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A collection of MATLAB classes for computing spherical harmonic transforms are presented and

used to solve simple partial differential equations on the sphere. The spectral synthesis and
analysis using fast Fourier transforms and Legendre transforms with the associated Legendre

functions are presented in depth. A set of methods associated with a spectral field class provides

spectral approximation to the ∇·, ∇×, ∇, and ∇2 in spherical geometry. Laplace inversion and
Helmholtz equation solvers are also methods for this class. Investigation of algorithms and analysis

for spherical harmonic transform options for parallel high performance computers are discussed

in the context of global climate and weather models.
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1. INTRODUCTION

The spherical harmonic transform is a critical computational kernel of the dynam-
ics portion of spectral atmospheric weather and climate codes. The announcement
of sustained rates of 26.5 Tflops on the Japanese Earth Simulator (ES40, with
NEC SX-6+ nodes) for an atmospheric simulation motivated a study of algorith-
mic options for implementing spectral transforms. The paper [Shingu et al. 2002]
that won the 2002 Gordon Bell Award in Supercomputing claimed a 26.58 Tflops
computational rate on the full 640 nodes of the Japanese Earth Simulator. The
core of the computation of the atmospheric general circulation model (the AFES
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code) that achieved this rate is a multi-level spectral transform. The dynamics
part of the calculation on 640 nodes accounted for 62% of the total time with the
Legendre transform alone accounting for 51.8%. The columnar physics is reported
at only 12% of the total run-time. The resolution used was T1279 with 96 levels
and a (3840 x 1920) horizontal grid. This is high resolution for a weather model
and ultra-high for a climate model which must be integrated for years instead of
days. The horizontal resolution typically used for climate simulations in the US is
T85L26, which requires a (256 x 128) horizontal grid [Drake et al. 2005; Worley
and Drake 2005]. The parallel algorithm used for the high resolution study and
benchmarking is given in [Foster and Worley 1997]. The FFT algorithm used is
given in [Temperton 1983] and is a Fortran code specifically designed for vector
computation of multiple (blocked) fast Fourier transforms.

The spatial resolution of a spectral model is referred to as a truncation and
specifies the number of spectral modes retained in the representation of a scalar
field. Spectral methods have been applied to a wide range of fluids problems and
the theory of their application is given in [Canuto et al. 1988]. For flows in a global
domain, the prefered basis set for approximation of functions on the sphere, is the
spherical harmonic basis. The spherical harmonic transform is used to project grid
point data on the sphere onto the spectral modes in an analysis step and an inverse
transform reconstructs grid point data from the spectral information in a synthesis
step. The synthesis step is described equation (1). The analysis step is described
by equations (2) and (3) consisting of the computation of the Fourier coefficient ξm

and the Legendre transform which incorporates the Gaussian weights corresponding
to the Gaussian latitudes µj = sin(θj).

ξ(λ, µ) =
M∑

m=−M

N(m)∑
n=|m|

ξm
n P

m
n (µ)eimλ, (1)

ξm
n =

J∑
j=1

wjξ
m(µj)Pm

n (µj), (2)

ξm(µj) =
1
I

I∑
i=1

ξ(λi, µj)eimλi . (3)

For a Gaussian grid the triangular spectral truncation requires the number of
longitudes I ≥ 3M + 1 and number of latitudes J = I/2 , here M refers to the
modal truncation number. In what follows we will assume a triangular truncation,
though extension to other truncations is straightforward.

A performance model of the parallel spectral transform can be developed to
estimate the time for a multi-level calculation. The computational operation counts
and communication cost estimates are based on a model in [Foster and Worley 1997]
for a one dimensional decomposition and modified by Rich Loft (NCAR) to reflect
a simple transpose between FFT and Legendre transform phases including vertical
levels. The time for the FFT, the Legendre transform and the communication
overhead are estimated using machine dependant rate constants a,b,d, and e.
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Time for FFT = 5a(6L+ 1)IJlog2(I)
Time for LT = 2b(6L+ 1)JM2

Time in COMM = dP + 2e(6L+ 1)J(2M + 1)
Nomenclature:

M wave number resolution, eg. TM
I number of longitudes (I ≥ 3M + 1 )
J number of latitudes (J = I/2)
L number of vertical levels
P number of nodes (computational unit doing FFT or LT)
a computational rate of FFT in flops/node
b computational rate for LT in flops/node
d latency factor
e bandwidth factor

Using this model with estimates of network bandwidth and the speed of a node
in computing FFTs and Legendre transforms, we can project the overall, sustained
computational rate of a computer for performing spherical harmonic transforms.
Refinement of the performance model requires an experimental determination of
the a,b,d, and e parameters. This can be done with kernel tests or by fitting
performance data. The following figure shows the balance of latency (nanosec-
onds), bandwidth (GigaBytes per second) and computational performance (Gi-
gaFlops/sec) on the Legendre transform and FFTs, required by a system that will
compute the spherical harmonic transforms for an atmospheric model with 96 levels
at the T1279 resolution using 1920 processing nodes.

2. FORMULATION OPTIONS

2.1 BLAS Formulation

The spherical harmonic transform can be formulated in terms of matrix operations.
This follows from the fact that it is a linear transformation of one basis representa-
tion to another. Since the Fourier transform calculation is most efficiently organized
with the FFT algorithms what we describe here is matrix formulation for the Legen-
dre transforms. A generalization to non-Gaussian grids is also possible as reported
in [Swarztrauber and Spotz 2000]. For high performance hardware the efficiency of
specialized matrix operations is well known and forms the basis of the LINPACK
benchmark. The Basic Linear Algebra Subroutines (BLAS) have been optimized
by most vendors and offer near peak rates. Since the Legendre transform can be ex-
pressed in matrix form we are led to explore the possibility of using BLAS routines
for the computational kernel of the spherical harmonic transform.

2.1.1 Li’s Principle Sums. In an unpublished study, Li [Li 1996] described the
principle sums that form the Legendre transform in the synthesis and analysis
phases and determined a matrix formulation that took advantage of the symmetry
of the associated Legendre functions. The principle sum for the synthesis phase is

sm
j =

N(m)∑
n=m

ξm
n P

m
n (µj) (4)
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Petaflop Balance for SHTrans
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Fig. 1. System balance required for a sustained petaflop calculating T1279 transforms on 1920

processing nodes.

where the ξm
n is the spectral coefficient of a field. The principle sum of the analysis

phase is

ξm
n =

J∑
j=1

sm
j P

m
n (µj) (5)
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where the sm
j = wjξ

m(µj) represents the product of the Gauss weight and the m-th
Fourier coefficient at latitude j.

The matrix-matrix multiplications representing these sums requires some addi-
tional notation. Let

Pm =



Pm
m (µ1) Pm

m+1(µ1) . . . . . . Pm
N(m)(µ1)

Pm
m (µ2) Pm

m+1(µ2) Pm
N(m)(µ2)

...
. . .

...
...

. . .
...

Pm
m (µJ/2) Pm

m+1(µJ/2) . . . . . . Pm
N(m)(µJ/2)


(6)

be the matrix of associated Legendre functions for mode m at half of the Gauss
points. Since Legendre functions are symmetric about the equator and the Gauss
points are anti-symmetric, the algorithm does not require computation of the func-
tions at all the points. The operative identities are

Pm
n (µJ+1−j) = Pm

n (−µj) = (−1)n−mPm
n (µj). (7)

Introducing a vector notation for the spectral coefficients,

xm =


ξm
m

ξm
m+1
...

ξm
N(m)

 (8)

and

x̃m =


ξm
m

−ξm
m+1
...

(−1)N(m)−mξm
N(m)

 (9)

the first principle sum can be represented in a matrix-matrix multiplication formu-
lation as 

sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1

 = Pm[xmx̃m]. (10)

In this equation the sm
j ’s and the ξm

n ’s are complex while the P matrix is real.
Computational performance may be enhanced by explicitly separating the complex
vectors into real and imaginary parts forming input and output matrices with four
columns instead of two. The inverse transform (analysis phase) involves two steps.
First, a matrix-matrix multiply step uses the transpose of the Legendre matrix,

τm
1 τ̃m

J

τm
2 τ̃m

J−1
...

...
τm
J/2 τ̃m

J/2+1

 = (Pm)T


sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1

 . (11)
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The intermediate quantities, τm
n and τ̃m

n , are then used to compute the spectral
coefficients,

ξm
n = τm

n + (−1)n−mτ̃m
n . (12)

The formulation has been implemented in MATLAB, where a fast BLAS is avail-
able when matrix notation is used. This allows us to test the formulation as well
as the assumptions of advantage with specialized library routines. The MATLAB
code and class structure used to express the formulation are described in section 4.

By timing the computational portions of the transforms we note that a con-
siderable amount of time is spent in packing and unpacking Fourier and spectral
coefficients and very little time in the matrix multiply and FFT. Both of these
computational steps are highly optimized in MATLAB, using FFTW for the FFTs
and LAPACK for the matrix multiply. This is very similar to the situation with
using math libraries on supercomputers since these are highly optimized but may
in fact require incompatible storage orders.

2.2 Exposed Loop Formulation

A formulation that does not require explicit data movement to accommodate special
purpose routines, leaves much to the compiler. A good compiler will recognize
BLAS constructs and take appropriate action depending on the size of loops, etc.

2.2.1 Odd-Even Constructs. The basic computational loops as given in Ren-
Cang Lis formulation are the same, but we split them in such away as to exploit
the symmetry of the Legendre functions. This is done by splitting into odd and
even modes. The first sum can be written in two parts for (1 ≤ j ≤ J/2),,

sm
j =

N(m)∑
n=m

ξm
n P

m
n (µj) (13)

and

sm
J+1−j =

N(m)∑
n=m,2

ξm
n P

m
n (µj)−

N(m)∑
m+1,2

ξm
n P

m
n (µj). (14)

The second sum is represented in different ways when (n−m) is odd or even,

ξm
n =

J/2∑
j=1

(sm
j + sm

J+1−j)P
m
n (µj) ,mod2(n−m) = 0, (15)

ξm
n =

J/2∑
j=1

(sm
j − sm

J+1−j)P
m
n (µj) ,mod2(n−m) = 1 (16)

2.3 Legendre Functions On-the-Fly Formulation

2.3.1 Recursions. In [4], a 4 term recursion is given for computing the normal-
ized associated Legendre functions. Since the recursion can be applied to an entire
column of the Pm matrix with vector operations, it may be advantageous to com-
pute the functions on the fly. This has the added advantage of reducing the storage
required for the spectral transform from O(M3) to O(M2) .
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The normalized Legendre functions are defined by

Pm
n (θ) ≡ 1

2nn!

√
(2n+ 1)(n−m)!

2(n+m)!
cosm(θ)

dn+m

dµn+m
(µ2 − 1)n, (17)

where µ = sin θ . The four-term recursion starts from pre-computed and stored
values of the matrices P0 and P1 . Denoting a single column of the Pm matrix by

~Pm
n =

 Pm
n (µ1)

...
Pm

n (µJ/2)

 , (18)

the recurrence in [4, equation D.1] is given by

~Pm+1
n+1 =

1
an+m+1

(bnan+m+1
~Pm−1

n−1 − an−m+1
~Pm−1

n+1 + bnan−m−1
~Pm+1

n−1 ). (19)

The coefficients of the recursion are given explicitly by an =
√
n(n+ 1) and bn =√

(2n+3)
(2n−1) . Using this recursion the columns of the other matrices can be computed

using vector operations. These can be computed on the fly as part of the m-loop of
the Legendre transforms in either formulation. Since the recurrence can be split into
odd and even modes it fits well with the open loop formulation without requiring
either duplicate computation or intermediate storage.

An discussion of performance of these options on vector and scalar processors
was given in [D’Azevedo 2004].

3. ALTERNATIVE ALGORITHMS

A number of papers propose alternative algorithms for the spherical harmonic trans-
form. In this section we will briefly survey these in an effort to gauge their appro-
priate use for high resolution climate and weather modeling. The possibility of
replacing the transform kernel with a lower operation count algorithm, or of find-
ing a more efficient method of computation is what motivates the survey. Our
conclusion is that new formulations of the larger dynamical problem and other
means of evaluating derivatives for the partial differential equations do indeed offer
more promising algorithms. These new algorithms represent the progress in the
numerical analysis of spectral methods that has occurred over the last decade but
has not yet found its way into production use.

3.1 THE FAST SPHERICAL HARMONIC ALGORITHMS

Driscoll and Healy [Driscoll and Healy, Jr. 1989] introduced the first exact fast
spherical harmonic transform in 1989. Subsequent refinements [Healy, Jr. et al.
1996; Inda et al. 2001; Mohlenkamp 1999] have resulted in parallel versions with
reasonable accuracy, stability and performance. The asympototic operation count
for the fast algorithm is M2(log 2M)2 . A cross-over point for performance in
comparision with the direct method occurs at M=128 with a savings by a factor of
three at M=512. For M=1279 and other high resolution cases, the operation count
of the transform can be reduced dramatically.
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An approximate fast transform has been developed using the ideas in [Boyd
1992]. The new algorithm [Suda and Takami 2002] is based on fast polynomial
interpolation accelerated by the Fast Multipole Method. The asymptotic operation
count is M2 logM , an improvement on the Driscoll and Healy algorithm. The
crossover point with the direct method is observed at M=512. A speedup factor of
1.8 is observed at M=1365.

3.2 FFT2D Derivative Evaluations

The main use of the spectral method is in the highly accurate and efficient rep-
resentation of differential terms in numerical approximations to partial differential
equations. For the flow equations of the atmosphere used in weather and climate
modeling, the spherical harmonic spectral representation leads to diagonal forms
for the Laplacian operator. The solution to an Helmoltz equation is the critical step
in a semi-implicit time discretization that effectively filters gravity waves and sta-
blizes long time integrations. The spectral methods offer an important advantage
for the solution of this Helmholtz equation over more standard grid point (finite
difference, control volume and finite element) methods.

An alternative way to evaluate the differential terms uses a 2-D (lon-lat) FFT
where the latitude direction is taken on great circles. The paper [W.F. Spotz
and Swarztrauber 1998] studies Merilee’s pseudospectral model and finds a FFT
based algorithm that exactly matches results from a spherical harmonic transform
model. The evaluation of derivatives can be accomplished with I2 log I operations.
The argument is made that, with the addition of a fast projection algorithm to
ensure all modes remain in the spherical harmonic space, the FFT2D based model
is the fastest spherical harmonic algorithm. This method was coupled with two and
three level semi-Lagrangian time-stepping methods for a very efficient, high order
solution algorithm [Layton and Spotz 2002]. The key new element that makes these
algorithms attractive is the existence of a fast spherical harmonic projection which
stabilizes the Fourier method.

3.3 Fast Spherical Harmonic Projection Algorithms

The projection of a function onto the spherical harmonic modes (analysis) followed
by the inverse transformation back to grid point space is a filter of the original
function. If there is no need to use the spectral coefficients to evaluate derivatives,
then the forward and inverse transforms can be combined algebraically to produce
an explicit projection operator. Several algorithms have been studied in [Spotz and
Swarztrauber 2001] and compared in single processor and parallel implementations.

A more interesting method for evaluating the projection utilizes a Fast Multipole
Method. The multipole projection was proposed as an approximate, fast projection
method. It is based on an application of the Christoffel-Darboux formula relating
the sum of products of associated Legendre functions. Several variants have been
developed including [Holmes et al. 1996; Yarvin and Rokhlin 1998]. The study
in [Spotz and Swarztrauber 2001] proposes several other algorithms and concludes
that the Weighted Orthogonal Complement(WOC) algorithm developed in [Swarz-
trauber and Spotz 2000] is the most efficient in terms of operation count, cache
utilization and overall performance for the resolutions studied. This algorithm for
Legendre projection is faster than the multipole projection method in its known
ACM Transactions on Mathematical Software, Vol. X, No. Y, ?? 200?.
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implementations to date.

4. MATLAB SPHERICAL HARMONIC CLASSES

The MATLAB class structures are defined in a subdirectory usually called my classes.
Following ESMF style conventions [Collins et al. 2005], the methods and data struc-
tures for the spectral transform fall into two classes: the @gauss grid and the @spec-
tral field. The gauss grid class defines the evenly spaced longitudinal points and the
latitudinal points corresponding to the Gauss points of the spherical grid. In ad-
dition, the geometric information, such as the radius of the sphere and the values
of the associated Legendre functions at the points are stored. The standard get,set
and display methods are provided. In the private methods are grule, that calcu-
lates the Gauss points and weights, and shtraninit, that computes the Pm matrix
to initialize the spherical harmonic transform. The initialization of a @gauss grid
object, specifies the number of latitudinal points, nj. A triangular truncation of the
spectral coefficients is assumed, so for example, if nj = 32, the spectral transform
is initialized for T21 spectral fields.

Spherical harmonic transforms act on fields that are defined on spherical Gaus-
sian grids. The @spectral field class defines such a field. The analysis method, that
computes spectral coefficients from grid point values of a field, is shtrana. The
inverse transform (synthesis), that computes grid point values from given spectral
coefficients, is called shtrans. The Legendre transforms (forward and backward)
are private methods. Algorithmic options such as discussed above may be included
here, but the default is the open loop formulation. The MATLAB complex FFTW
is used by the shtrana(s) methods to compute the real transforms. In addition to
the basic set, get and display methods, a variety of differential operators are imple-
mented. The method library that uses spherical transforms to discretize differential
operators in spherical geometry includes:

div - the spherical (horizontal) divergence operator, ∇· 1
a

[
1

1−µ2
∂U
∂λ + ∂V

∂µ

]
curl - the curl operator, k · ∇× 1

a

[
1

1−µ2
∂V
∂λ − ∂U

∂µ

]
grad - the spherical (horizontal) gradient operator, ∇

(
1
a

∂
∂λ ,

1−µ2

a
∂

∂µ

)
del2 - the spherical (horizontal) Laplacian operator, ∇2 1

a2

[
1

1−µ2
∂2

∂λ2 + ∂
∂µ

(
(1− µ2) ∂

∂µ

)]
del2inv - the inverse Laplacian operator (Laplace equation solution)
helmholtz - the solution of Helmholtz equation k2g +∇2g = f .
UVinv - the inversion operator for the vorticity, divergence and velocity

To calculate the divergence of (U, V ) the spectral coefficients are summed with the
derivative, Hm

n = (1−µ2)dP m
n

dµ of the spherical harmonic, according to the formula,

div(U, V )m
n =

1
a

J∑
j=1

[imUm(µj)Pm
n (µj)− V m(µj)Hm

n (µj)]
wj

(1− µ2
j )
. (20)
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The Um denotes the Fourier coefficient of the U = u cos θ field. Note that normally
multiplication by cos θ is necessary so that the vector field is differentiable at the
poles. All FFTs are computed in MATLAB using the native routines. This leads
to some inefficiency due to use of complex transforms for real fields, (see Exercise
3.6 of [Trefethen 2000]).

The curl of (U, V ) is calculated in spectral space from the formula

curl(U, V )m
n = −1

a

J∑
j=1

[imV m(µj)Pm
n (µj) + Um(µj)Hm

n (µj)]
wj

(1− µ2
j )

(21)

The gradient operator is not invariant under choice of coordinate system. The
operator is calculated in the (λ, µ) system as

∇(λ,µ)φ = (
1
a

∂φ

∂λ
,
1− µ2

a

∂φ

∂µ
) (22)

To convert to θ-coordinates we have ∇(λ,µ) = cos θ∇(λ,θ). The computation of the
components uses the Legendre synthesis with H rather than P in the summation
of cofficients. {

1
a

∂φ

∂λ

}m

n

=
1
a

∑
m

∑
n

imφm
n P

m
n (µ)eimλ (23)

and {
1− µ2

a

∂φ

∂µ

}m

n

=
1
a

∑
m

∑
n

φm
n H

m
n (µ)eimλ. (24)

Note that the first component computation could be done in Fourier space.
Similarly the Laplacian is calculated in spectral space using the eignfunction

relationship for the operator with the spherical harmonics,

∇2ψ
m
n = −n(n+ 1)

a2
ψm

n . (25)

This relation is inverted for the solution of Laplace’s equation using del2inv. A
similar derivation applies for the Helmholtz equation.

The inversion of the (U, V ) relationship with vorticity, ξ = k · ∇×v, and diver-
gence, δ = ∇·v, is given by the sums,

U(λi, µj) = −
M∑

m=−M

N(m)∑
n = |m|
n 6= 0

a

n(n+ 1)
[imδm

n P
m
n (µj)− ξm

n H
m
n (µj)] eimλi

V (λi, µj) = −
M∑

m=−M

N(m)∑
n = |m|
n 6= 0

a

n(n+ 1)
[imξm

n P
m
n (µj) + δm

n H
m
n (µj)] eimλi

A test method is provided along with a rudimentary plot method for spectral
fields as a unit test for each method of the spectral field class.
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Initialization of a spectral field requires a previous gauss grid object. The get
and set methods can be used to initialize the grid point values or the spectral
coeffecients.

The following are plots from the test method using field values of the spheri-
cal harmonic, Y 7

3 (λ, θ). To invoke this method from MATLAB requires that the
my classes subdirectory be added to the MATLAB path and that a gauss grid and
spectral field have been initialized. For example,

% addpath ~/Matlab/my_classes
% G = gauss_grid(’T42’,64);
% f = spectral_field(’test function’,G);
% test(f);

To take maximum advantage of the matrix formulations, MATLAB will use opti-
mized versions of the BLAS if certain environment variables are set when MATLAB
is invoked. For example, an alias may be useful such as

alias matlab=’export BLAS_VERSION=atlas_P4.so;
export LD_ASSUME_KERNEL=2.3.98;
/usr/share/linux.x86/Matlab6/bin/matlab’

Fig. 2. MATLAB output from test.

Here are several of the key programs for the spherical harmonic transform as
implemented in MATLAB.

5. BAROTROPIC VORTICITY EQUATION: MATLAB EXAMPLE

To demonstrate the use of the spectral transform in dynamics equations for the
atmosphere, the simplest setting is a barotropic vorticity equation. The velocity is
related to a horizontal stream function by v = k × ∇ψ. This stream function is
calculated by inverting the elliptic equation

∇2ψ = ξ, (26)
ACM Transactions on Mathematical Software, Vol. X, No. Y, ?? 200?.
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function f = shtrana(f)
% SHTRANA Spectral analysis of a spectral grid field
% Compute the spectral coefficients from the field grid
% point values using a spherical harmonic transform analysis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Method of spectral field class: Sept 2005
%—-—–—–—–————-—————-

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’); gp = get(f,’gp’);

%——————————————————–
xf =fft(gp,ni)/ni; %note normalization for MATLAB FFT

%order ni= 2n real transform coming out as r0,r1,r2...i2,i1
%multiply Fourier coefficients by the Gauss weights

for j=1:nj
xf(:,j)=wg(j)*xf(:,j);

end
f.sc = legtranOLa(xf,nj,mm,nn,kk,P); % inverse Legendre

Fig. 3. MATLAB implementation of spherical harmonic transform analysis

where ξ is the (absolute) horizontal vorticity, ξ = k ·curlv. The governing equation
of motion is given in terms of the potential vorticity

dη

dt
= 0. (27)

The potential vorticity is related to the absolute vorticity by η = ξ + f , where
f = 2Ω sin θ is the Coriolis term. The potential vorticity equation is written in
advective form with the material derivative

dη

dt
≡ ∂η

∂t
+ v · ∇η. (28)

The time integration algorithm directly treats the material derivative operator
using a semi-Lagrangian transport scheme. Particle tracking to determine ”depar-
ture points” uses MATLAB @slt grid class that extends the Gaussian grid with
extra halo points for interpolation methods.

The barotropic vorticity solution algorithm also follows the ESMF style [Collins
et al. 2005] specification of a gridded component model with a begin, run, finalize
steps. In brief, the solution algorithm is as follows:

(1) Begin method
(a) integration control initialization
(b) gauss grid initialization
(c) slt grid initialization
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function f = shtrans(f)
% SHTRANA Spectral synthesis to a spectral grid field
% Compute the grid point values from the spectral coefficients using
% a spherical harmonic transform synthesis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Output:
% f.sc - Output array of complex spectral coeffiecients (n,m)
% Local
% xf - matrix of Fourier coefficients ordered (m,j)
% Method of spectral field class: Sept 2005
%—-—–—–—–—————————–

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’);

%——————————————————–
xf = legtranOLs(f.sc,nj,mm,nn,kk,P); % inverse Legendre transform

%make xf into a hermetian array for real transform back
for m=1:ni/2

xf(ni-m+1,:) = conj(xf(m+1,:));
end
f.gp =real(ifft(xf,ni))*ni; % inverse Fourier transform, note normalization

Fig. 4. MATLAB implementation of spherical harmonic synthesis

(d) spectral field initialization (prognostic initial conditions)
(e) spectral field initialization (diagonsitic initial conditions)

(2) Run method (loop until done)
(a) slt particle tracking and departure point calcuation
(b) slt interpolation of η at departure points
(c) slt interpolation of right hand side at departure points
(d) update η to new time level
(e) UVinv invert diagnostic relation to get new velocity v
(f) del2inv invert Laplace operator to get stream function ψ

(3) Finalize method

The example MATLAB program BV.m integrates the barotropic vorticity equa-
tion for three days starting from a Rossby-Haurwitz wave four initial condition.
The following plots show the final solution using a T10 spectral truncation for the
gauss grid.

6. CONCLUSIONS

A set of algorithms and MATLAB classes for computing spherical harmonic trans-
forms was described. This set of classes enables a number of algorithmic studies and
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function x = legtranOLa(s,nj,mm,nn,kk,P)
% Compute a Legendre transform analysis
% Input:
% s - complex Fourier coeffecients ordered (m,j)
% nj = number of Gauss latitudes
% mm, nn,kk are the truncation parameters
% P - associated Legendre functions ordered (j,n,m)
% Output:
% x - matrix of spectral coefficients ordered (n,m)
%——————————————————–
% Based on Spherical harmonic transform formulation with open loops (OL)
%—-—–—–——————————————

njo2=nj/2;
x = zeros(nn+1,mm+1);
for m=0:mm

j=1:njo2;
for n=m:2:nn

x(n+1,m+1) = x(n+1,m+1) + (s(m+1,j) + s(m+1,nj-j+1))*P(j,n+1,m+1);
end
for n=m+1:2:nn

x(n+1,m+1) = x(n+1,m+1) + (s(m+1,j) - s(m+1,nj-j+1))*P(j,n+1,m+1);
end

end

Fig. 5. MATLAB implementation of Open Loop Legendre analysis

computational experiments important for the development of weather and climate
models and high performance computers. The typical use of the spectral transform
is illustrated using the differential operator methods of these classes to solve the
barotropic vorticity equation.

The MATLAB programs (.m files) are freely available and may be obtained from
http://www.csm.ornl.gov/~bbd/SHTrans.
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