
DOI 10.1007/s00450-009-0082-8

S P E C I A L I S S U E P A P E R

CSRD (2009) 23: 149–157

Improving the availability of supercomputer job input data
using temporal replication

Chao Wang · Zhe Zhang · Xiaosong Ma · Sudharshan S. Vazhkudai · Frank Mueller

Published online: 6 May 2009
© Springer-Verlag 2009

Abstract Storage systems in supercomputers are a major
reason for service interruptions. RAID solutions alone can-
not provide sufficient protection as 1) growing average disk
recovery times make RAID groups increasingly vulnerable
to disk failures during reconstruction, and 2) RAID does not
help with higher-level faults such failed I/O nodes.

This paper presents a complementary approach based on
the observation that files in the supercomputer scratch space
are typically accessed by batch jobs whose execution can
be anticipated. Therefore, we propose to transparently, se-
lectively, and temporarily replicate “active” job input data
by coordinating the parallel file system with the batch job
scheduler. We have implemented the temporal replication
scheme in the popular Lustre parallel file system and eval-
uated it with real-cluster experiments. Our results show that
the scheme allows for fast online data reconstruction, with
a reasonably low overall space and I/O bandwidth overhead.

Keywords Temporal replication · Batch job scheduler ·
Reliability · Supercomputer · Parallel file system

C. Wang (�) · Z. Zhang · X. Ma · F. Mueller
Dept. of Computer Science, North Carolina State University,
890 Oval Drive EBII,
Raleigh, NC 27695, USA
e-mail: wchao@ncsu.edu

Z. Zhang
e-mail: zzhang3@ncsu.edu

X. Ma
e-mail: ma@cs.ncsu.edu

F. Mueller
e-mail: mueller@cs.ncsu.edu

S. S. Vazhkudai
Computer Science and Mathematics Division, ORNL,
One Bethel Valley Road,
PO Box 2008 MS6016, Oak Ridge, TN 37831, USA
e-mail: vazhkudaiss@ornl.gov

1 Introduction

Coping with failures is a key issue to address as we scale
to Peta- and Exa-flop supercomputers. The reliability and
usability of these machines rely primarily on the storage
systems providing the scratch space. Almost all jobs need to
read input data and write output/checkpoint data to the sec-
ondary storage, which is usually supported through a high-
performance parallel file system. Jobs are interrupted or
rerun if input/output data is unavailable or lost.

Storage systems have been shown to consistently rank
as the primary source of system failures, according to logs
from large-scale parallel computers and commercial data
centers [11]. This trend is only expected to continue as in-
dividual disk bandwidth grows much slower than the over-
all supercomputer capacity. Therefore, the number of disk
drives used in a supercomputer will need to increase faster
than the overall system size. It is predicted that by 2018,
a system at the top of the top500.org chart will have more
than 800 000 disk drives with around 25 000 disk failures per
year [18].

Currently, the majority of disk failures are masked by
hardware solutions such as RAID [15]. However, it is be-
coming increasingly difficult for common RAID configura-
tions to hide disk failures as disk capacity is expected to
grow by 50% each year, which increases the reconstruction
time. The reconstruction time is further prolonged by the
“polite” policy adopted by RAID systems to make recon-
struction yield to application requests. This causes a RAID
group to be more vulnerable to additional disk failures dur-
ing reconstruction [18].

According to recent studies [12], disk failures are only
part of the sources causing data unavailability in storage sys-
tems. RAID cannot help with storage node failures. In next-
generation supercomputers, thousands or even tens of thou-

1 3

150 Wang et al.

sands of I/O nodes will be deployed and will be expected
to endure multiple concurrent node failures at any given
time. Consider the Jaguar system at Oak Ridge National
Laboratory, which is on the roadmap to a petaflop machine
(currently No. 5 on the Top500 list with 23 412 cores and
hundreds of I/O nodes). Our experience with Jaguar shows
that the majority of whole-system shutdowns are caused by
I/O nodes’ software failures. Although parallel file systems,
such as Lustre [6], provide storage node failover mechan-
isms, our experience with Jaguar again shows that this con-
figuration might conflict with other system settings. Further,
many supercomputing centers hesitate to spend their op-
erations budget on replicating I/O servers and instead of
purchasing more FLOPS.

Figure 1 gives an overview of an event timeline describ-
ing a typical supercomputing job’s data life-cycle. Users
stage their job input data from elsewhere to the scratch
space, submit their jobs using a batch script, and offload the
output files to archival systems or local clusters. For better
space utilization, the scratch space does not enforce quo-
tas but purges files after a number of days since the last
access. Moreover, job input files are often read-only (also
read-once) and output files are write-once.

Although most supercomputing jobs performing nu-
merical simulations are output-intensive rather than input-
intensive, the input data availability problem poses two
unique issues. First, input operations are more sensitive to
server failures. Output data can be easily redirected to sur-
vive runtime storage failures using eager offloading [14]. As
mentioned earlier, many systems like Jaguar do not have file
system server failover configurations to protect against input
data unavailability. In contrast, during the output process,
parallel file systems can more easily skip failed servers in
striping a new file or perform restriping if necessary. Sec-
ond, loss of input data often brings heavier penalty. Output
files already written can typically withstand temporary I/O

Fig. 1 Event timeline with ideal and implemented replication intervals

server failures or RAID reconstruction delays as job own-
ers have days to perform their stage-out task before the files
are purged from the scratch space. Input data unavailability,
on the other hand, incurs job termination and resubmis-
sion. This introduces high costs for job re-queuing, typically
orders of magnitude larger than the input I/O time itself.

Fortunately, unlike general-purpose systems, in super-
computers we can anticipate future data accesses by check-
ing the job scheduling status. For example, a compute job is
only able to read its input data during its execution. By co-
ordinating with the job scheduler, a supercomputer storage
system can selectively provide additional protection only for
the duration when the job data is expected to be accessed.

1.1 Contributions

In this paper, we propose temporal file replication, wherein
a parallel file system performs transparent and temporary
replication of job input data. This facilitates fast and easy
file reconstruction before and during a job’s execution
without additional user hints or application modifications.
Unlike traditional file replication techniques, which have
mainly been designed to improve long-term data persistence
and access bandwidth or to lower access latency, the tempo-
ral replication scheme targets the enhancement of short-term
data availability centered around job executions in super-
computers.

We have implemented our scheme in the popular Lus-
tre parallel file system and combined it with the Moab job
scheduler by building on our previous work on coinciding
input data staging alongside computation [28]. We have also
implemented a replication-triggering algorithm that coordi-
nates with the job scheduler to delay the replica creation.
Using this approach, we ensure that the replication com-
pletes in time to have an extra copy of the job input data
before its execution.

1 3

Improving the availability of supercomputer job input data using temporal replication 151

We then evaluate the performance by conducting real-
cluster experiments that assess the overhead and scalability
of the replication-based data recovery process. Our experi-
ments indicate that replication and data recovery can be per-
formed quite efficiently. Thus, our approach presents a novel
way to bridge the gap between parallel file systems and job
schedulers, thereby enabling us to strike a balance between
an HPC center resource consumption and serviceability.

2 Temporal replication design

Supercomputers are heavily utilized. Most jobs spend sig-
nificantly more time waiting in the batch queue than actually
executing. The popularity of a new system ramps up as it
goes towards its prime time. For example, from the 3-year
Jaguar job logs, the average job wait-time:run-time ratio in-
creases from 0.94 in 2005, to 2.86 in 2006, and 3.84 in 2007.

2.1 Justification and design rationale

A key concern about the feasibility of temporal replication
is the potential space and I/O overhead replication might in-
cur. However, we argue that by replicating selected “active
files” during their “active periods”, we are only replicating
a small fraction of the files residing in the scratch space
at any given time. To estimate the extra space requirement,
we examined the sizes of the aggregate memory space and
the scratch space on state-of-the-art supercomputers. The
premise is that with today’s massively parallel machines and
with the increasing performance gap between memory and
disk accesses, batch applications are seldom out-of-core.
This also agrees with our observed memory use pattern on
Jaguar (see below). Parallel codes typically perform input
at the beginning of a run to initialize the simulation or to
read in databases for parallel queries. Therefore, the aggre-
gate memory size gives a bound for the total input data size
of active jobs. By comparing this estimate with the scratch
space size, we can assess the relative overhead of temporal
replication.

Table 1 summarizes such information for the top five su-
percomputers [22]. We see that the memory-to-storage ratio
is less than 8%. Detailed job logs with per-job peak mem-
ory usage indicate that the above approximation of using the

System # Cores Aggregate Scratch Memory Top
Memory Space to Storage 500

(TB) (TB) Ratio Rank

RoadRunner(LANL) 122 400 98 2048 4.8% 1
BlueGene/L(LLNL) 106 496 73.7 1900 3.8% 2
BlueGene/P(Argonne) 163 840 80 1126 7.1% 3
Ranger(TACC) 62 976 123 1802 6.8% 4
Jaguar(ORNL) 23 412 46.8 600 7.8% 5

Table 1 Configurations of top
five supercomputers as of 6/2008

aggregate memory size significantly overestimates the ac-
tual memory use (discussed later in this subsection). While
the memory-to-storage ratio provides a rough estimation of
the replication overhead, in reality, however, a number of
other factors need to be considered. First, when analyzing
the storage space overhead, queued jobs’ input files can-
not be ignored, since their aggregate size can be even larger
than that of running jobs. In the following sections, we
propose additional optimizations to shorten the lifespan of
replicas. Second, when analyzing the bandwidth overhead,
the frequency of replication should be taken into account.
Jaguar’s job logs show an average job run time of around
1000 s and an average aggregate memory usage of 31.8 GB,
which leads to a bandwidth consumption of less than 0.1%
of Jaguar’s total capacity of 284 GB/s. For this reason, we
primarily focus on the space overhead in the following dis-
cussions.

Next, we discuss a supercomputer’s usage scenarios and
configuration in more detail to justify the use of replication
to improve job input data availability.

Even though replication is a widely used approach in
many distributed file system implementations, it is seldom
adopted in supercomputer storage systems. In fact, many
popular high-performance parallel file systems (e.g., Lus-
tre and PVFS) do not even support replication, mainly due
to space concerns. The capacity of the scratch space is im-
portant in (1) allowing job files to remain for a reasonable
amount of time (days rather than hours), avoiding the loss of
precious job input/output data, and (2) allowing giant “hero”
jobs to have enough space to generate their output. Blindly
replicating all files, even just once, would reduce the effect-
ive scratch capacity to half of its original size.

Temporal replication addresses the above concern by
leveraging job execution information from the batch sched-
uler. This allows it to only replicate a small fraction of
“active files” in the scratch space by letting the “replication
window” slide as jobs flow through the batch queue. Tempo-
ral replication is further motivated by several ongoing trends
in supercomputer configurations and job behavior. First, as
mentioned earlier, Table 1 shows that the memory to scratch
space ratio of the top 5 supercomputers is relatively low.
Second, it is rather rare for parallel jobs on these machines
to fully consume the available physical memory on each
node. A job may complete in shorter time on a larger num-

1 3

152 Wang et al.

Fig. 2 Per-node memory usage
from 300 uniformly sampled
time points over a 30-day period
based on job logs from the
ORNL Jaguar system. For each
time point, the total memory
usage is the sum of peak memory
used by all jobs in question

ber of nodes due to the division of workload and data, result-
ing in lower per-node memory requirements at a comparable
time-node charge. Figure 2 shows the per-node memory us-
age of both running and queued jobs over one month on
the ORNL Jaguar system. It backs our hypothesis that jobs
tend to be in-core, with their aggregate peak memory usage
providing an upper bound for their total input size. We also
found the actual aggregate memory usage averaged over the
300 sample points to be significantly below the total amount
of memory available shown in Table 1: 31.8 GB for running
jobs and 49.5 GB for queued jobs.

2.2 Delayed replica creation

Based on the above observations about job wait times and
cost/benefit trade-offs for replication in storage space, we
propose the following design of an HPC-centric file replica-
tion mechanism.

When jobs spend a significant amount of time waiting,
replicating their input files (either at stage-in or submission
time) wastes storage space. Instead, a parallel file system
can obtain the current queue status and determine a repli-
cation trigger point to create replicas for a given job. The
premise here is to have enough jobs near the top of the
queue, stocked up with their replicas, such that jobs dis-
patched next will have extra input data redundancy. Addi-
tional replication will be triggered by job completion events,
which usually result in the dispatch of one or more jobs from
the queue. Since jobs are seldom interdependent, we ex-
pect that supplementing a modest prefix of the queued jobs
with a second replica of their input will be sufficient. Only
one copy of a job’s input data will be available before its
replication trigger point. However, this primary copy can be
protected with periodic availability checks and remote data
recovery techniques previously developed and deployed by
us [28].

Completion of a large job is challenging as it can activate
many waiting jobs requiring instant replication of multiple

datasets. As a solution, we propose to query the queue sta-
tus from the job scheduler. Let the replication window, w, be
the length of the prefix of jobs at the head of the queue that
should have their replicas ready. w should be the smallest
integer such that:

w∑

i=0

|Qi | > max(R, αS) ,

where |Qi | is the number of nodes requested by the ith
ranked job in the queue, R is the number of nodes used by
the largest running job, S is the total number of nodes in the
system, and the factor α(0 ≤ α) is a controllable parameter
to determine the eagerness of replication.

One problem with the above approach is that job queues
are quite dynamic as strategies such as backfilling are typ-
ically used with an FCFS or FCFS-with-priority scheduling
policy. Therefore, jobs do not necessarily stay in the queue
in their arrival order. In particular, jobs that require a small
number of nodes are likely to move ahead faster. To ad-
dress this, we augment the above replication window selec-
tion with a “shortcut” approach and define a threshold T ,
0 ≤ T ≤ 1. Jobs that request T · S nodes will have their input
data replicated immediately regardless of the current replica
window. This approach allows jobs that tend to be scheduled
quickly to enjoy early replica creation.

2.3 Eager replica removal

We can also shorten the replicas’ life span by removing the
extra copy once we know it is not needed. A relatively safe
approach is to perform the removal at job completion time.
Although users sometimes submit additional jobs using the
same input data, the primary data copy will again be pro-
tected with our offline availability check and recovery [28].
Further, subsequent jobs will also trigger replication as they
progress toward the head of the job queue.

1 3

Improving the availability of supercomputer job input data using temporal replication 153

Overall, we recognize that the input files for most in-
core parallel jobs are read at the beginning of job execu-
tion and never re-accessed thereafter. Hence, we have de-
signed an eager replica removal strategy that removes the
extra replica once the replicated file has been closed by
the application. This significantly shortens the replication
duration, especially for long-running jobs. Such an aggres-
sive removal policy may subject input files to a higher
risk in the rare case of a subsequent access further down
in its execution. However, we argue that reduced space
requirements for the more common case outweigh this
risk.

3 Implementation issues

A Lustre [6] file system comprises of three key compo-
nents: clients, a MetaData Server (MDS), and Object Stor-
age Servers (OSS). Each OSS can host several Object Stor-
age Targets (OST) that manage the storage devices. All our
modifications were made within Lustre and do not affect
the POSIX file system APIs. Therefore, data replication,
failover and recovery processes are entirely transparent to
user applications.

3.1 Replica management services

In our implementation, a supercomputer’s head node dou-
bles as a replica management service node, running as
a Lustre client. Job input data is usually staged via the head
node making it well suited for initiating replication oper-
ations. Replica management involves generating a copy of
the input dataset at the appropriate replication trigger point,
scheduling periodic failure detection before job execution,
and also scheduling data recovery in response to reconstruc-
tion requests. Data reconstruction requests are initiated by
the compute nodes when they observe storage failures dur-
ing file accesses. The replica manager serves as a coordina-
tor that facilitates file reorganization, replica reconstruction,
and streamlining of requests from the compute nodes in
a non-redundant fashion.

3.1.1 Replica creation and management

We use the copy mechanism of the underlying file system to
generate a replica of the original file. In creating the replica,
we ensure that it inherits the striping pattern of the original
file and is distributed on I/O nodes disjoint from the ori-
ginal file’s I/O nodes. As depicted in Fig. 3, the objects of
the original file and the replica form pairs (objects (0, 0′),
(1, 1′), etc.). The replica is associated with the original file
for its lifetime by utilizing Lustre’s extended attribute mech-
anism.

Fig. 3 Objects of an original job input file and its replica. A failure
occurred to OST1, which caused accesses to the affected object to
be redirected to their replicas on OST5, with replica regeneration on
OST8

3.1.2 Failure detection

For persistent data availability, we perform periodic failure
detection before a job’s execution. This offline failure de-
tection mechanism was described in our previous work [28].
The same mechanism has been extended for transparent
storage failure detection and access redirection during a job
run. Both I/O node failures and disk failures will result in
an I/O error immediately within our Lustre patched VFS
system calls. Upon capturing the I/O error in the system
function, Lustre obtains the file name and the index of the
failed OST. Such information is then sent by the client to the
head node, which, in turn, initiates the object reorganization
and replica reconstruction procedures.

3.1.3 Object failover and replica regeneration

Upon an I/O node failure, either detected by the periodic
offline check or by a compute node through an I/O error,
the aforementioned file and failure information is sent to
the head node. Using several new commands that we have
developed, the replica manager will query the MDS to iden-
tify the appropriate objects in the replica file that can be
used to fill the holes in the original file. The original file’s
metadata is updated subsequently to integrate the repli-
cated objects into the original file for seamless data ac-
cess failover. Since metadata updates are inexpensive, the
head node is not expected to become a potential bottle-
neck.

To maintain the desired data redundancy during the
period that a file is replicated, we choose to create a “sec-
ondary replica” on another OST for the failover objects after
a storage failure. The procedure begins by locating another
OST, giving priority to one that currently does not store any

1 3

154 Wang et al.

part of the original or the primary replica file.1 Then, the
failover objects are copied to the chosen OST and in turn in-
tegrated into the primary replica file. Since the replica acts
as a backup, it is not urgent to populate its data immedi-
ately. In our implementation, such stripe-wise replication
is delayed by 5 s (tunable) and is offloaded to I/O nodes
(OSSs).

3.1.4 Streamlining replica regeneration requests

Due to parallel I/O , multiple compute nodes (Lustre clients)
are likely to access a shared file concurrently. Therefore, in
the case of a storage failure, we must ensure that the head
node issues a single failover/regeneration request per file
and per OST despite multiple such requests from different
compute nodes. We have implemented a centralized coor-
dinator inside the replica manager to handle the requests in
a non-redundant fashion.

3.2 Coordination with job scheduler

As we discussed in Sections 1 and 2, our temporal replica-
tion mechanism is required to be coordinated with the batch
job scheduler to achieve selective protection for “active”
data. In our target framework, batch jobs are submitted to
a submission manager that parses the scripts, recognizes and
records input data sets for each job, and creates correspond-
ing replication operations at the appropriate time.

To this end, we leverage our previous work [28] that auto-
matically separates out data staging and compute jobs from
a batch script and schedules them by submitting these jobs
to separate queues (“dataxfer” and “batch”) for better con-
trol. This enables us to coordinate data staging alongside
computation by setting up dependencies such that the com-
pute job only commences after the data staging finishes. The
data operation itself is specified in the PBS job script as fol-
lows using a special “STAGEIN” directive:

#STAGEIN hsi -q -A keytab -k my_keytab_ file -l user

“get /scratch/user/destination_file : input_ file”

We extend this work by setting up a separate queue,
“ReplicaQueue”, that accepts replication jobs. We have also
implemented a replication daemon that determines “what
and when to replicate”. The replication daemon creates
a new replication job in the ReplicaQueue so that it com-
pletes in time for the job to have another copy of the data
when it is ready to run. The daemon periodically moni-
tors the batch queue status using the qstat tool and executes
the delayed replica creation algorithm described in Sect. 2.2.
These strategies enable the coordination between the job

1 In Lustre, file is striped across 4 OSTs by default. Since supercom-
puters typically have hundreds of OSTs, an OST can be easily found.

scheduler and the storage system, which allows data replica-
tion only for the desired window during the corresponding
job’s life cycle on a supercomputer.

4 Experimental results

To evaluate the temporal replication scheme, we performed
real-cluster experiments. We assessed our implementation
of temporal replication in the Lustre file system in terms of
the online data recovery efficiency.

4.1 Experimental framework

Our testbed comprised a 17-node Linux cluster at NCSU.
The nodes were 2-way SMPs, each with four AMD Opteron
1.76 GHz cores and 2 GBs of memory, connected by a Giga-
bit Ethernet switch. The OS used was Fedora Core 5 Linux
x86_64 with Lustre 1.6.3. The cluster nodes were setup as
I/O servers, compute nodes (Lustre clients), or both, as dis-
cussed later.

4.2 Failure detection and offline recovery

As mentioned in Sect. 3.1, before a job begins to run, we
periodically check for failures on OSTs that carry its input
data. The detection cost is less than 0.1 seconds as the num-
ber of OSTs increases to 256 (16 OSTs on each of the 16
OSSs) in our testbed. Since failure detection is performed
when a job is waiting, it incurs no overhead on job execu-
tion itself. When an OST failure is detected, two steps are
performed to recover the file from its replica: object failover
and replica reconstruction. The overhead of object failover is
relatively constant (0.84–0.89 s) regardless of the number of
OSTs and the file size. This is due to the fact that the oper-
ation only involves the MDS and the client that initiates the
command. Figure 4 shows the replica reconstruction (RR)
cost with different file sizes. The test setup consisted of 16
OSTs

Fig. 4 Offline replica reconstruction cost with varied file size

1 3

Improving the availability of supercomputer job input data using temporal replication 155

(1 OST/OSS). We varied the file size from 128 MB to 2 GB.
With one OST failure, the data to recover ranges from 8MB
to 128 MB causing a linear increase in RR overhead. Fig-
ure 4 also shows that the whole file reconstruction (WFR),
the conventional alternative to our more selective scheme
where the entire file is re-copied, has a much higher over-
head. In addition, RR cost increases as the chunk size de-
creases due to the increased fragmentation of data accesses.

4.3 Online recovery

4.3.1 Application 1: matrix multiplication (MM)

To measure on-the-fly data recovery overhead during a job
run with temporal replication, we used MM, an MPI kernel
that performs dense matrix multiplication. It computes the
standard C = A ∗ B operation, where A, B and C are n ∗n
matrices. A and B are stored contiguously in an input file.
We vary n to manipulate the problem size. Like in many
applications, only one master process reads the input file,
then broadcasts the data to all the other processes for parallel
multiplication using a BLOCK distribution.

Figure 5 depicts the MM recovery overhead with differ-
ent problem sizes. Here, the MPI job ran on 16 compute
nodes, each with one MPI process. The total input size was
varied from 128 MB to 2 GB by adjusting n. We config-
ured 9 OSTs (1 OST/OSS), with the original file residing on
4 OSTs, the replica on another 4, and the reconstruction of
the failover object occurring on the remaining one. Limited
by our cluster size, we let nodes double as both I/O and com-
pute nodes.

To simulate random storage failures, we varied the point
in time where a failure occurs. In “up-front”, an OSTs fail-
ure was induced right before the MPI job started running.
Hence, the master process experienced an I/O error upon
its first data access to the failed OST. With “mid-way”, one
OST failure was induced mid-way during the input process.
The master encountered the I/O error amidst its reading and
sent a recovery request to the replica manager on the head
node. Figure 5 indicates that the application-visible recov-
ery overhead was almost constant for all cases (right around
1 s) considering system variances. This occurs because only
one object was replaced for all test cases while only one
process was engaged in input. Even though the replication
reconstruction cost rises as the file size increases, this was
hidden from the application. The application simply pro-
gressed with the failover object from the replica while the
replica itself was replenished in the background.

4.3.2 Application 2: mpiBLAST

To evaluate the data recovery overhead using temporal repli-
cation with a read-intensive application, we tested with

Fig. 5 MM recovery overhead vs. replica reconstruction cost

mpiBLAST [8], which splits a database into fragments and
performs a BLAST search on the worker nodes in parallel.
Since mpiBLAST is more input-intensive, we examined the
impact of a storage failure on its overall performance. The
difference between the job execution times with and without
failure, i.e., the recovery overhead, is shown in Fig. 6. Since
mpiBLAST assigns one process as the master and another to
perform file output, the number of actual worker processes
performing parallel input is the total process number minus
two.

The Lustre configurations and failure modes used in the
tests were similar to those in the MM tests. Overall, the
impact of data recovery on the application’s performance
was small. As the number of workers grew, the database
was partitioned into more files. Hence, more files resided on
the failed OST and needed recovery. As shown by Fig. 6,
the recovery overhead grew with the number of workers.
Since each worker process performed input at its own pace
and the input files were randomly distributed to the OSTs,
the I/O errors captured on the worker processes occurred

Fig. 6 Recovery overhead of mpiBLAST

1 3

156 Wang et al.

at different times. Hence, the respective recovery requests
to the head node were not issued synchronously in par-
allel but rather in a staged fashion. With many applica-
tions that access a fixed number of shared input files, we
expect to see a much more scalable recovery cost with
regard to the number of MPI processes using our tech-
niques.

5 Related work

5.1 RAID recovery

Disk failures can often be masked by standard RAID tech-
niques [15]. However, RAID is geared toward whole disk
failures and does not address sector-level faults [1, 10, 17].
It is further impaired by controller failures and multiple
disk failures within the same group. Without hot spares,
reconstruction requires manual intervention and is time con-
suming. With RAID reconstruction, disk arrays either run
in a degraded (not yielding to other I/O requests) or po-
lite mode. In a degraded mode, busy disk arrays suffer
a substantial performance hit when crippled with multiple
failed disks [20, 27]. This degradation is even more sig-
nificant on parallel file systems as files are striped over
multiple disk arrays and large sequential accesses are com-
mon. Under a polite mode, with rapidly growing disk cap-
acity, the total reconstruction time is projected to increase
to days subjecting a disk array to additional failures [18].
Our approach complements RAID systems by providing
fast recovery protecting against non-disk and multiple disk
failures.

Recent work on popularity-based RAID reconstruc-
tion [21] rebuilds more frequently accessed data first,
thereby reducing reconstruction time and user-perceived
penalties. However, supercomputer storage systems host
transient job data, where “unaccessed” job input files
are often more important than “accessed” ones. In add-
ition, such optimizations cannot cope with failures beyond
RAID’s protection at the hardware level.

5.2 Replication

Data replication creates and stores redundant copies (repli-
cas) of datasets. Various replication techniques have been
studied [3, 7, 19, 25] in many distributed file systems [4, 9,
13]. Most existing replication techniques treat all datasets
with equal importance and each dataset with static, time-
invariant importance when making replication decisions.
An intuitive improvement would be to treat datasets with
different priorities. To this end, BAD-FS [2] performs
selective replication according to a cost-benefit analy-
sis based on the replication costs and the system failure

rate. Similar to BAD-FS, our approach also makes on-
demand replication decisions. However, our scheme is more
“access-aware” rather than “cost-aware”. While BAD-FS
still creates static replicas, our approach utilizes explicit in-
formation from the job scheduler to closely synchronize
and limit replication to jobs in execution or soon to be
executed.

5.3 Erasure coding

Another widely investigated technique is erasure coding [5,
16, 26]. With erasure coding, k parity blocks are encoded
into n blocks of source data. When a failure occurs, the
whole set of n + k blocks of data can be reconstructed with
any n surviving blocks through decoding.

Erasure coding reduces the space usage of replication but
adds computational overhead for data encoding/decoding.
In [24], the authors provide a theoretical comparison be-
tween replication and erasure coding. In many systems,
erasure coding provides better overall performance balanc-
ing computation costs and space usage. However, for su-
percomputer centers, its computation costs will be a con-
cern. This is because computing time in supercomputers is
a precious commodity. At the same time, our data analy-
sis suggests that the amount of storage space required to
replicate data for active jobs is relatively small compared
to the total storage footprint. Therefore, compared to era-
sure coding, our approach is more suitable for supercom-
puting environments, which is verified by our experimental
study.

5.4 Remote reconstruction

Some of our previous studies [23, 28] investigated ap-
proaches for reconstructing missing pieces of datasets from
data sources where the job input data was originally staged
from. We have shown in [28] that supercomputing centers’
data availability can be drastically enhanced by periodi-
cally checking and reconstructing datasets for queued jobs
while the reconstruction overheads are barely visible to
users.

Both remote patching and temporal replication will be
able to help with storage failures at multiple layers. While
remote patching poses no additional space overhead, the
patching costs depend on the data source and the end-to-
end network transfer performance. It may be hard to hide
them from applications during a job’s execution. Temporal
replication, on the other hand, trades space (which is rela-
tively cheap at supercomputers) for performance. It provides
high-speed data recovery and reduces the space overhead by
only replicating the data when it is needed. Our optimiza-
tions presented in this paper aim at further controlling and
lowering the space consumption of replicas.

1 3

Improving the availability of supercomputer job input data using temporal replication 157

6 Conclusion

In this paper, we have presented a novel temporal replica-
tion scheme for supercomputer job data. By creating ad-
ditional data redundancy for transient job input data and
coordinating the job scheduler and the parallel file sys-
tem, we allow fast online data recovery from local repli-
cas without user intervention or hardware support. This
general-purpose, high-level data replication can help avoid
job failures/resubmission by reducing the impact of both
disk failures or software/hardware failures on the storage
nodes. Our implementation, using the widely used Lus-
tre parallel file system and the Moab scheduler, demon-
strates that replication and data recovery can be performed
efficiently.

References

1. Bairavasundaram L, Goodson G, Pasupathy S, Schindler J (2007)
An analysis of latent sector errors in disk drives. Proceedings
of the 2007 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’07), pp 289–300

2. Bent J, Thain D, Arpaci-Dusseau A, Arpaci-Dusseau R, Livny
M (2004) Explicit control in a batch aware distributed file sys-
tem. Proceedings of the First USENIX/ACM Conference on Net-
worked Systems Design and Implementation

3. Blake C, Rodrigues R (2003) High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two. Proceedings the 9th Work-
shop on Hot Topics in Operating Systems (HotOS)

4. Butt A, Johnson T, Zheng Y, Hu Y (2004) Kosha: A peer-to-peer
enhancement for the network file system. Proceedings of Super-
computing

5. Byers J, Luby M, Mitzenmacher M, Rege A (1998) A digital
fountain approach to reliable distribution of bulk data. Proceed-
ings of the ACM SIGCOMM Conference

6. Lustre File System site. http://wiki.lustre.org. Accessed April
2009

7. Cohen E, Shenker S (2002) Replication strategies in unstructured
peer-to-peer networks. Proceedings of the ACM SIGCOMM
Conference

8. Darling AE, Carey L, Feng WC (2003) The design, implemen-
tation, and evaluation of mpiblast. ClusterWorld Conference &
Expo and the 4th International Conference on Linux Cluster: The
HPC Revolution ’03

9. Ghemawat S, Gobioff H, Leung S (2003) The Google file sys-
tem. Proceedings of the 19th Symposium on Operating Systems
Principles

10. Gunawi H, Prabhakaran V, Krishnan S, Arpaci-Dusseau A,
Arpaci-Dusseau R (2007) Improving file system reliability with
i/o shepherding. Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP’07)

11. Hsu C, Feng W (2005) A power-aware run-time system for
high performance computing. In: Proceedings of Supercomputing
2005 (SC2005): Int´l Conference on High Performance Comput-
ing, Networking, Storage and Analysis

12. Jiang W, Hu C, Zhou Y, Kanevsky A (2008) Are disks the dom-
inant contributor for storage failures? A comprehensive study of
storage subsystem failure characteristics. Trans Stor 4(3):1–25

13. Liskov B, Ghemawat S, Gruber R, Johnson P, Shrira L, Williams
M (1991) Replication in the Harp file system. Proceedings of 13th
ACM Symposium on Operating Systems Principles, pp 226–38.
Association for Computing Machinery SIGOPS

14. Monti H, Butt AR, Vazhkudai SS (2008) Timely Offloading of
Result-Data in HPC Centers. Proceedings of 22nd Int’l Confer-
ence on Supercomputing ICS’08

15. Patterson D, Gibson G, Katz R (1988) A case for redundant
arrays of inexpensive disks (RAID). Proceedings of the ACM
SIGMOD Conference

16. Plank J, Buchsbaum A, Collins R, Thomason M (2005) Small
parity-check erasure codes – exploration and observations. Pro-
ceedings of the International Conference on Dependable Systems
and Networks

17. Prabhakaran V, Bairavasundaram LN, Agrawal N, Gunawi abd
Andrea HS, Arpaci-Dusseau C, Arpaci-Dusseau RH (2005) Iron
file systems. Proceedings of the 20th ACM Symposium on Oper-
ating Systems Principles (SOSP ’05), pp 206–220

18. Schroeder B, Gibson G (2007) Understanding failure in petascale
computers. Proceedings of the SciDAC Conference

19. Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H
(2001) Chord: A scalable peer-to-peer lookup service for internet
applications. Proceedings of the ACM SIGCOMM Conference

20. Thomasian A, Fu G, Han C (2007) Performance of two-disk
failure-tolerant disk arrays. IEEE Trans Comput 56(6):799–814

21. Tian L, Feng D, Jiang H, Zhou K, Zeng L, Chen J, Wang Z,
Song Z (2007) Pro: a popularity-based multi-threaded reconstruc-
tion optimization for raid-structured storage systems. FAST’07:
Proceedings of the 5th conference on USENIX Conference on
File and Storage Technologies, pp 32–32. USENIX Association,
Berkeley, CA, USA

22. Top500 supercomputer sites. http://www.top500.org/, June 2007
23. Vazhkudai S, Ma X, Freeh V, Strickland J, Tammineedi N, Scott

S (2005) Freeloader: Scavenging desktop storage resources for
bulk, transient data. Proceedings of Supercomputing

24. Weatherspoon H, Kubiatowicz J (2002) Erasure coding vs. repli-
cation: A quantitative comparison. Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems

25. Weil S, Brandt S, Miller E, Long D, Maltzahn C (2006) Ceph: A
scalable, high-performance distributed file system. Proceedings of
the 7th Conference on Operating Systems Design and Implemen-
tation (OSDI ’06)

26. Wylie JJ, Swaminathan R (2007) Determining fault tolerance of
xor-based erasure codes efficiently. DSN ’07: Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp 206–215. IEEE Computer Society,
Washington, DC, USA

27. Xin Q, Miller E, Schwarz T (2004) Evaluation of distributed re-
covery in large-scale storage systems. Proceedings of the 13th
IEEE International Symposium on High Performance Distributed
Computing (HPDC 2004), pp 172–181

28. Zhang Z, Wang C, Vazhkudai SS, Ma X, Pike G, Cobb J, Mueller
F (2007) Optimizing center performance through coordinated
data staging, scheduling and recovery. Proceedings of Super-
computing 2007 (SC07): Int’l Conference on High Performance
Computing, Networking, Storage and Analysis

1 3

http://wiki.lustre.org
http://www.top500.org/

	1 Introduction
	1.1 Contributions

	2 Temporal replication design
	2.1 Justification and design rationale
	2.2 Delayed replica creation
	2.3 Eager replica removal

	3 Implementation issues
	3.1 Replica management services
	3.1.1 Replica creation and management
	3.1.2 Failure detection
	3.1.3 Object failover and replica regeneration
	3.1.4 Streamlining replica regeneration requests

	3.2 Coordination with job scheduler

	4 Experimental results
	4.1 Experimental framework
	4.2 Failure detection and offline recovery
	4.3 Online recovery
	4.3.1 Application 1: matrix multiplication (MM)
	4.3.2 Application 2: mpiBLAST

	5 Related work
	5.1 RAID recovery
	5.2 Replication
	5.3 Erasure coding
	5.4 Remote reconstruction

	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

