. No. Generations 100
 Crossover 90 %
 Mutation 10 %
 Selection Strategy Graduated Elitist
 Max. Initial depth 7

Table 1. GA/GP parameter settings for MECP

6.04
5.54

4.87

3.66

8.18

0

1

2

3

4

5

6

7

8

9

original
model

MECP
case-1

MECP
case-2

MECP
case-3

MECP
case-4

Error comparison of old model Vs 4 cases of MECP

 E
rr

or

Figure 4. Prediction errors for the different models

77% 73%

50%

90%

0

10

20

30

40

50

60

70

80

90

100

case-1 case-2 case-3 case-4

MECP - 4 cases

Fr
eq

ue
nc

y

Figure 5. Frequency of improved prediction than the
original model in the random trials

0

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data points

T
im

e
 (

S
e
c
s
)

New _Model

Observed_value

Old_Model

Figure 6. Comparison of the observed values, and
predicted values by the original model and the best
model for Case-1

0

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data points

T
im

e
 (

S
e
c
s
)

New _Model
Observed_value
Old_Model

Figure 7. Comparison of the observed values, and
predicted values by the original model and the best
model for Case-2

0

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data points

T
im

e
 (

S
e
c
s
)

New _Model
Observed_value
Old_Model

Figure 8. Comparison of the observed values, and
predicted values by the original model and the best
model for Case-3

0

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data points

T
im

e
 (

S
e
c
s
)

New _Model
Observed_value
Old_Model

Figure 9. Comparison of the observed values, and
predicted values by the original model and the best
model for Case-4

Fitted
Parameters

Original
model

Prediction

Lower
Bound

Upper
Bound

g 2.45E-08 2.00E-09 2.00E-07

h 1.13216 1 1.5

i 1.69E-05 1.00E-06 1.00E-04

j 1.62E-07 1.00E-08 1.00E-06

Table 2. Summary of fitted values for the model
parameters

III. CONCLUSIONS

The GA/GP Model Error Correction procedure
used in this paper demonstrates a promising approach to
correct model errors in a parallel performance model.
This approach works by augmenting an existing model
either by adding an error correction term (cases 2 and 4)
or by including an error correction term in the function
(cases 1 and 3). The strength of this procedure is that it
can potentially capture difficult to model features such
as noise, message contention, or I/O contention. For
the EVH1 code, this procedure resulted in a
significantly improved model for predicting
communication times (particularly for large processor
counts) on the IBM P690 architecture. All four
variations of this approach (cases 1-4) showed
improved results than the original model. In comparing
these cases, case-1 produced the best model and case-4
was the most robust. While the semi-empirical
component of the model contains certain specificities to
the target application, the approach used to obtain the
error correction component of the model is very generic
and could be easily used to model other codes running
on parallel architectures. Therefore we conclude that
this approach shows promise and could be used in other
applications.

 IV. REFERENCES

[1] Dunigan, T.H., M.R. Fahey, J. B. White, and
P. H. Worley, (2003). Early evaluation of the
Cray X1, Proceedings of SC 2003, Phoenix,
AZ.

[2] Genetic Programming for Subjective Fitness
Function Identification. Springer Link-Volume
3003/2004. Title: Genetic Programming: 7th
European Conference, EuroGP 2004,
Coimbra, Portugal, April 5-7, 2004.
Proceedings.

[3] Gropp, W., Lusk W., and Skjellum A., (1999).
Using MPI: Portable Parallel Programming
with the Message-Passing Interface, 2nd

edition, The MIT Press, Cambridge, MA.
[4] Koza, John R.: Genetic Programming II. The

MIT Press, Cambridge, Massachusetts (1994)
[5] Mahinthakumar, G., M. Sayeed, J. Blondin, P.

Worley, A. Mezzacappa, and R. Hix (2004).
Performance Evaluation and Modeling of a
Parallel Astrophysics Application,
Proceedings of the High Performance
Computing Symposium 2004, p. 27-33, Ed:
Joerg Meyer, The Society for Modeling and
Simulation International, ISBN 1-56555-278-
4, Arlington, VA

[6] Parashar, M., and Hariri, S., (2000).
Interpretive Performance Prediction for
Parallel Application Development, Journal of
Parallel and Distributed Computing, Vol. 60,
No. 1, pp. 17 – 47, January 2000.

[7] Petrini, F., D. J. Kerbyson, and S. Pakin,
(2003). The case of the missing supercomputer
performance: achieving optimal performance
on the 8,192 processors of ASCI Q,
Proceedings of SC 2003, Phoenix, AZ.

[8] Vetter, J.S., and A. Yoo, (2002). An empirical
performance evaluation of scalable scientific
applications, Proceedings of SC 2002, Dallas,
TX.

[9] Zechman, E. M. (2005). Improving
Predictability of Simulation Models using
Evolutionary Computation-Based Methods for
Model Error Correction, Ph.D. dissertation,
North Carolina State University, Raleigh, NC.

Acknowledgements

This work was supported by the Department of
Energy’s SciDAC program (Scientific Discovery
through Advanced Computing). The authors gratefully
acknowledge the supercomputer resources provided by
the National Center for Supercomputing Applications
and the Oak Ridge National Laboratory that was
necessary for this work.

