The Performance Evolution of the Parallel Ocean Program on the
Cray X1 *

P. H. Worley '
Oak Ridge National Laboratory

J. Levesque ¥
Cray Inc.

Abstract

We describe our experiences in repeated cycles of performance optimization, benchmarking, and
performance analysis of the Parallel Ocean Program (POP) on the Cray X1 at Oak Ridge National
Laboratory. We discuss the implementation and performance impact of Co-Array Fortran replacements
for communication latency-sensitive routines. We also discuss the performance evolution of the system
software from May 2003 to May 2004, and the impact that this had on POP performance.

1 Introduction

The X1 is the first of Cray’s new scalable vec-
tor systems [6]. The X1 is characterized by high-
speed custom vector processors, high memory band-
width, and a high-bandwidth, low-latency intercon-
nect linking the nodes. The performance of the pro-
cessors in the Cray X1 is comparable or superior
to that of the NEC SX-6 processors in the Earth
Simulator on many computational science applica-
tions. A significant feature of the Cray X1 is that
it attempts to combine the processor performance
of traditional vector systems with the scalability of
modern microprocessor-based architectures.

The Parallel Ocean Program (POP) is the ocean
component of of the Community Climate System
Model (CCSM) [2], the primary model for global
climate simulation in the U.S. POP has proven
amenable to vectorization on the NEC SX-6, and
the expectation was that the same holds true on the
Cray X1. This was demonstrated last year by Jones,
et al [12] using the SX-6 port of POP on the X1.
In this paper we describe in more detail the per-
formance impact of the SX-6 inspired vectorization
and MPI [13] optimizations on the Cray X1. We

then describe the performance evolution of the Cray
X1 over the past year (May 2003 to May 2004) as
additional optimizations were introduced and as the
system software on the Cray X1 matured.

2 POP Description

POP is an ocean circulation model derived from
earlier models of Bryan [3], Cox [5], Semtner [1]
and Chervin [4] in which depth is used as the
vertical coordinate. The model solves the three-
dimensional primitive equations for fluid motions
on the sphere under hydrostatic and Boussinesq ap-
proximations. Spatial derivatives are computed us-
ing finite-difference discretizations which are formu-
lated to handle any generalized orthogonal grid on a
sphere, including dipole [17] and tripole [14] grids
which shift the North Pole singularity into land
masses to avoid time step constraints due to grid
convergence.

Time integration of the model is split into
two parts. The three-dimensional vertically-varying
(baroclinic) tendencies are integrated explicitly us-
ing a leapfrog scheme. The very fast vertically-

*This research was sponsored by the Office of Mathematical, Information, and Computational Sciences, Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-000R22725 with UT-Batelle, LLC. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to

do so, for U.S. Government purposes.

TComputer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5600, Oak Ridge, TN

37831-6016 (worleyph@ornl.gov)

10703 Pickfair Drive Austin, TX 78750 (levesque@cray.com)

2 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

uniform (barotropic) modes are integrated using an
implicit free surface formulation in which a precon-
ditioned conjugate gradient solver is used to solve
for the two-dimensional surface pressure.

A wide variety of physical parameterizations and
other features are available in the model and are de-
scribed in detail in a reference manual distributed
with the code. Because POP is a public code,
many improvements to its physical parameteriza-
tions have resulted from external collaborations with
other ocean modeling groups and such development
is very much a community effort. Detailed descrip-
tions of the numerical discretizations and methods
are described in the reference manual and in previ-
ous publications [7, 8, 11].

3 Cray X1 Description

The Cray X1 is hierarchical in processor, memory,
and network design. The basic building block is
the multi-streaming processor (MSP), which is ca-
pable of 12.8 GFlop/sec for 64-bit operations. Each
MSP is comprised of four single-streaming proces-
sors (SSPs), each with two 32-stage 64-bit floating
point vector units and one 2-way super-scalar unit.
The SSP uses two clock frequencies, 800 MHz for
the vector units and 400 MHz for the scalar unit.
Each SSP is capable of 3.2 GFlop/sec for 64-bit op-
erations. The four SSPs share a 2 MB “Ecache”.

The Ecache has sufficient single-stride band-
width to saturate the vector units of the MSP. The
Ecache is needed because the bandwidth to main
memory is not enough to saturate the vector units
without data reuse - memory bandwidth is roughly
half the saturation bandwidth. This design repre-
sents a compromise between non-vector-cache sys-
tems, like the SX-6, and cache-dependent systems,
like the IBM p690, with memory bandwidths an
order of magnitude less than the saturation band-
width. The Cray X1’s cache-based design deviates
from the full-bandwidth design model only slightly.
Each X1 processor is designed to have more single-
stride bandwidth than an SX-6 processor; it is the
higher peak performance that creates an imbalance.
A relatively small amount of data reuse, which most
modern scientific applications do exhibit, should en-
able a very high percentage of peak performance to
be realized, and worst-case data access should still
provide double-digit efficiencies.

The X1 compiler’s primary strategies for using
the eight vector units of a single MSP are paralleliz-
ing a (sufficiently long) vectorized loop or paralleliz-
ing an unvectorized outer loop. The effective vector

length of the first strategy is 256 elements, like for
the NEC SX-6. The second strategy, which attacks
parallelism at a different level, allows a much shorter
vector length of 64 elements for a vectorized inner
loop. Cray also supports the option of treating each
SSP as a separate processor.

Four MSPs and a flat, shared memory of 16 GB
form a Cray X1 node. The memory banks of a node
provide 200 GByte/sec of bandwidth, enough to sat-
urate the paths to the local MSPs and service re-
quests from remote MSPs. Each bank of shared
memory is connected to a number of banks on re-
mote nodes, with an aggregate bandwidth of roughly
50 GByte/sec between nodes. This represents a byte
per flop of interconnect bandwidth per computation
rate, compared to 0.25 bytes per flop on the Earth
Simulator and less than 0.1 bytes per flop expected
on an IBM p690 with the maximum number of Fed-
eration connections. The collected nodes of an X1
have a single system image.

A single four-processor X1 node behaves like a
traditional shared memory processor (SMP) node,
but each processor has the additional capability of
directly addressing memory on any other node (like
the T3E). Remote memory accesses go directly over
the X1 interconnect to the requesting processor, by-
passing the local cache. This mechanism is more
scalable than traditional shared memory, but it is
not appropriate for shared-memory programming
models, like OpenMP [16], outside of a given four-
processor node. This remote memory access mech-
anism is a good match for distributed-memory pro-
gramming models, particularly those using one-sided
put/get operations.

In large configurations, the Cray X1 nodes are
connected in an enhanced 3D torus. This topol-
ogy has relatively low bisection bandwidth com-
pared to crossbar-style interconnects, such as those
on the NEC SX-6 and IBM SP. Whereas bisection
bandwidth scales as the number of nodes, O(n), for
crossbar-style interconnects, it scales as the 2/3 root
of the number of nodes, O(n??), for a 3D torus.
Despite this theoretical limitation, mesh-based sys-
tems, such as the Intel Paragon, the Cray T3E, and
ASCI Red, have scaled well to thousands of proces-
sors.

4 Experiment Details

In these experiments we wused version 1.4.3
of POP as downloaded from the POP code
repository at Los Alamos National Laboratory
(http://climate.lanl.gov/Models/POP /index.htm).

Performance Evolution of POP

We used a benchmark configuration (called x1) rep-
resenting a relatively coarse resolution similar to
that currently used in coupled climate models. The
horizontal resolution is roughly one degree (320x384)
and uses a displaced-pole grid with the pole of the
grid shifted into Greenland and enhanced resolution
in the equatorial regions. The vertical coordinate
uses 40 vertical levels with a smaller grid spac-
ing near the surface to better resolve the surface
mixed layer. Because this configuration does not re-
solve eddies, it requires the use of computationally-
intensive subgrid parameterizations. This configu-
ration is set up to be identical to the actual pro-
duction configuration of the Community Climate
System Model with the exception that the coupling
to full atmosphere, ice and land models has been
replaced by analytic surface forcing.

The parallel algorithms in POP are based on a
decomposition of the horizontal grid onto a two di-
mensional virtual processor grid. Thus, for exam-
ple, when using 8 processors, POP can be run on
a 1x8, 2x4, 4x2, or 8x1 grid. The choice of proces-
sor grid affects both load balance and comunication
overhead. In all results presented in the paper, the
optimal processor grid was first identified for each
processor count, and only these results were used.
In consequence, the processor grids used for a given
processor count may vary between platforms.

The performance of POP is primarily determined
by the performance of the baroclininc and barotropic
processes described earlier. The baroclinic process
is three dimensional with limited nearest-neighbor
communication and typically scales well on all plat-
forms. In contrast, the barotropic process involves a
two-dimensional, implicit solver whose performance
is very sensitive to network latency and typically
scales poorly on all platforms.

As described later, version 1.4.3 was ported to
the Earth Simulator by targeted vectorization and
optimization of MPI communications. For the X1,
we based our initial optimizations on this Earth Sim-
ulator version. Further optimizations came primar-
ily from the introduction of Co-Array Fortran [15]
implementations of the latency-sensitive communi-
cations in the barotropic process.

POP is instrumented with calls to MPI.WTIME
to record the time spent in the basic logical units,
such as the baroclinic and barotropic processes. For
more detailed performance analyses we used the
MPICL profiling and tracing package [9, 19], the
Paragraph visualization tool [10], and the Cray Per-
formance Analysis Tool (PAT).

5 Platforms

POP performance results are presented for a Cray
X1, the Earth Simulator, an HP AlphaServer SC, an
IBM p690 cluster, an IBM SP, and an SGI Altix with
the following processor and system specifications.

Processor Proc Cache | Memory/
Peak Proc
(GF/s) | (MB) | (MB)

Cray X1
Cray | 128 | 2 | 4000
Earth Simulator
ES | 80 | N/A | 2000
HP AlphaServer SC
EV6s | 20 | 8(L2) [1000
IBM p690 cluster
Powerd | 52 | 15(L2) | 1000
IBM SP
Power3-II | 1.5 | 8(L2) | 1000
SGI Altix
Itanium2 | 6.0 | 6(L3) | 8000

| SMP Size [Switch/Network |

Cray X1

4 | Cray

Earth Simulator

8 | ES

HP AlphaServer SC

4 ‘ Quadrics QsNet
IBM p690 cluster

32 | SP Switch2 (Corsair)
IBM SP

16 | SP Switch2 (Colony)
SGI Altix

256 | NUMAlink

The IBM p690 cluster, Cray X1, and the SGI Al-
tix are located in the Center for Computational Sci-
ences at Oak Ridge National Laboratory (ORNL).
The HP AlphaServer SC is located at the Pitts-
burgh Supercomputer Center (PSC). The IBM SP
is located in the National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley
National Laboratory. The Earth Simulator is housed
in the Earth Simulator Center in Yokohama, Japan.

The Cray X1 at ORNL has grown from the ini-
tial 32 processor (MSP) system delivered in March
2003, to a 128 MSP system in July 2003, to a 256
MSP system in October 2003, and to a 512 MSP sys-
tem in June 2004. Results are presented throughout
this period, ending with the 256 MSP system in May
2004.

4 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

6 Vectorization

Figure 6.1 compares the performance of POP for
the fixed size x1 benchmark on a number of differ-
ent platforms. The graphs are plots of simulation
years per day of computation as a function of the
number of processors (MSPs for the Cray X1). The
Earth Simulator results are a version of POP that
was ported and optimized on the Earth Simulator
by Dr. Y. Yoshida of the Central Research Institute
of the Electric Power Industry (CRIEPI). The Altix
results are for a version of POP that uses the same
MPI optimizations used on the Earth Simulator. All
other platforms used the stock POP version 1.4.3.
(The MPT optimizations used on the Altix do not
change the performance on the IBM or HP systems
signficantly.) The performance of the stock version
of POP is approximately the same on the X1 as on
the HP and IBM systems, and much worse than on
the Earth Simulator or the SGI Altix.

LANL Parallel Ocean Program

POP 1.4.3, x1 benchmark
100

T T T T
—— Earth Simulator [vector version]
o L SGI Altix (1.5 GHz)
—e— IBM p690 cluster (1.3 GHz)
—a— HP AlphaServer SC (1.0 GHz)
—s=— Cray X1 [original version] d
IBM SP (375 MHz) /

80 -

70

60

50

40

30 /

20
=
* /‘/ /

i i i
1 2 4 8 16 32 64 128 256
Processors

FIGURE 6.1: POP platform comparison: initial
results

Simulation Years per Day

The first step we took in optimizing POP for
the Cray X1 was to exploit the vectorization work
already done by Yoshida. For the Earth Simulator
port, Yoshida modified 701 lines of POP source code
(out of 45000 lines) to improve vectorization. Over
half of these modifications (approx. 400 lines) in-
volved replacing Fortran 90 where, merge, shift,
etc. constructs with their Fortran 77 equivalents.
While these latter changes do not improve (or de-
grade) performance on the Cray X1, we adopted
them anyway to minimize the differences between
the two vector versions of the code. We then ex-
amined and changed some of the NEC compiler di-
rectives to Cray compiler directives. We also modi-
fied two routines (that were previously modified for
the Earth Simulator) to improve performance on the
Cray. Changes in one routine involved a few sim-

ple loop reorderings, to enable the Cray to stream
over outer loops. Changes in the other routine in-
volved undoing some of the promotion of scalar tem-
poraries to vector temporaries, resulting in code that
was closer to the unvectorized version of POP.

Figure 6.2 contains task Gannt charts for POP
when using 128 MSPs on the X1. The top chart
describes performance for the unmodified version of
POP 1.4.3, while the bottom chart describes perfor-
mance after making the modifications for vectoriza-
tion. The X-axis is time, where each unit represents
2 milliseconds. The Y-axis is the process (MSP) id.
The chart describes the task that each process is ex-
ecuting at a given point in time. The tasks are as
follows:

Task | Task Description
0 everything else
(primarily tracer updates)
1 baroclinc
2 baroclinic boundary update
3 barotropic (excluding the solver)
4 barotropic boundary update
5 barotropic solver

From these data, vectorization primarily decreased
the time spent in the baroclinic process, approxi-
mately tripling the performance of this phase of the
computation.

Figure 6.3 contains utilization count graphs for
the same period of execution time for the original
(top) and vectorized (bottom) versions of POP. The
Y-axis is the number of processes in one of three
states: busy (computing), overhead (actively com-
municating in an MPI command), idle (blocked
waiting to receive a message). While subject to
some error, overhead + idle does accurately re-
flect the time spent in MPI commands. From these
data, most of the time in a 128 MSP run is spent
in interprocessor communication. Also, vectoriza-
tion improved performance of the computation in
the baroclinic process by approximately a factor of
10. The performance of the baroclinic process as a
whole increased by a factor of only three because the
baroclinic communication overhead was unchanged.

Performance Evolution of POP

X! Task Gantt Chart

TASK GANTT CHART

AMWICZ MOowOMOOADTD

r Al
0060 X! Task Gantt Chart
TASK GANTT CHART

IMWICZ DOVOMOODTD

FIGURE 6.2: Task graph: without and with
vectorization

7 MPI Optimizations

It is clear from Fig. 6.3 that communication costs
dominate in the 128 MSP performance data. The
next step in the Cray X1 optimization was to min-
imize these costs. While there was no reason to
expect that the Earth Simulator-specific MPI op-
timizations to be useful on the X1, it was an easy
experiment to make. In fact, these modifications
improved performance on the Cray X1 significantly.

For the Earth Simulator, Dr. Yoshida modified
125 lines and added one new (140 line) routine to im-
prove MPI performance. In the original version of
POP, three routines in the barotropic process used
MPI derived datatypes when updating halo regions
in the domain decomposed data structures. This
logic was replaced with explicitly packing and un-
packing contiguous communication buffers and using
standard datatypes in MPI calls. In the baroclinic
process and in the baroclinic_correct_adjust

X/ Utilization Count
UTILIZATION COUNT

wPOMOMOODT MO AMWICZ

X! Utilization Count
UTILIZATION COUNT

il HI

FIGURE 6.3: Utilization count: without and with
vectorization

®PDOMWOMOODDT MO ADMWICZ

\ i

routine, which updates tracers, a loop over a se-
ries of halo updates was replaced by a single rou-
tine that combined these into fewer communication
calls involving larger messages. Finally, five routines
were modified to replace communication logic using
MPI_IRECV and MPI_ISEND with similar logic using
MPI_ISEND and MPI_RECV. This latter modification
does not improve (or degrade) performance on the
X1, but was again adopted in order to minimize dif-
ferences with the Earth Simulator version of POP.

Figure 7.1 contains the task Gannt chart for the
vectorized version, without (top) and with (bottom)
these MPI optimizations. The X-axis resolution is
twice that used in in Figs. 6.2 and 6.3, with 1 mil-
lisecond units. Figure 7.2 contains the correspond-
ing utilization count graphs. From these data, elim-
inating derived types triples the performance of the
barotropic solver. Combining the halo updates al-
most eliminates the time spent doing tracer updates
and more than halves the time spent in the baro-

6 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

clinic process. From the utilization count graphs,
POP on the X1 is still communication bound when

using 128 MSPs for this benchmark problem, but '000 X Utilization Count)

UTILIZATION COUNT

the performance is much improved.

Figure 7.3 demonstrates the performance impact
of vectorization and MPI optimization on the X1.
Using this modified version of the Earth Simulator
port, performance on the X1 is similar to that on the
Earth Simulator up to 96 processes. This version of
the code is very similar to that used in the earlier
paper [12]. Performance reported here is superior
due to OS and other system software improvements
over the past year (April 2003 to May 2004). This
will be discussed in more detail in later sections.

WROMOMOODT MO AMwWICZ

r : : Al
000 X! Utilization Count

U'ILIZRT[ON COUNT
il
\‘ '
il
I

'000 X/ Task Gantt Chart)]

TASK_GANTT CHART

®PDOWOMOODDT MO ADMWICZ

|\| 1,“.

94 TINE 606

BUSY OVERHEAD IDLE

FIGURE 7.2: Utilization count: without and with
MPI optimization

DMWICZ DOVOMOODTD

LANL Parallel Ocean Program
'o00 X| Task Gantt Chart)| 9
TASK GANTT CHART POP 1.4.3, x1 benchmark

100

T T T T
—— Earth Simulator (vector version)
g0 |- —*— Cray X1 (vector version)

—s— SGI Altix (1.5 GHz)

8 b —a— |BM p690 cluster (1.3 GHz)

5
R
o
c
: B | o mwsr sy Yy
P, /X
5 2
" 2 s /
: s . / /
R ® /
E 30 S/
2
c06 2 / /
4 10 =
= -
__,sn/
1 2 4 8 16 32 64 128 256
Processors
F1GURE 7.1: Task graph: without and with MPI FI1GURE 7.3: Platform comparison: with

optimization vectorization and MPI optimization

Performance Evolution of POP

8 Co-Array Fortran Optimiza-
tions

Process scaling for a fixed size problem will necessar-
ily show diminishing returns for large process counts.
However, the feeling was that the rollover in X1 per-
formance in Fig. 7.3 occurred too soon. Performance
before the rollover is also lower than expected com-
pared to the Earth Simulator given the peak proces-
sor and network rates on the Cray X1 and the Earth
Simulator. From Fig. 7.2, communication overhead
is the dominant constraint on performance. Profiling
indicates that dominant communication overhead in
this port of POP to the X1 is from

e GLOBAL_SUM: global sum of the “physical do-
main” of a two dimensional array. This is used
to compute the inner product in the conjugate

gradient solver in the barotropic process. The
MPI version uses MPI_Allreduce.

e NINEPT 4: weighted nearest neighbor sum for
9 point stencil, requiring a halo update. This
is used to compute residuals in the conjugate
gradient solver in the barotropic process.

The performance of both of these is sensitive to MPI
latency. MPI performance for small messages is a
known problem on the X1, and the current solution
is to use Co-Array Fortran to implement latency-
sensitive communications. Co-Array Fortran more
efficiently exploits the globally addressable memory
on the Cray than is currently possible with MPI two-
sided messaging semantics. For example, Fig. 8.1
is a graph of performance of a halo update (using
Wallcraft’s HALO benchmark [18]) for 16 MSPs as
a function the number of four byte words in the halo.
For small halos, the Co-Array Fortran implementa-
tion is over 5 times faster.

MPI and Co-Array Fortran messaging can co-
exist in the same program. For POP we replaced the
existing inner product and halo update subroutines
used in barotropic solver with Co-Array Fortran im-
plementations. While performance improved with
our initial implementations, it was not as good as
we expected. Over the next 8 months (May 2004 to
December 2004) we developed and tested a number
of different implementations:

HALO Performance on 16 MSPs of the Cray X1

T
10000 SHMEM
Co-Array Fortran —e—

1000

Microseconds

Y

100

10

i i
1 10 100 1000 10000 100000 1e+06
Words

FI1GURE 8.1: Paradigm Comparison for Halo
Update

May 7

e GLOBAL_SUM: Master reads partial sums from
remote memory, completes sum, and writes re-
sults back to other processes’ memory. Global
barriers are used for synchronization.

e NINEPT_ 4: Each process reads remote memory
to update the local halo. East-west updates
occur first, followed by north-south updates.
Global barriers are used for synchronization.

August 12

e GLOBAL_SUM: Processes write partial sums to
master’s memory. Flags are used to implement
pairwise synchronization, eliminating the need
for global barriers.

e NINEPT 4: Each process writes remote mem-
ory to fill remote halos. East-west updates
occur first, followed by north-south updates.
Flags are used to implement pairwise synchro-
nization, eliminating the need for global barri-
ers.

September 1

e GLOBAL SUM: Added padding to co-arrays in
August 12 version to eliminate contention in
the memory controller.

e NINEPT 4: Added padding to co-arrays in Au-
gust 12 version to eliminate contention in the
memory controller.

8 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

‘000 X/ Task Gantt Chart)]

TASK GANTT CHART

AMWICZ DOOVOMOODTD

r B
00 X!/ Task Gantt Chart
TASK GANTT CHART

120
12
104
9%
88
80
72
64
Sé
48
40
32
24
16
0

_:I___

AMWICZ DOVOMOODTD

®

FI1GURE 8.2: Task graph: without and with
Co-Array Fortran optimization

October 25

e GLOBAL_SUM: Used special values in data co-
arrays to implement pairwise synchronization
in September 1 version, eliminating flags.

e NINEPT 4: Used September 1 algorithm.

December 13a

e GLOBAL_SUM: Used a variant of the May 7 ver-
sion in which partial sums are written to the
master’s memory. Global barriers are again
used for synchronization.

e NINEPT 4: Used August 12 algorithm.

December 13b

e GLOBAL SUM: Used a generalization of the
September 1 algorithm that implements a tree
sum and tree broadcast. The branching factor

. Bl
000 X! Utilization Count
UTILIZATION

WROMOMOODT MO AMwWICZ

X! Utilization Count
UTILIZATION COUNT

®PDOWOMOODDT MO ADMWICZ

Ficure 8.3: Utilization count: without and with
Co-Array Fortran optimizations

is specified at compile time. For the results
described here, each parent has up to 16 chil-
dren.

e NINEPT 4: Used August 12 algorithm.

Figures 8.2-8.4 compare the performance of the
optimized MPI-only version with the optimized ver-
sion using the December 13b Co-Array Fortran mod-
ifications. Figures 8.2 and 8.3 are the usual task
Gannt chart and utilization count graphs. The X-
axis resolution is again doubled from the previous
figures, with .5 millisecond units. The Co-Array For-
tran modifications were used only in the barotropic
solver, and this is the only task that shows any per-
formance change. However, when using 128 MSPs,
the barotropic solver is 5 times faster when using
the Co-Array Fortran modifications, and is no longer
communication bound. (In Fig. 8.3, the time spent
in GLOBAL_SUM and NINEPT_4 is defined to be idle,
as this is closer to reality than defining it to be

Performance Evolution of POP

busy. Fine grain tracing of the Co-Array Fortran
would perturb performance too much to be use-
ful.) Figure 8.4 is task Gannt chart focusing on the
barotropic solver. The X-axis unit is 1 microsecond.
The three tasks are 1: GLOBAL_SUM, 2:NINEPT 4, and
0: everything else. From this, the Co-Array Fortran
implementation is 8 times faster than the MPI im-
plementation for GLOBAL_SUM and 4 times faster for
NINEPT 4.

X Task Gantt Chart
TASK GANTT CHART

AMWICZ DOGOMOODTD

X/ Task Gantt Chart
TASK GANTT CHART

DMWICZ PDOVOMOODTD

F1GURE 8.4: Task graph of barotropic solver:
without and with Co-Array Fortran optimization

9 System Software Optimiza-
tions

As mentioned earlier, the development and evalua-
tion of the Co-Array Fortran implementations took
place over 8 months. Figure 9.1 is a graph of the
performance evolution that we have observed over
the past year using the best performing version of
POP at each point in time. While the performance
of POP motivated the algorithm experimentation,

some of the performance improvement did not arise
from algorithm improvements. This can be seen
in the performance improvement in the December
13b version between March 4 and May 11, 2004.
The source of each non-algorithmic performance im-
provement varies with the particular update to the
system software, but one of the largest changes was
made in a September 1 update to the operating sys-
tem. This is displayed in Fig. 9.2. On August 29,
the August 12 version of POP achieved a maximum
performance of 85 years per day, but the average per-
formance was much lower. The variability of POP
timings was very high. This behavior was used to
document a problem in the way that the operating
system scheduled interrupts. By using a global clock
to schedule interrupts on all processors, the Septem-
ber 29 performance was achieved. The best perfor-
mance increased from 85 years per day to 125 years
per day, and the performance variability decreased
significantly.

LANL Parallel Ocean Program
POP 1.4.3, x1 benchmark, on the Cray X1

May 11, 2004 /

180 L —*— Vec. POP (Dec13b version) /

Mar. 4, 2004

| —=— Vec. POP (Dec13b version)
Oct. 19, 2003

—e— Vec. POP (Aug12 version)

g
e r Sep. 25, 2003
I —=&— Vec. POP (Sepl version) S —a o
2 120 b Aug. 12, 2003
E —v— Vec. POP (Aug12 version)
£ 100 July 23, 2003
c —— Vec. POP (May7 version)
S 8ol May 7, 2003 AT
g ~—+— Vectorized POP with tuned MPI| /»
£ 0l —— Unmodified POP 1.4.3
» —
40 /]
20
i
— L
1 2 4 8 16 32 64 128 256

Processors

FIGURE 9.1: Performance evolution

LANL Parallel Ocean Program
POP 1.4.3, x1 benchmark on the Cray X1

[
I
S

\)ec, POP (A‘uglz versit‘:n)
Sep. 29 timings
best timings
average timings
Aug. 29 timings
best timings
average timings

/
o

w I
\\\

A

i
~
1S3

I

Simulation Years per Day
[=2]
o

40 S
20 /
L

1 2 4 8 16 32 64 128 256
Processors

FIGURE 9.2: Performance Impact of Sept. 1 OS
Update

10 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

Figure 9.3 is a graph of the performance of the
August 12 implementation up to May 11, 2004. Fig-
ure 9.4 is a graph of the performance of the opti-
mized MPI-only implementation for the same pe-
riod. In both cases, it is apparent that the perfor-
mance of the operating system and system software
has continued to improve. In particular, while the
MPI-only version is still not competitive with the
version using Co-Array Fortran optimizations, MPI
performance has improved significantly.

LANL Parallel Ocean Program
POP 1.4.3, x1 benchmark on the Cray X1

140 , . . .
Vec. POP (Aug12 version) '—/‘\
—%— May 11, 2004 //
120 1 Oct. 19, 2003 Y
—=— Sep. 29, 2003
—e— Aug. 29, 2003
>
8 100 /
g
@ N\
2 8 NG
2
§ /4
&
g
£ 4
5 » /{/
20
/‘
1 2 4 8 16 32 64 128 256

Processors
FIGURE 9.3: Performance Impact of OS Updates
on Aug. 12 version

LANL Parallel Ocean Program

POP 1.4.3, x1 benchmark on the Cray X1
90

T T T
Vec. POP (MPl-only version)

—w— May 11, 2004

80 - Mar. 15, 2004 e

—s=— Oct. 19, 2003

| o s e B
: Mo 7008 Vi \\-\\ \\
50 A/ \\n
o /

" V4
. ya
10 /

//

1 2 4 8 16 32 64 128 256
Processors

FIGURE 9.4: Performance Impact of OS Updates
on MPI-only version

Simulation Years per Day

Figure 9.5 is a graph of the performance of all
of the POP implementation described so far as of
May 11, 2004. Notice that the Co-Array Fortran
optimizations prior to December 13 have very sim-
ilar performance. The attempt to solve what were
ultimately performance bottlenecks in the operat-
ing system by algorithm optimization was not very
effective. It was not until a number of operating sys-
tem problems were resolved that significant progress

could be made. For example, a tree-based algorithm
similar to that used in the December 13b version was
tried in September. It was not competitive at that
time, and was discarded.

LANL Parallel Ocean Program

POP 1.4.3, x1 benchmark
200

V\)Iay 11, ZOOA‘H\mings ' '
Vec. POP (Dec13b version) /,
Vec. POP (Dec13a version)
Vec. POP (Oct25 version)

180

—_—

—=— Vec. POP (Sep1l version)
—_—

—_—

160

z Vec. POP (Aug12 version) a
e 140 - Vec. POP (May7 version) /"’/_\\‘l
2 Vec. POP (MPI only) /V
o 120r Unmodified POP 1.4.3
g 4
£ 100
5
R ///
=3
E 60 /. ~c
40
20 T
_/4/
1 2 4 8 16 32 64 128 256
Processors

FIGURE 9.5: Implementation Comparison

Figure 9.6 is a graph of the performance of just
the barotropic process for all of the POP implemen-
tations (in terms of wallclock seconds per simulation
day). The advantage of the December 13 versions
of POP is their scalability. The time spent in the
barotropic is beginning to increase for large process
counts for all of the other versions of POP. For the
December 13 versions, the time is relatively constant
for 64 to 240 processes. Figure 9.7 is a graph of the
wallclock seconds per simulation day for both the
barotropic and baroclinic processes, for both the op-
timized MPI-only and December 13b versions. The
performance (and code) for the baroclinc process is
identical for these two implementations, and is scal-
ing well out to 240 processes. For the MPI-only ver-
sion, the time spent in the barotropic process starts
growing at 16 processes and dominates that of the
baroclinc when using more than 92 processes. In
contrast, for the December 13b version, time spent in
barotropic process stops decreasing at 92 processes,
but has not yet started growing at 240 processes. It
is also only one third the time spent in the baro-
clinic process when using 240 processes. From this
data, performance should continue to scale to 256
processes and beyond.

Performance Evolution of POP

POP Barotropic Timings on the Cray X1
32

May 11, 2004 timings

T
—— Unmodified POP 1.4.3
16 —#— Vec. POP (MPI only) |
—=a— Vec. POP (May7 version)
Vec. POP (Aug12 version)
\ —e— Vec. POP (Sep1l version)
8 —— Vec. POP (Oct25 version) 7
—4— Vec. POP (Dec13a version)
\ < Vec. POP (Dec13b version)

2 & ~_

1 AN

05 =

Seconds per Simulation Day
S

0.25

1 2 4 8 16 32 64 128 256
Processors

FIGURE 9.6: Implementation Comparison:
Barotropic Process

POP Baroclinic and Barotropic Timings
128

Vecl‘or Versio‘n (MPI) '

N Baroclinic
64 \ Barotropic —_—]
Vector Version (MPI and Co-Array Fortran)

32 \ Baroclinic |
z \ Barotropic ——
[a} \
S 16
g \\
=] 8 N
E \ N
7}
) 4 \\ \
2 \\ N
)
2 2 SN \ /
S ~ N 4
3
’ ! \\ 1\-\

05 T~

—o
0.25
1 2 4 8 16 32 64 128 256 512

Processors
FI1GURE 9.7: Implementation Comparison:
MPI-only vs. Decl3b

10 Platform Comparisons

Figure 10.1 is the current platform comparison us-
ing the x1 benchmark problem and version 1.4.3 of
POP. It includes performance data for the original
version, the optimized MPI-only version, and the
December 13b version of POP on the Cray X1. Per-
formance on the X1 is clearly better than that on
the IBM and HP systems. In particular, no mat-
ter how many processors are used on the IBM and
HP systems (for this fixed size benchmark), perfor-
mance will never approach that on the X1. Only
performance on the Earth Simulator and the SGI
Altix among these platforms approach the perfor-
mance on the X1.

LANL Parallel Ocean Program
POP 1.4.3, x1 benchmark
200 T T T T
—+— Cray X1 (MPI and Co-Array Fortran)
180 | —*— Earth Simulator /
—=— Cray X1 (MPI-only)
160 | SGI Altix (1.5 GHz)
o —=— IBM p690 cluster (1.3 GHz)
© —e— HP AlphaServer SC (1.0 GHz)
e 140 Cray X1 (orig. version)
g —+— IBM SP (375 MHz)
120
&
@
$ 100
c
S &0
©
E]
E 60 Ao <
40 V
20
4%‘/
i
1 2 4 8 16 32 64 128 256

Processors
FIGURE 10.1: Platform comparison: current
results

Figure 10.2 contains graphs of the performance
of the barotropic and baroclinic processes on the X1
and the Earth Simulator. From these data, Earth
Simulator performance is better for the baroclinic for
the smallest process counts, and worse for the largest
process counts. This (roughly) indicates a perfor-
mance advantage on the Earth Simulator for long
vectors and an advantage on the X1 for short vec-
tors. As the vectorization in POP is basically that
developed for the Earth Simulator, this may also
indicate that more Cray-specific optimizations are
needed. For the barotropic process, the X1 perfor-
mance is superior when using more than 8 processes.
The Earth Simulator has 8-processor SMP nodes,
and messaging between SMP nodes is required when
using more than 8 processors. The performance of
the barotropic process on the Earth Simulator is rel-
atively constant out to 128 processes, but it also be-
gins dominating the baroclinc process at this point.
Using more than 128 processors on the Earth Sim-
ulator is unlikely to improve performance for this
benchmark problem. Note that the Earth Simulator
performance data are from March, 2003. The Earth
Simulator implementation could also have continued
to evolve, perhaps by using MPI-2 1-sided messag-
ing in the barotropic solver, but we are not aware of
more recent performance data.

12 Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

POP Baroclinic and Barotropic Timings

=
N
@

T T T
Earth Simulator
Baroclinic

Barotropic
Cray X1
Baroclinic

\ Barotropic
\\

/7
tH

/

/
y

~

Seconds per Simulation Day
®
//
o/ /
/

/

S
SN

7

0.5
o ——0—o

0.25

2 4 8 16 32 64 128 256 512
Processors

FI1GURE 10.2: Platform comparison: X1 vs. ES

Figure 10.3 contains graphs of the performance
the barotropic and baroclinic processes on the X1
and the SGI Altix. The X1 is approximately 5 times
faster than the Altix for the baroclinic process when
using 8 processors, and 3 times faster when using 240
processors. The shorter vector lengths are decreas-
ing the performance advantage of the vector pro-
cessor over that of the Itanium2. The X1 is also
approximately 3 times faster than the Altix for the
barotropic process when using 240 processors. Time
spent in the barotropic is relatively flat for 64 to 240
procssors. So, while both systems will likely be able
to use more processors effectively, the SGI does not
appear to be able to approach closer than one third
of the performance of the X1. Note that POP ver-
sion 1.4.3 comes with an implementation that uses
SHMEM for interprocessor communication. This
version does not improve POP performance on the
SGI. Other optimizations may also be possible, but
we are already using the Yoshida MPI optimizations
on the Altix.

POP Baroclinic and Barotropic Timings

=
N
@

SGI Altix (1.5 GHz)
Baroclinic
64 \\ Barotropic —_——
Cray X1
32 \ Baroclinic |
= \ Barotropic ——
a \
S 16
g N
E AN
@ \
5 4 ™ AN
o \ N
)
g 2 ST \\
o "\
& 1 \\\ — ——
05 T~
—o.

0.25
1 2 4 8 16 32 64 128 256 512

Processors

F1cure 10.3: Platform comparison: X1 vs. Altix

11 Conclusions

We learned a number of important lessons from op-
timizing and tracking POP performance on the Cray
X1. First, vector and MPI optimizations developed
for the Earth Simulator were reasonably efficient on
the X1, and were a good starting point when opti-
mizing for the Cray. While some of these optimiza-
tions did not enhance performance, they also did
not degrade performance. However, the advantage
of the Earth Simulator for long vector performance
indicates that we need to revisit Cray-specific vector-
ization, especially for larger problem sizes. Second,
explicit packing and unpacking of message buffers
and using standard data types performs much better
than using MPI derived datatypes to do this implic-
itly (currently). Third, the performance of latency-
sensitive MPI collective and point-to-point com-
mands limits scalability of latency-sensitive codes
(again, currently). Co-Array Fortran can be used to
work around this deficiency in MPI performance and
achieve excellent scalability. Fourth, performance
aspects of the operating system and other system
software improved significantly from May 2003 to
May 2004. Finally, we found tracking the perfor-
mance evolution of POP to be an effective way of
identifying performance problems in the operating
system and other system software.

Future work includes optimization and bench-
marking for even higher processor counts and for
larger benchmark problems. In particular, POP will
be used for additional investigations into Co-Array
Fortran algorithms and performance, operating sys-
tem scalability, and MPI performance as the system
software continues to evolve.

12 Acknowledgements
We gratefully acknowledge

e Dr. Phil Jones of Los Alamos National Labo-
ratory for help in obtaining and porting POP
and for defining benchmark problems;

e Dr. Tushar Mohan of Lawrence Berkeley Na-
tional Laboratory for providing performance
data from the IBM SP at NERSC;

e Howard Pritchard and James Schwarzmeier of
Cray Inc. and James B. White III of ORNL for
their contributions to the development of the
Co-Array Fortran algorithms used in POP;

Performance Evolution of POP

e Dr. Yoshikatsu Yoshida of CRIEPI for his ex-
cellent port of POP to the Earth Simulator
and for providing the performance data from
the Earth Simulator.

We also thank the Pittsburgh Supercomputer Center
for access to the HP AlphaServer SC and the ORNL
Center for Computational Sciences (CCS) for access
to the Cray X1, IBM p690 cluster, and SGI Altix.
The CCS is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

13 About the Authors

John Levesque is a 30 year veteran of High Per-
formance Computing. Levesque is Technical Staff
to the VP of Cray Development and is responsi-
ble for demonstrating performance capabilities of
Cray’s HPC systems. In addition to porting and op-
timizing applications for Cray platforms, Levesque
gives training workshops on the effective utilization
of Cray Hardware. He can be reached at the US
mail address listed on the title page or via E-mail:
levesque@cray.com.

Pat Worley is a Senior Research Scientist in the
Computer Science and Mathematics Division at Oak
Ridge National Laboratory. He has been conduct-
ing early evaluations of advanced computer archi-
tectures since the early 1990s. He also does research
in performance evaluation tools and methodologies,
and designs and implements parallel algorithms in
climate and weather models. He can be reached at
the US mail address listed on the title page or via
E-mail: worleyph@ornl.gov.

References

[1] J. A. SEMTNER JR., Finite-difference formula-
tion of a world ocean model, in Advanced Phys-
ical Oceanographic Numerical Modeling, J. J.
O’Brien, ed., Reidel Publishing Company, Nor-
well, MA, 1986, pp. 187-202. NATO ASI Series.

[2] M. B. BLACcKMON, B. BOVILLE, F. BRYAN,

R. DickinsoN, P. Gent, J. KIEHL,
R. MoriTz, D. RANDALL, J. SHUKLA,
S. SoroMmoN, G. BonNaN, S. DONEY,

I. Fung, J. Hack, E. HUNKE, AND J. HUR-
REL, The Community Climate System Model,
BAMS, 82 (2001), pp. 2357-2376.

13

[3] K. BRYAN, A numerical method for the study
of the circulation of the world ocean, J. Comp.
Phys., 4 (1969), pp. 347-376.

[4] R. M. CHERVIN AND J. A. SEMTNER JR.,
An ocean modeling system for supercomputer
architectures of the 1990s, in Proceedings of
the NATO Advanced Research Workshop on
Climate-Ocean Interaction, M. Schlesinger, ed.,
Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1988, pp. 565-568.

[5] M. D. Cox, A primitive equation, 3-
dimensional model of the ocean, Tech. Rep.
GFDL Ocean Group Technical Report No. 1,
GFDL/NOAA, Princeton, NJ, 1984.

[6] CrAY INC., Cray X1.
http://www.cray.com/products/systems/x1/.

[7] D. K. Dukowicz AND R. D. SMITH, Im-
plicit free-surface method for the bryan-cox-

semtner ocean model, J. Geophys. Res., 99
(1994), pp. 7991-8014.

[8] D. K. Dukowicz, R. D. SmiTH, AND R. C.
MALONE, A reformulation and implementation
of the bryan-cozx-semtner ocean model on the
connection machine, J. Atmos. Ocean. Tech.,

10 (1993), pp. 195-208.

[9] G. A. GEisT, M. T. HEaTH, B. W. PEY-
TON, AND P. H. WORLEY, A users’ guide
to PICL: a portable instrumented communica-
tion library, Tech. Rep. ORNL/TM-11616, Oak
Ridge National Laboratory, Oak Ridge, TN,
August 1990.

[10] M. T. HEATH AND J. A. ETHERIDGE, Visu-
alizing performance of parallel programs, Tech.
Rep. ORNL/TM-11813, Oak Ridge National
Laboratory, Oak Ridge, TN, May 1991.

[11] P. W. JoNES, The Los Alamos Parallel Ocean
Program (POP) and coupled model on MPP
and clustered SMP computers, in Making its
Mark — The Use of Parallel Processors in Mete-
orology: Proceedings of the Seventh ECMWF
Workshop on Use of Parallel Processors in Me-
teorology, G.-R. Hoffman and N. Kreitz, eds.,
World Scientific Publishing Co. Pte. Ltd., Sin-
gapore, 1999.

[12] P. W. JoNEs, P. H. WORLEY, Y. YOSHIDA,
J. B. W. III, AND J. LEVESQUE, Practical per-
formance portability in the Parallel Ocean Pro-
gram (POP), Concurrency and Computation:
Experience and Practice, ((in press)).

14

[13]

[14]

[15]

[16]

Proceedings of the 46th Cray User Group Conference, May 17-21, 2004

MPI COMMITTEE, MPI: a message-passing in-
terface standard, Internat. J. Supercomputer
Applications, 8 (1994), pp. 165-416.

R. J. MURRAY, Ezxplicit generation of orthogo-
nal grids for ocean models, J. Comp. Phys., 126
(1996), pp. 251-273.

R. W. NumricH AND J. K. REID, Co-Array
Fortran for parallel programming, ACM Fortran
Forum, 17 (1998), pp. 1-31.

OPENMP ARCHITECTURE REVIEW BOARD,
OpenMP: A proposed standard api for
shared memory programming. (available

(18]

[19]

from http://www.openmp.org/openmp,/mp-
documents/paper/paper.ps), October 1997.

R. D. SmiTH, S. KORTAS, AND B. MELTZ,
Curvilinear coordinates for global ocean mod-
els, Tech. Rep. LAUR-95-1146, Los Alamos Na-
tional Laboratory, Los Alamos, NM, 1995.

A. J. WALLCRAFT, SPMD OpenMP vs MPI
for Ocean Models, in Proceedings of the
First European Workshop on OpenMP,
Lund, Sweden, 1999, Lund University.
http://www.it.lth.se/ewomp99.

P. H. WoRrLEY, MPICL.
http://www.csm.ornl.gov/picl/.

