
1

stdchk: A Checkpoint Storage System for the HPC Ecosystem
Samer Al-Kiswany*, Sudharshan S. Vazhkudai†, Henry Monti‡, Emalayan Vairavanathan*, Matei Ripeanu*

* The University of British Columbia, {samera, emalayan, matei}@ece.ubc.ca
† Oak Ridge National Laboratory, vazhkudaiss@ornl.gov

‡ Virginia Tech, hmonti@cs.vt.edu

Abstract— Checkpointing is an indispensable technique to
provide fault tolerance for long-running applications in
HPC settings. This article argues that a checkpoint storage
system, optimized to operate in these environments, can
offer multiple benefits: reduce the load on a traditional file
system, offer high-performance through specialization,
and, finally, optimize data management by taking into
account checkpoint application semantics. Such a storage
system can present a unifying abstraction to checkpoint
operations, while hiding the fact that there are no
dedicated resources to store the checkpoint data.

We present stdchk, a checkpoint storage system for all
layers of the HPC hierarchy. It scavenges node-local
resources such as disk or memory space from
participating compute nodes to build a low-cost storage
system, offering a traditional file system interface for easy
integration with applications. We present the stdchk
architecture, its key performance optimizations, its
support for incremental checkpointing and increased data
availability. Our evaluation confirms that the stdchk
approach is viable in all three settings—a loosely-
connected desktop grid, mid-sized clusters and extreme-
scale supercomputers. It offers a low-cost storage system
with desirable performance characteristics: high write
throughput as well as reduced storage space and network
effort to save checkpoint images.

I. INTRODUCTION
High performance and high throughput computing
applications produce massive amounts of data at
extreme speeds. For example, several leadership
applications in the areas of fusion, astrophysics and
combustion running on the Jaguar PetaFlop machine at
Oak Ridge National Laboratory (the top machine in the
Top500 supercomputer list as of November 2009)
already produce tens of TeraBytes (TB) of data during a
single application run. Similarly, the FLASH [1]
astrophysics application running on the Intrepid Blue
Gene supercomputer at Argonne National Laboratory
generates up to six million files of snapshot data during
a single run. We might soon be faced with PetaBytes
(PB) of data from a single application run.

Modern parallel file systems (e.g., Lustre, PVFS)
that attempt to meet these intense I/O demands by
building atop thousands of I/O servers and tens of
thousands of disks become highly expensive. A survey
of DOE applications [2] indicated that many application
teams deem a sustained 1GB/s I/O throughput for every
TeraFlop of peak computing performance as necessary.

Thus, a PetaFlop computer will require 1TB/sec of I/O
bandwidth. The Jaguar PetaFlop supercomputer
however offers a peak Lustre parallel file system access
rate of only about 254GB/s, which is four times lower
than I/O bandwidth rate desired by application teams,
and two orders of magnitude lower than the theoretical
estimate a balanced machine should provide according
to Jim Gray [3].

A key driver for these massive amounts of data sizes
is checkpointing, an indispensable fault tolerance
technique adopted by long-running applications. A
parallel job, running on tens of thousands of compute
cores for hours or days, checkpoints its state
periodically during the course of its run in an attempt to
offer the ability to recover the application state in case
of failure. A high checkpoint frequency reduces the
volume of computation that needs to be repeated in case
of a failure, but generates more data.

Checkpointing, however critical it may be, is time
spent away from useful computation. Consider a
100,000 core job on the Jaguar system that runs for 12
hours and checkpoints every hour. For this job, in the
worst case, when all of the memory per core (2GB) is
saved as state information, 2.4PB of checkpoint data is
produced during a run. Assuming that an application
achieves the peak I/O rate, the above 2.4PB of snapshot
data can be checkpointed in 2.6 hours, roughly 22% of
the job's runtime.

Thus, it is increasingly evident that applications will
spend a substantial portion of their runtime preparing
against failure. Compounding the problem further is the
fact that, historically, I/O bandwidth has not scaled with
processor frequencies and that the effective throughput
achieved by any given application significantly
deteriorates when the I/O channel is shared across
multiple applications.

While the problem is acute in extreme-scale
systems, it also extends to mid-scale clusters and
desktop grids (networks of workstations). Centralized
file systems in clusters and desktop grids seldom offer
I/O rates high enough for the data intensive checkpoint
operation. The reason is that a small institution can
hardly afford the expenses required to adequately
provision a central file system. In these settings one
alternative used in practice, especially in desktop grids,
is checkpointing to node-local storage. However, local
storage is bound to the volatility of the node itself. First,
individual nodes in a desktop grid are usually

2

relinquished when their owner returns leaving little time
to migrate checkpoint data. Second, desktops are
themselves not highly reliable and failure is common.
Thus, the locally stored checkpoint data is lost when the
node crashes.

In summary, we argue that the data intensive
checkpointing operation is a critical problem in the
entire HPC ecosystem which ranges from extreme-scale
supercomputers to mid-scale clusters to desktop grids.
This situation calls for novel techniques to address
checkpointing in HPC systems, in a way that achieves
the desired fault-tolerance level and yet does not
compromise the overall system throughput.

A. The Opportunity

The availability of node-local resources (e.g., disk-
based storage, memory) and the associated explosion in
interconnect speeds in the entire HPC ecosystem offers
the opportunity to use them in a concerted fashion to
serve checkpointing demands. For example, in extreme-
scale systems, nodes are diskless, yet these machines
have tens to hundreds of TBs of main memory
accessible through high-performance interconnects. The
Jaguar machine at ORNL, for example, has around
362TB of aggregate memory connected through an
interconnect with a 3D torus topology that offers a
398TB/s aggregate bandwidth and low latency.

Table 1: Characteristics of supercomputers in Top500
supercomputer list as of November 2009.

System #Cores Aggregate
Memory (TB)

Top500
Rank

Jaguar Cray XT5 (ORNL) 224,256 362 1
RoadRunner (LANL) 122,400 98 2
Kraken Cray XT5 (UT) 99,072 129 3
JUGENE (Juelich) 294,912 144 4
Tianhe-1 (Tianjin) 71,680 98 5

While the current use of node-local resources, in
isolation, towards checkpointing poses challenges in
terms of data reliability, such node-local resources can
be aggregated to build a distributed storage system
optimized for the checkpointing workload. This
approach can help address concerns regarding the
durability of the checkpoint image (through
redundancy) and I/O throughput of the checkpoint
operation (through parallelism, striping, and
optimizations that exploit the specific nature of the
checkpointing workload, for example the similarity
between successive checkpoint images).

Harnessing node-local disks in desktop grids and
mid-sized clusters for checkpointing is a logical choice
as these resources would have gone unused otherwise.
However, harnessing memory in extreme-scale
machines requires some justification. The main
argument against it is that even though supercomputers
have tens or hundreds of TBs of memory, modern
applications are ever more memory-intensive and,

consequently, cannot spare compute cores and their
associated memory. However, application throughput
cannot solely be measured based on FLOPS achieved.
An application that uses up all the available cores and
their memory will also invariably be stymied by the I/O
bottleneck resulting from writing out large snapshot
data due to such intense compute core and memory
usage. Thus, dedicating a small fraction of the
allocation (of cores and their memory), can expedite an
application’s own turnaround time.

Alternatively, jobs can oversubscribe for compute
cores. For example, depending on the failure rate of the
machine, a particular job might ask for up to 1% more
cores than it actually needs and use them to improve
application reliability (e.g., for failing over processes, or
to support checkpointing). One can imagine an
aggregated memory device built out of such pools. This
approach has the advantage that it uses the application’s
own over-subscribed processor allocation. Depending
on the charging scheme and the constraints of each
specific system, applications can factor such pools into
their requests. For example, often applications are
charged proportionally with the number of
processors and the wall-time they use them. As the
turnaround time is directly dependent on the
checkpointing performance, more processors do mean
higher charges but, potentially, for shorter time.
Additionally, the application may decide what to
optimize: the turnaround time or its costs.

Constructing such an aggregate checkpoint storage
system using node-local resources, however, is rife with
several challenges in terms of providing high-speed
parallel writes, data reliability, efficient use of scarce
storage resources, and a traditional file system interface
for applications

B. Contributions
We present stdchk, a checkpoint-specialized

storage system for HPC that addresses the above issues.
Much like how stdin and stdout input/output
systems are ubiquitously available to applications, we
argue that checkpointing is an I/O intensive operation,
requiring a special ‘data path’. We show that this data
path can be made available to HPC applications as a
low-cost checkpoint-specialized storage system.

We have successfully deployed and operated
stdchk in a number of environments ranging from
extreme-scale supercomputers (the BlueGene
supercomputer at Argonne National Laboratory with
our collaborators [4]), to clusters (at Oakridge National
Laboratory and The University of British Columbia), to
a utility computing environment (Amazon EC2, where
the system provides a temporary high-throughput data
space shared by multiple allocated nodes).

While we base our solution on our previous storage
system work that aggregates scavenged disk space to
build a cache (write-once-read-many semantic) [5],

3

stdchk, however, is optimized for a different workload
namely, high-speed writes of incremental versions of
the same file. To this end, stdchk introduces several
optimizations to render itself ‘checkpoint-friendly’ to
HPC applications:
§ High sequential write throughput. stdchk exploits

the I/O parallelism that exists inherently in a multi-
node machine to provide a suite of write-optimized
protocols that enable checkpointing at throughputs
higher than what is currently feasible. Our results
indicate an average throughput of up to 652MB/s in a
cluster based on ramdisk aggregation. Compared to
the Lustre parallel file system available in this
production setup, stdchk offers a 5x throughput
improvement.

§ Support for incremental versioning. stdchk
minimizes the size of the data stored using a novel
solution to incremental checkpointing that exploits
the commonality between successive checkpoint
images. We put forth several heuristics that do not
require application or operating system support to
identify commonality between incremental versions
of the same checkpoint image. Additionally, we
evaluate these heuristics in the context of real
applications. Our results indicate a substantial
reduction in checkpoint data size and generated
network traffic. A desired side-effect of this approach
is that it enables applications to checkpoint at a finer
granularity.

§ Tunable data availability and durability. Since
stdchk aggregates storage contributions from
potentially transient nodes, standard replication
techniques are used to ensure data availability and
durability. Further, applications can decide the level
of data availability/durability they require.

§ Tunable write semantics. Additionally, stdchk
gives applications the ability to choose between a
write semantic that is pessimistic (the system call
returns only after the desired level of replication is
achieved) or optimistic (return immediately after data
has been written safely once, while replication occurs
in the background). This further gives applications
control over the write throughput vs. data durability
tradeoff.

§ Automatic pruning of checkpoint images. stdchk
offers efficient space management and automatic
pruning of checkpoint images. These data
management strategies lay the foundation for
efficient handling of transient data.

§ Easy integration with applications. stdchk
provides a traditional file system API, using the
FUSE (File system in user space) Linux kernel
module [6, 7], for easy integration with applications

To summarize, the novelty of our approach lies in
recognizing that checkpointing can benefit from
specialized storage system support and in bringing to

bear a combination of storage solutions to address this
specific workload. Our system builds on best practices
from several domains: storage scavenging from peer-to-
peer storage systems, striping from parallel I/O,
incremental checkpointing from versioned storage and
data archiving, replication/encoding from storage
systems concerned with data durability and applies them
to checkpointing.

The rest of this paper is organized as follows: the
next section surveys the related work, section III
presents the design considerations for a checkpointing
oriented storage system, section IV details stdchk
design, while section V presents an extensive evaluation
study. Section VI concludes this study.

II. RELATED WORK
This section groups the efforts the major related to

checkpointing under a number of categories.
System-level support for checkpointing. Applications

can use one of the following checkpointing solutions,
each offering different transparency vs. performance
tradeoffs. First, application-level checkpointing offers
no transparency, yet performance is high as the
application programmer manages the process of
collecting and saving the application state. Second,
checkpointing libraries (e.g., BLCR [8], DejaVu [9]),
often available on large-scale clusters, provide an
increased level of transparency by checkpointing at the
process level. Finally, checkpointing with operating-
system level support offers complete transparency at the
cost of ignoring application semantics, which can often
be used to reduce storage requirements. Unlike stdchk
none of these techniques entail storage system support
and simply use the file system as is.

Workload-optimized storage systems. Building
storage systems geared for a particular class of I/O
operations or for a specific access pattern is not
uncommon. For example, the Google file system [10]
optimizes for large datasets and append access; the Log-
structured file system [11] optimizes for writes, arguing
that most reads are served by ever increasing memory
caches; BAD-FS [12] optimizes for batch job
submission patterns; FreeLoader [5] optimizes for
write-once read-many data access and exploits the
locality of interest and sequential access patterns of
scientific data analysis. Parallel file systems (Lustre
[13], PVFS [14], GPFS [15]) also target large datasets
and provide high I/O throughput for parallel
applications. In a similar vein, a checkpoint optimized
storage system can be geared towards write-intensive
I/O operations.

Checkpointing-optimized storage systems. Recently,
two checkpoint specialized storage systems have been
proposed: PLFS and Zest [16] are both log-structured
filesystems at the core. PLFS [17] is designed to support
application-level checkpointing in which the

4

application’s N-to-1 write pattern (N processes writing
to a single file) is rearranged into an N-to-N pattern that
fits better the underlying parallel file system. The PLFS
virtual interposition layer intercepts application writes
and creates a container structure for each logical file.
The container consists of folders per compute node,
sequentially appended data within the folders from
processes from the node and an index file with metadata
on offsets. To read a checkpoint file, PLFS aggregates
the index files, creating a lookup table for the file. In
ZEST, instead of clients pushing data, manager threads
on remote server disks pull the data from distributed
queues whenever they are not busy. All three systems,
stdchk, PLFS and ZEST use FUSE as an interposition
technique. Both stdchk and PLFS maintain the
application’s logical data format and work with
unmodified applications, whereas ZEST does not.
stdchk, however, uses node-local resources—node-
disks and memory—to create the checkpoint storage
system, whereas PLFS just rearranges the writes to a
central file system. stdchk is fundamentally different
from these systems in its attempt to use the same
concept of aggregation as an overarching theme to
create a checkpoint storage system at all levels of the
HPC I/O hierarchy, from desktop grids to clusters to
supercomputers. Additionally, stdchk can offer a high
checkpointing throughput by exploiting the checkpoint
data characteristics to reduce the storage volume,
through transparent similarity detection.

Diskless checkpointing. This technique uses
neighboring compute node’s memory to save
checkpoint data. Several systems adopt this approach
[18, 19], but do not transfer the data to persistent
storage. Further, these solutions are not concerted in
their use of memory resources, leaving the application
(or the checkpointing library) to handle the mechanics
of data spilling over from one neighbor node’s memory
to the other. stdchk seamlessly handles this through
aggregation and striping.

Contributory storage. A number of storage systems
[5, 20, 21, 22] aggregate space contributions from
collaborating users to provide a shared data store. Their
basic premise is the availability of a large amount of
idle disk space on personal desktops that are online for
the vast majority of the time. The specific technical
solutions, however, vary widely as a result of different
targeted deployment environments (local vs. wide-area
networks), different workloads (e.g., unrestricted file-
system workload vs. read-only workload vs.
checkpointing workload), or different assumptions on
user motivation to contribute storage (e.g., from systems
that propose storage space bartering to motivate users to
systems that assume collaborative users by default).

Versioned Storage. Several file systems save periodic
snapshots of an entire file system to recover from

accidental file deletions or changes. Examples include
Plan 9 [23] or AFS [24] that use a single policy that
guides file retention for the entire file system and the
Elephant file system [25] that incorporates user-
specified policies to determine which versions to retain.
On the one side, the checkpoint scenario is more coarse-
grained in that each checkpoint is written sequentially.
The flip side is that copy-on-write techniques used by
the aforementioned systems offer no gains when entire
files are written sequentially.

Data-deduplication in storage systems. To reduce the
amount of data sent to remote storage, LBFS [26] and
JumboStore [27] detect similarity between file versions
sent over the network by only transmitting the changed
file ranges. The same approach was also used to detect
copy right violations [28]. This is similar to utilities
such as CVS and rsync that transmit deltas of files to
bring server and user copies up to date. We evaluate this
technique in our setting and find that its overhead is
considerable.

We have chosen to build stdchk by making use of
concepts from previous work: storage aggregation using
scavenging and striping, support for versioning and data
deduplication. Based on these concepts, we have built a
sophisticated storage infrastructure geared towards
distributed checkpointing. The design and
implementation of the stdchk storage system
incorporates new functionality conducive to
checkpointing namely: file replication, garbage
collection, session semantics, and optimized write
techniques that enable delegating to applications the
control of the tradeoffs between data reliability and
performance.

III. DESIGN CONSIDERATIONS FOR A CHECKPOINT
STORAGE SYSTEM

A checkpoint-optimized storage system can bring
significant benefits. First, such a system offloads the I/O
intensive checkpoint operations from the traditional file
system, thus alleviating the load on an expensive shared
storage server. Second, this storage system can be
optimized for the checkpoint operation. For example, it
can reduce file system overhead associated with large
writes as well as reduce data storage requirements. As a
result, applications can checkpoint at a rate significantly
higher than what is currently feasible with shared file
systems. Third, checkpoint data is transient in nature
and is often not maintained beyond the lifetime of a
successful application run. Unlike a regular file system,
a checkpoint storage system can be aware of this
characteristic and act like a cache to purge or prune files
using a combination of data usage, aging, and user
specified policies. Finally, a checkpoint storage system
needs to present only a unifying file system abstraction
and can hide the fact that there are no dedicated
resources to store the checkpoint data.

5

A. Checkpoint I/O Workload Characteristics
This section summarizes the characteristics of a typical
checkpoint workload.
§ Applications typically create one file per process per

timestep. Thus, a large parallel application, running
for a few hours and checkpointing every 15 minutes,
can easily create tens of thousands of files.

§ Applications have distinct compute and checkpoint
phases. Parallel applications on thousands of nodes
can simultaneously access the storage system to save
their images.

§ Checkpoint data is transient in nature. Successive
checkpoint images are produced throughout an
application’s lifetime. These images are accessed only
in the case of a failure, process migration, or for
debugging or speculative execution. Depending on
the usage scenario, a checkpoint image may become
obsolete at the end of a checkpoint interval when a
new image is produced, after the successful execution
of the application, or, in case of migration, at process
restart time. Alternatively, a checkpoint image might
be useful in the long term for debugging and
speculative execution.

§ Low risk. Checkpoint image loss involves rolling-
back the computation to the image corresponding to
the previous timestep. While, in the common case,
this may affect the job turnaround time, data loss
effects are dependent on the specific application
execution scenario.

With these workload characteristics in mind, let us look
at some design goals for a checkpoint storage system.

B. Design Goals
This section describes the desirable properties of a
checkpoint storage system.
§ Performance. Elmootazbellah et al. [29] identify the

performance of the storage system as the key driver
for checkpointing overheads. Consequently, the
checkpoint storage should be optimized for write
performance, while a reasonable read performance is
necessary to support timely job restarts.

§ Easy-to-use interfaces. The storage system should
provide an interface that enables easy integration with
applications. Specialized libraries and interfaces,
however optimized, cannot match the simplicity of
file system interfaces.

§ Low overhead. Although file system interfaces are
desirable their overhead should be minimal. For
instance, the overhead involved in metadata
management and synchronization, can all be
minimized for checkpoint storage.

§ Support for incremental checkpoints and data
sharing. To reduce the storage and I/O load, the
storage system should be able to exploit data
commonality between successive checkpoints.

§ Scalability. The storage system should scale to

support a large number of simultaneous client
requests. For instance, multiple nodes, on which a
parallel application is running, will likely checkpoint
all at once. The aggregation system should also be
able to amass memory/disk resources from a large
number of processors/nodes.

§ Flexible namespace. The storage system should
provide a flexible naming scheme that enables easy
identification of an entire set of checkpoint images as
belonging to a particular application’s checkpoint
operation. Additionally the namespace should support
versioning.

§ Support for checkpoint image management. The
storage system should include components to manage
checkpoint image lifetime according to user specified
policies: e.g., complete replacement of checkpoint
images when a new image is produced, removal of all
images at successful completion of application, or
long-term storage of checkpoint images.

§ Data transfer to stable storage: Snapshot data stored
in the aggregate memory based storage needs to be
drained to stable storage (generally a shared parallel
file system). This should be performed in an
asynchronous fashion so that the application
perceived throughput for writing a checkpoint does
not suffer a significant impact. While this is also
desired in an aggregate storage within a desktop grid,
it is more important in memory based aggregation.

IV. stdchk: A CHECKPOINT-FRIENDLY STORAGE
SYSTEM

Storage space scavenging is a good base for building a
low-cost storage system in environments from desktop
grids, to small clusters, to disk-less extreme-scale
systems as the inherent parallelism in these
environments can be harnessed to offer a high
checkpoint throughput.

A. System Architecture
Overview. stdchk integrates two types of components:
a metadata manager and a number of benefactor (or
donor) nodes that contribute storage space or memory to
the system. Datasets are fragmented into smaller chunks
that are striped across benefactor nodes for fast storage
and retrieval. This basic model is common to several
other storage systems (e.g., GoogleFS, FreeLoader) as
well.
§ The metadata manager maintains the entire system

metadata (e.g., donor node status, file chunk
distribution, and dataset attributes). Similar to a
number of other storage systems we have chosen a
centralized metadata manager implementation.

§ The benefactor nodes contribute disk space or and
memory resources to the system. To facilitate
integration, our design decouples, to the extent
possible, the metadata manager and the benefactor

6

nodes, and in effect minimizes the set of functions
benefactor nodes provide. Benefactor nodes interact
with the manager to publish their status (on-/off-line)
and free space using soft-state registration, serve
client requests to store/retrieve data chunks, and run
garbage collection algorithms.

In the case of desktop grids and clusters, each
workstation or cluster node runs a benefactor process
and contributes disk space to the manager. In large-scale
machines with no disks, the benefactor process runs on
each compute node allocated to stdchk and harnesses
memory from all the cores within the node. In our
current implementation memory is harnessed in the
form of ramdisk allocations.

Data storage and retrieval operations are initiated by
the client via the manager. When a client contacts the
manager, the file to be written is divided by the system
in equally sized chunks. The manager computes a
striping plan, determines a set of benefactors to send
chunks to, and a chunk to benefactor mapping. One
striping policy we have implemented is to sort the
benefactors on available memory space and then
perform a round-robin striping across the top subset
(stripe width) of them. Once clients obtain a striping
‘map’, they interact with the benefactors directly, in
parallel, to send the chunks to benefactors. Since the
size of the checkpoint data, at any timestep, is not
known a priori, storage space allocation is done
incrementally. Clients eagerly reserve space with the
manager for future writes. If this space is not used, it is
asynchronously garbage collected. The client will need
to adapt to situations such as an overrun of the initial
width of benefactors. In such cases, the client contacts
the manager again to readjust the width. Once the entire
checkpoint operation is completed, the client commits
the map to the manager, indicating a successful
operation. To retrieve a file, the client first contacts the
metadata manager to obtain the chunk-map, (i.e., the
location of all chunks corresponding to the file), then
the actual transfer of data chunks occurs directly
between the storage nodes and the client, in parallel.

The manager also stores metadata regarding
benefactors’ space contributions, file versioning and
replication as we describe in this section. The storage
system is particularly geared for high-speed writes using
striping and support for incremental checkpointing. In
addition, stdchk offers tunable background replication
and write semantics.

The storage system is mounted under /dev/stdchk.
Any file opened under this mounting directory is written
to the aggregate storage system, thereby making
stdchk easily available to client applications. The rest
of this section describes stdchk’s main design
choices.

Session Semantics. A key decision shaping the design

of a distributed storage system is the consistency model.
Existing systems differ widely in terms of their write
consistency semantics. Solutions range from
unspecified consistency semantics (e.g., NFS [30]) to
strong consistency, provided, for example through
access serialization [31]. Our storage system provides
session semantics [32]. Data commits are delegated to
stdchk client proxies: when the client application
eventually performs a close() operation, the client proxy
will commit the chunk-map for the dataset to the
manager. The fact that this operation is atomic ensures
session consistency. We note that, strictly speaking,
session semantic is not necessary for checkpointing
operations as checkpoint images are immutable and
have a single producer. However, introducing a clear
and low-overhead consistency model gives a good path
for future transitioning of stdchk towards a generic
high-performance file system.

Dealing with failures: Reliable writes. stdchk
replicates data over multiple benefactors. However,
replication introduces a new question: should a write
operation return immediately after the first replica of the
data has been persistently stored or wait until all data
reaches the desired replication level. The tradeoff is
between data-loss risk and write throughput. A client
can choose to be conservative (pessimistic) and wait
until a desired level of replication is achieved before
declaring a write operation successful. In this case, the
client favors data durability over high write throughput.
Alternatively, an optimistic client can return as soon as
a chunk is written to the first benefactor and let the
background replication process bring about the desired
replication level. In this case, the client favors write
throughput over data durability. The choice between
optimistic and pessimistic writes is a system
configuration parameter.

Data replication: User-defined replication targets. In
our target environment, failure of benefactor nodes will
be common. Any solution addressing data availability
needs to factor the following: (1) facilitate fast writes so
the application can quickly return to performing useful
computation, (2) reliably store checkpoint data so that it
is available if needed, and (3) provide good read
performance to minimize restart delays.
 To this end, we evaluated both erasure coding and
replication. Erasure coding incurs significant
computational overhead compared to replication. The
checkpointing application has to compute the erasure
code while writing the data. Alternatively, if this
computation is performed in the background, after the
write, it leads to significant network traffic to pull the
different chunks to a single node, perform the encoding
and redistribute them. Further, data reads involve
equivalent computational and network traffic overheads.
Additionally, using erasure codes prevents the efficient

7

use of data deduplication techniques to detect
similarities between successive checkpoint images.
 Replication, on the other hand, incurs no
computational overhead, but involves larger space
overhead for the same degree of reliability. Replication
can be implemented as a background task, thereby
imposing minimally on the application. Further,
replication is easier to implement as it involves less
complex data management. Finally, since checkpoint
data is mostly transient in nature, the space overhead is
transient. In some cases, the application might choose to
keep the images for a prolonged duration, in which case,
the data can be offloaded to more stable storage.

Garbage collection. To decouple, to the extent possible,
benefactors from metadata management, the file
deletion is performed synchronously only at the
manager which results in orphaned chunks at
benefactors. To reclaim space, benefactors periodically
send a list of the set of chunks they store and the
manager replies with the set of chunks that can be
garbage collected.

B. Write Optimizations for High Throughput
Our implementation optimizes large, sequential writes,
the most frequent operation in a checkpointing storage
system. We have explored [33] the full space of write
optimizations enabled by striping, and combining the
use of local and remote I/O resources and have chosen
to support what we call sliding window write technique
as it is the most efficient and requires only memory
resources at the client node. Sliding window write
works as follows: The data written by the application is
stored into a memory buffer. Full buffers are
asynchronously written to stdchk benefactors,
completely eliminating the use of local disk, and
providing higher application perceived write
throughput. Further to increase the write operation
throughput stdchk stripes the write operation to a
stripe-width of benefactors.

C. Support for Incremental Checkpointing
A checkpoint image typically involves a dump of the
application’s memory, comprising of data structures and
other state variables. Incremental versions of the same
application image may produce (partially) similar files.
This property can be used to improve the write
throughput and/or reduce storage and network
requirements, ultimately providing support for
checkpointing at a higher frequency. The challenge,
however, is to detect similarities at runtime without
operating system or application support.
 To investigate whether similarity between
checkpoint images can be exploited in real settings we
address the following three interrelated issues. First, we
evaluate the potential gains from detecting similarity
between successive checkpoint images. Second, we

evaluate heuristics to understand the degree to which
the task of detecting file similarity can be efficiently
implemented by the storage system without application
or operating system support. Third, we design the
architecture to efficiently support these heuristics. This
section presents the similarity detection heuristics we
explore and the required architecture while Section V
presents a detailed performance evaluation using real-
world application data.

Heuristics to detect similarities. The generic problem of
identifying the maximum common substring between
two strings has a computational overhead O(n.m), where
n and m are the lengths of the two strings. This is
unacceptable in the context of file systems. We,
therefore, evaluate two heuristics that offer lower
overheads.
§ Fixed-size Compare-by-Hash (FsCH). This approach

divides a file into equal-sized chunks, hashes them
and uses the hashes to detect similar chunks. The
main weakness of this approach is that it is not
resilient to file insertions and deletions. An insertion
of only one byte at the beginning of a file prevents
this technique from detecting any similarity.

§ Content-based Compare-by-Hash (CbCH). Instead
of dividing the file into equal-sized blocks, CbCH
detects block boundaries based on content (as
suggested by Brin et.al. [28] and used by LBFS [26]
and JumboStore [27] storage systems). CbCH scans
the file using a ‘window’ of m bytes and, for each
position of the window, computes a hash of the
corresponding string. A chunk boundary is declared
if the lowest k bits of the hash are all zero. Then,
identification of chunk similarity proceeds as above,
based on chunk hashes. Statistically, k, the number of
bits of the hash compared to zero allows controlling
the average chunk size, while m, the window size,
and p, the number of bytes the window is advanced
every time, allow controlling the variation in chunk
sizes and, additionally, influence the chunk size.
Unlike FsCH, CbCH is resilient to data
insertion/deletion, since inserting/deleting some
bytes will only affect one block (two blocks if the
changes are at a block boundary). The drawback is
that CbCH requires hashing more data and, hence,
results in larger computational overhead.

Section V.C includes an extensive performance
evaluation of these heuristics using checkpoint images
from two real-world applications. We evaluated the rate
of similarity detected and the computational overhead
for application-/library-/VM-level checkpointing and
different checkpoint intervals. Our results suggest that
FsCH is the best approach for stdchk due to the
balance it offers between throughput and reduced space
consumption as a result of similarity detection.

Architectural support. To support these heuristics and

8

to manage incremental checkpoint images efficiently,
stdchk provides the following:
§ Content based addressability. stdchk provides

content-based naming of data chunks, i.e., chunks
names are based on a hash of their content. An
additional advantage of using content-based naming
is that it enables data integrity checks, a feature that
can be used to prevent faulty or malicious storage
nodes from tampering with the chunks they store.

§ Support for copy-on-write and versioning.
Additionally, stdchk supports versioning and copy-
on-write, so that chunks that have been identified as
similar can be shared between different file versions.
When a new version of a checkpoint image is
produced, only the new chunks need to be
propagated to persistent storage. The new chunk-map
will integrate the newly produced chunks and the
chunks that have already been stored.

D. Support for Automated, Time-Sensitive Data
Management

The burden of managing large volumes of data
(checkpoint or output data) HPC applications produce
can become onerous. We aim to add to the storage
system, the intelligence to automatically manage files
based on user-specified policies concerning their
lifetimes. To this end, stdchk exploits the fact that
checkpoint images are often used in a few standard
scenarios. Most of the checkpoint data is time sensitive.
For example, in a normal application scenario,
checkpoint images are made obsolete by newer ones;
while in a debugging scenario, all checkpoint images
may need to be saved to enable debugging.

We support this functionality through versioning,
the use of a simple naming convention that helps
recognize successive files from the same application,
and the integration of user-specified metadata. By
convention, files in stdchk are named as follows:
A.Ni.Tj stands for an application A, running on node, Ni
and checkpointing at timestep Tj. We treat all images—
from the many processes of application A running on
nodes, N—as versions of the same file. Files from an
application are organized within a folder for that
application. The folder has special metadata concerning
the time-related management of the files it contains.
Currently we support the following scenarios:
§ No intervention. All versions (from multiple time

steps) are persistently stored indefinitely.
§ Automated replace. New checkpoint images make

older ones obsolete.
§ Automated purge. Checkpoint images are

automatically purged after a predefined time interval.

E. Providing a Traditional File System Interface
The strong requirement for a file system-like API is
motivated by two observations. First, a traditional API

is crucial for adoption and increased usability of the
storage system. Second, in the specific context of
checkpointing systems, the libraries that support
checkpointing are complex pieces of code that, in some
situations, are executed in kernel mode. Modification or
even recompilation to integrate them with a custom
storage system would be a high barrier to adoption and
may be considered a security risk.

Figure 1. File system call path through FUSE.

We use FUSE, a Linux kernel module[7], similar to
the other VFS modules (e.g. NFS, ext3). Once a FUSE
volume is mounted, all system calls targeting the mount
point are forwarded to the FUSE kernel module, which
preprocesses and forwards them to user-level file
system callbacks (see Figure 1). When the callback
function finishes processing the system call, FUSE
post-processes the call and returns the results to VFS.
FUSE is officially merged into the Linux kernel starting
with 2.6.14 version, further simplifying adoption of our
user-space file system.

Our user-space file system implementation maps the
system calls to stdchk operations. Additionally, it
handles granularity differences. For example,
applications usually write in small blocks, while remote
storage is more efficiently accessed in data chunks of
the order of a megabyte. Further, our implementation is
performance optimized for our deployment scenario. It
provides high-performance writes, improves read
performance through read-ahead and high volume
caching, and caches metadata information so that most
system readdir and getattr system calls can be answered
without contacting the manager.

F. On-the-fly Setup of the Storage System
The ability to setup the checkpoint data store on-the-fly
is necessary in some of the environments we target.
Consider, for example a batch system where a user
requests an allocation of 100,000 cores for a compute
job. If stdchk is not deployed system-wide then the
user needs to deploy it on-the fly, on a subset of
allocated nodes dedicated to support checkpointing, as
part of a user’s job script, before application startup.
This usage scenario implies that the benefactor
processes should be started on the thousands of nodes
and should complete their soft-state registration with the
manager process to enable mounting stdchk mount

9

point before the application starts.
We have designed the scripts to support such

scenarios for two environments: batch schedulers (e.g.,
PBS) and utility computing (Amazon’s EC2). Figure 2
presents our PBS setup. Typically, the identities of
nodes on which a parallel job will run are available to
the user (in the PBS variable, “PBS_NODEFILE”) only
when the job is scheduled by the resource manager.
This information allows us to start the manager and
benefactor processes before the job launch (Figure 2).

#PBS -N stdchk-setup
#PBS -l walltime=0:30:00,nodes=80:ppn=16
NodeCores=16
Number of nodes executing the "actual" job
MPI_Nodes=40
Number of processes
let MPI_Processes=MPI_Nodes*NodeCores
NodeCount=0
where to mount the stdchk filesystem
MountPoint=/dev/stdchk
Set up manager and benefactors
for machine in `uniq $PBS_NODEFILE`
do
 if [$NodeCount -eq $MPI_Nodes]; then
 # Start the manager
 ssh -f $machine "start_manager.sh"
 elif [$NodeCount -gt $MPI_Nodes]; then
 # Start the benefactors
 ssh $machine -f "start_benefactor.sh"
 fi
 ((NodeCount++));
done
NodeCount=0
setup stdchk interface on job nodes
for machine in `uniq $PBS_NODEFILE`
do
 if [$NodeCount -lt $MPI_Nodes]; then
 # Start stdchk interface
 ssh $machine -f "start_interf.sh $ MountPt"
 fi
 ((NodeCount++))
done
Run the application
mpirun -n $MPI_Processes ./MyJob $MountPoint
Shutdown stdchk processes

Figure 2: Job script that sets up stdchk on 640 compute
cores (40 nodes with 16 cores each), harnessing the
memory therein. This storage is made available on a
mount point, “/dev/stdchk” and then an mpirun of a
640-core parallel job is initiated.

The above script is a simple, sequential approach that is
intended to demonstrate on-the-fly setup of the storage
system. As the number of nodes allocated to stdchk
grows, such an approach can be a bottleneck. However,
the on-the-fly setup of stdchk itself can be composed
as a parallel job just before the actual job startup.

V. EVALUATION
We evaluated our prototype using a range of micro- and
macro-benchmarks. Except where specifically
mentioned, we used a testbed composed of 22
machines. Each machine has Xeon 2.3 GHz quad-core
processor, 4GB memory, SATA disks, and 1Gbps NIC.
For all configurations, we report averages and standard
deviations over 50 runs.

A. FUSE Overhead Evaluation
We first evaluated the performance and the overhead of
adopting FUSE for implementing a POSIX compliant
file system. As a base for comparison, the sustained
write throughput on a local disk with write caches
enabled was 86.2MB/s.

We use micro-benchmarks to estimate the overhead
due to the additional context switch any user-level file
system like FUSE entails. Thus, to evaluate FUSE
module overheads we have built two simple file
systems. The first one (‘FUSE to local I/O’ in Table I)
simply redirects all write requests back to the local file
system. The second (/stdchk/null) ignores the write
operation and returns control immediately. Table 2,
presents the time to write a 1 GB file to the local disk
and to these two file systems. The results show that
FUSE overhead is very low, about 2%, on top of local
I/O operations.

Table 2 Time to write a 1 GB file.
 Local I/O FUSE to local I/O /stdchk/null
Average Time (s) 11.80 12.00 1.04
Standard deviation 0.16 0.24 0.03

B. Write Throughput
Our write implementation decouples the application
write I/O from the actual network file transfer to
benefactor nodes. Therefore, we define two
performance metrics to compare the various alternatives
for write-optimized operations described in Section
IV.B). First, the application observed throughput (OT)
is the write bandwidth observed by the application: the
file size divided by the time interval between the
application-level open() and close() system calls.
Second, the achieved storage throughput (AT) uses the
time interval between file open() and until the file is
stored safely in stdchk storage (i.e., all remote I/O
operations have completed).

0

20

40

60

80

100

120

140

1 2 4 8
Stripe Width

Th
ro

ug
hp

ut
 (M

B
)/s

AT OT
Local I/O NFS
IPerf FUSE

Figure 3. The average and standard deviation (as error bars)
for observed and achieved throughput (OT and AT). For
comparison the figure also shows: the throughput of writing to
the Local-I/O, to local I/O through the FUSE module (FUSE),

10

and to a dedicated NFS server (NFS) running on the same
testbed.

Figure 3, presents the observed and achieved
throughput when the number of remote nodes to save
data on (the stripe width) varies from one to eight
benefactors. Higher concurrency allows the write
interface to perform better in terms of OT (at around
110 MB/s). This high throughput translates to shorter
time for checkpoint operation as observed by the
application. Further, the write interface completely
avoids local IO and, hence, its performance is mainly
influenced by the size of memory buffers allocated.
Further, the write interface saturates the Gigabit
network card with only two benefactors.

C. Incremental Checkpointing: Feasibility Study
This section presents evidence that supports our
decision to include support for incremental
checkpointing with stdchk. This subsection evaluates
the potential gains from detecting similarity between
successive checkpoint images as well as the
performance characteristics of two heuristics to detect
similarity that can operate at the file system level (that
is, without application or operating system support).
The subsection evaluates the performance of the entire
storage system.

The two heuristics we compared (described in
section IV.C), fixed-size compare-by-hash (FsCH) and
content-based compare-by-hash (CbCH), differ in their
efficiency of detecting similarities and in the imposed
computational overhead.

Experiment setup. To quantitatively evaluate these
heuristics along these two axes and to ground our
comparison in the real-world, we use checkpoint-images
from two popular scientific applications: a protein-
substrate complex biomolecular simulation (which we
call BMS [34] for brevity), and BLAST [35], a
bioinformatics protein/nucleic-acid sequence searching
tool. BMS uses application-level checkpointing and we
ran BLAST with library (using BLCR [8]) and virtual
machine-based checkpointing (using Xen [36]). Table 3
presents the traces’ details.

Table 3: Characteristics of the collected checkpoints.
App Checkpoint

type
Interval
(min)

of
checkpoints

Average
size (MB)

BMS Application 1 100 2.7
BLAST Library (BLCR) 5 902 279.6
BLAST Library (BLCR) 15 654 308.1
BLAST VM (Xen) 5 100 1024.8
BLAST VM (Xen) 15 300 1024.8

Summary of results. Table 4 presents the average ratio
of the detected similarity and the achieved throughput
(in MB/s) for the two techniques. For each technique,
the table presents the performance for key

parameterization points. The results show that, in
general:
§ There is little similarity between checkpoint images

collected using application-level techniques. This is
due to the user-controlled, ideally-compressed format
used to create these checkpoint images.

§ The level of similarity for library-level checkpointing
techniques is extremely high. For example, BLAST,
using library based checkpointing (BLCR), generates
checkpoints with up to 84% average similarity
between successive images.

A surprising result is the near-zero similarity observed
using virtual machine based checkpointing. We have
verified that this is due to the particular way in which
Xen checkpoints. Xen optimizes for speed, and when
creating checkpoints it saves memory pages in
essentially random order. Further, to preserve the ability
to recreate correct VM-images, Xen adds additional
information to each saved memory page. We are
currently exploring solutions to create Xen checkpoint
images that preserve the similarity between incremental
checkpoint images.

Table 4: Comparison of similarity detection heuristics. The
table presents the average rate of detected similarity and the
throughput in MB/s (in brackets) for each heuristic.

Technique

BMS BLAST
App BLCR Xen

 1 min 5 min 15 min 5 or 15 min
FsCH 1KB 0.0% [96] 25.0% [99] 9.0% [100] Low

similarity
for both

FsCH and
CbCH

techniques.

256KB 0.0% [102] 24.3% [110] 7.1% [112]
1MB 0.0% [108] 23.4% [109] 6.3% [113]

CbCH
-
SHA1

overlap 0.0% [1.5] 84.0% [1.1] 70.9% [1.1]
no-overlap

m=20B,
k=14b

0.0% [28.4] 82% [26.6] 70% [26.4]

From Table 4 we further observe that:
§ FsCH has higher throughput (over 100MB/s) but

pays in terms of similarity detection (when compared
with CbCH) between successive checkpoints
(similarity of up to 25%).

§ With CbCH, aggressively configured to detect block
boundaries, the similarity rate is extremely high.
However, this significantly reduces the achievable
throughput. When the window to detect block
boundaries is advanced by one byte every time
(labeled ‘overlap’ in Table 4), throughput degrades to
as low as 1MB/s. Advancing the window with its size
every time (labeled ‘no-overlap’ in Table 4), can
improve throughput to about 26MB/s, which is still
four times slower than FsCH.

Detailed analysis. The CbCH results thus far present
only an upper-bound for similarity detection but do not
explore the tradeoff between similarity detection,
throughput, and block size. The rest of this section
explores this tradeoff with two implementations of
CbCH: CbCH-SHA, and CbCH-Rabin. CbCH-SHA

11

uses the SHA1 hash function to hash every consecutive
m bytes of the input data, while CbCH-Rabin uses
Rabin fingerprinting algorithm [37] There are two
important differences between these two hashing
functions. First, SHA1 provides stronger collision
resistance yet it is more computationally intensive.
Second, Rabin-hashes can be computed incrementally,
that is, if two partially overlapping strings are hashed
one can reuse the partial hash computation for the
common substring.

We take advantage of the incremental computation
property or Rabin fingerprints and experiment with two
additional parameterizations overlap and no-overlap.
The overlap configuration aggressively searches for
block boundaries in the data by hashing every
consecutive window of m bytes (i.e., it shifts the
hashing window by one byte), this approach might
detect more block boundaries but is computationally
intensive. The no-overlap configuration, hashes non-
overlapping windows of m bytes (i.e., it shifts the
hashing window by a complete window size), this
approach is significantly less computationally intensive,
but is less efficient in detecting block boundaries

Table 5: The effect of m and k on CbCH-SHA no-overlap
performance. The table presents the ratio of detected similarity
(in percentage), the heuristic’s throughput in MB/s, the
average resulting checkpoint size in KB, and the average
(across all checkpoint images) of the minimum and maximum
chunk sizes (Values for m in bytes and for k in bits)

k m à 20 32 64 128 256
8 Similarity (%) 30.0 62.8 62.4 64.3 64.5

Throughput (MB/s) 85.7 86.8 86.3 86.0 84.2
Avg. size (KB) 519.2 522.4 530.7 547.3 579.5
Avg. min size (KB) 325.1 275.6 210.1 350.2 257.1
Avg. max size (KB) 614.3 627.3 668.9 787.3 967.9

10 Similarity (%) 38.6 72.4 66.3 65.0 64.7
Throughput (MB/s) 75.6 78.2 77.5 74.6 69.5
Avg. size (KB) 539.3 552.5 584.7 654.8 778.9
Avg. min size (KB) 265.9 283.9 294.7 409.2 380.8
Avg. max size (KB) 893.9 890.0 1095.0 1491.2 2251.7

12 Similarity (%) 77.3 73.4 65.6 63.0 60.7
Throughput (MB/s) 47.0 53.6 50.2 52.3 53.6
Avg. size (KB) 626.3 665.4 812.5 1076.3 1544
Avg. min size (KB) 239.8 242.2 269.5 437.7 456.2
Avg. max size (KB) 1683.8 1807.8 2632.5 3812.7 4510.4

14 Similarity (%) 82.4 71.7 61.3 58.4 57.1
Throughput (MB/s) 26.6 32.7 34.2 40.6 46.43
Avg. size (KB) 930.8 1079.2 1635.6 2267.3 2908.6
Avg. min size (KB) 514.9 232.0 449.5 528.8 506.8
Avg. max size (KB) 3710.9 3639.5 4515.1 4662.2 4646.6

CbCH-SHA Experimental results: Table 5 presents the
effect of varying m (the window size) and k (the number
of bits compared to zero to detect a block boundary) on
the CbCH-SHA no-overlap performance. For all
analysis in the rest of this section we use the
BLAST/BLCR trace with 5-minute checkpoint
intervals. In general, as the window size m increases,
the ratio of detected similarity decreases, mainly due to
the reduced opportunity to detect block boundaries,

leading to larger blocks. On the other hand, we can
control the block size by varying the number of zero
bits we require to detect a boundary: lower k leads to
smaller blocks. However, as k increases the variation in
the block size increases (the table presents averages for
the minimum and maximum detected block for each
checkpoint image).

CbCH-Rabin Experimental results: Table 6 presents the
effect of varying m (the window size) and k (the number
of bits compared to zero to detect a block boundary)
when using the overlapping Rabin hashes (we name this
technique CbCH-Rabin-overlap). Table 7 presents the
results effect on CbCH, again when using non-
overlapping Rabin hashes (we name this technique
CbCH-Rabin-non-overlap).

Table 6: The effect of m and k on CbCH-Rabin overlap
performance. The table presents the ratio of detected similarity
(in percentage), the heuristic’s throughput in MB/s, the
average resulting checkpoint size in KB, and the average
minimum and maximum chunk sizes (Values for m in bytes
and for k in bits)

k m à 20 32 64 128 256
8 Similarity (%) 28.8 30.1 27.1 27.4 27.5

Throughput (MB/s) 124.8 121.6 113.6 99.4 81.6
Avg. size (KB) 128.1 128.2 128.2 128.3 128.5
Avg. min size (KB) 60.8 51.9 45.8 98.1 59.3
Avg. max size (KB) 149.2 140.6 136.7 135.6 132.9

10 Similarity (%) 30.3 38.4 32.6 33.6 70.3
Throughput (MB/s) 112.6 107.0 88.6 63.4 41.3
Avg. size (KB) 128.5 128.5 128.7 128.9 129.1
Avg. min size (KB) 26.3 24.7 26.6 69.0 29.7
Avg. max size (KB) 158.5 166.3 143.2 144.1 137.3

12 Similarity (%) 47.0 48.7 55.6 74.4 84.1
Throughput (MB/s) 81.6 72.5 46.6 27.9 14.8
Avg. size (KB) 130.0 130.0 130.5 131.0 131.5
Avg. min size (KB) 121.7 34.3 80.9 103.2 115.3
Avg. max size (KB) 308.2 238.6 192.8 236.7 157.8

14 Similarity (%) 54.3 56.6 61.7 82.2 88.7
Throughput (MB/s) 46.5 35.5 19.8 10.7 4.7
Avg. size (KB) 134.1 134.8 136.1 137.2 140.0
Avg. min size (KB) 54.4 85.9 27.8 85.8 98.1
Avg. max size (KB) 353.4 288.0 341.6 263.2 274.1

16 Similarity (%) 55.7 58.0 63.1 84.5 90.8
Throughput (MB/s) 20.8 14.8 7.5 4.2 1.8
Avg. size (KB) 147.4 149.9 154.9 155.7 165.1
Avg. min size (KB) 127.3 85.9 91.6 48.5 98.1
Avg. max size (KB) 546.6 715.4 884.4 769.9 628.0

The performance results presented in Table 5, 6 and
7, are multidimensional and highly non-uniform. This
makes it difficult to draw generic conclusions.
However, a number of observations can be made.
• The CbCH-Rabin-overlap mechanism achieves the

highest similarity detection ratio of 90.8%, while
CbCH-SHA-non-overlap provides a similarity
detection ratio below 80%, and CbCh-Rabin-non-
overlap below 70%.

• The block size produced by CbCH-Rabin
mechanisms is considerably smaller than the ones
produced using CbCH-SHA. As a matter of fact,

12

CbCH-Rabin, on average, generates blocks smaller
than 300KB in both mechanisms (overlap, and non-
overlap). For a file system this small block size
may be undesirable as it increases the overhead on
the central metadata, which may impair scalability.
Further, Lian et. al. [38] study of storage systems
reliability provides evidence that smaller block size
lead to less reliable storage.

• While the throughput of the CbCH mechanisms
varies between the different configurations, CbCH-
Rabin-no-overlap often achieves more than twice
similarity detection throughput the CbCH-Rabin-
overlap and CbCH-SHA achieve.

Table 7: The effect of m and k on CbCH-Rabin non-overlap
performance. The table presents the ratio of detected similarity
(in percentage), the heuristic’s throughput in MB/s, the
average resulting checkpoint size in KB, and the average
minimum and maximum chunk sizes (Values for m in bytes
and for k in bits)

k m à 20 32 64 128 256
8 Similarity (%) 26.6 48.5 58.7 67.7 69.9

Throughput (MB/s) 132.1 133.0 119.8 118.0 103.9
Avg. size (KB) 130.3 131.6 144.2 148.8 176.8
Avg. min size (KB) 4.3 88.2 69.0 39.4 100.2
Avg. max size (KB) 230.1 254.0 486.2 581.8 961.8

10 Similarity (%) 43.7 52.7 58.5 68.5 70.1
Throughput (MB/s) 121.4 118.0 109.4 100.6 88.7
Avg. size (KB) 136.8 143.3 157.1 181.0 237.8
Avg. min size (KB) 98.3 85.6 66.4 64.8 85.0
Avg. max size (KB) 298.2 352.8 786.0 1323.7 1627.2

12 Similarity (%) 50.2 51.7 60.4 68.6 70.0
Throughput (MB/s) 101.8 101.5 93.9 89.9 80.1
Avg. size (KB) 155.0 164.1 189.7 219.0 316.4
Avg. min size (KB) 83.2 78.4 58.6 88.1 85.5
Avg. max size (KB) 758.4 918.7 2282.1 3228.5 5097.4

14 Similarity (%) 51.5 52.6 61.5 67.5 69.5
Throughput (MB/s) 85.7 86.1 86.0 85.1 77.4
Avg. size (KB) 182.9 201.2 219.1 246.4 358.7
Avg. min size (KB) 84.6 85.9 57.7 86.1 85.5
Avg. max size (KB) 1530.9 6058.8 5568.1 7453.9 8192.0

16 Similarity (%) 50.6 51.8 62.1 66.3 68.3
Throughput (MB/s) 77.6 80.9 83.0 83.8 76.8
Avg. size (KB) 205.8 221.2 233.4 255.0 367.7
Avg. min size (KB) 85.9 85.9 85.8 86.1 85.5
Avg. max size (KB) 5662.3 8192.0 8192.0 8192.0 8192.0

Conclusion. While the CbCH mechanisms achieve
higher similarity detection rates, they are more
computationally intensive and either provide a low
similarity detection throughput (such as CbCH-SHA,
and CbCH-Rabin-overlap), or produce significantly
smaller block sizes (such as CbCH-Rabin mechanisms).

Since the stdchk write throughput is the main
success metric we have chosen to implement FsCH in
stdchk. FsCH offers a good rate of similarity
detection, desired block sizes, with higher data
throughput while also providing a simpler
implementation path. We are currently exploring
alternatives to provide a high-performance CbCH
implementation by offloading the intensive hashing
computations to the Graphical Processing Unit [39].

The results above also shed light on one key element
namely, the checkpoint interval. Regardless of the
similarity detection technique used the finer the
checkpoint granularity, the higher the similarity
between successive images (Table 4). For instance,
when using FsCH, there is an average 3x improvement
in commonality detection between a 15 and 5 minute
checkpoint interval. Further, with FsCH, the checkpoint
throughput is over 100MB/s. Consequently, the
overhead generated by finer checkpoint granularity can
be partially compensated by enabling similarity
detection at the file system level.

D. Incremental Checkpointing: End-to-End
Performance
The performance of the system when using

similarity detection varies depending on the degree of
data similarity present in the workload. To evaluate the
entire performance spectrum we use the following three
workloads:
• Different: The first workload consists of writing 50

completely different files (1GB each). This
workload exposes all overheads, as all data need to
be hashed and transferred across the network to
storage nodes. Moreover, no similarity can be
detected between writes, which implies no
opportunity to reduce space or bandwidth usage.

• Identical: The second workload represents the other
end of the spectrum: it exposes an upper bound for
the performance gains that can be obtained using
similarity detection and maximizes the hash-
computation overheads in relation with other
storage overheads. When the files are identical,
data is transferred only once across the network yet
similarity detection overheads still exist. This
workload writes the same 1GB file 50 times.

• Checkpoint: Finally the third workload represents a
real application data. The experiment uses 100
successive checkpoint images, taken at 5 minute
intervals for the BLAST/BLCR. The average
similarity detected between successive checkpoint
images is 23% for 1MB blocks, with average
checkpoint size of 280MB.

Figure 4 presents the average observed (OT) and
achieved throughput (AT) with FsCH for the three
workloads. Three main observations can be derived:
First, with the different workload, the similarity
detection mechanism does not bring any benefits (it
does not detect any similarity, and, consequently, does
not bring storage space or network effort savings), but it
degrades the system throughput by around 16% down to
93MBs AT and 124BM OT. Second, with the identical
workload, the similarity detection mechanism enables
significantly (around 3.5x) higher system throughput
(for both OT and AT). This is mainly due to two
reasons: The data is identical, with the exception of the

13

first file, as a result no data is sent over the network, and
the multithreaded implementation of the write interface
enables parallelizing the similarity detection of multiple
data blocks concurrently, enabling significantly higher
similarity detection throughput. Finally, the checkpoint
workload evaluation shows that the similarity detection
enables around 3x higher throughput, retaining most of
the performance benefits the similarity detection can
provide (compared to the identical workload).

0

100

200

300

400

500

600

Different Identical Checkpoint
Workload

Th
ro

ug
hp

ut
 (M

B
)/s

 .

AT OT
Local I/O NFS
IPerf FUSE

Figure 4. The application average and standard deviation (as
error bars) observed throughput (OT) and the achieved storage
throughput (AT) for the write interface with the similarity
detection.

E. Scalability and Memory Aggregation Evaluation
To analyze the performance of aggregating memory on
large-scale systems, we conducted a series of tests on
the Smoky machine at ORNL. Smoky is a 1280 core
Linux cluster (80 nodes, consisting of four quad-core
2.0GHz AMD Opteron processors per node), 32 GB of
memory per node, a 20Gb/s (2.5GB/s) InfiniBand
interconnect, and access to a Lustre parallel filesystem
through five 20Gb/s channels.

Our intent with these tests was to study stdchk
scalability properties and its memory-based write
throughput. To this end, experiments consisted of
setting up stdchk on-the-fly (as explained in Section
IV.F) and checkpointing data from a MPI parallel job
that runs on up to 560 processor cores (on 35 nodes, 16
cores/node) and checkpoints around 840GB of memory
(1.5GB/core). We measured the checkpoint throughput
for stdchk and the machine’s Lustre parallel file
system. stdchk was setup on another 35 nodes that
contribute 25GB of memory each for a total of 875GB
of aggregate memory based distributed storage. We
used a stripe width of 8 nodes. The 560 MPI processes
invoke MPI barrier and then start checkpointing
simultaneously, creating a large and bursty I/O
workload.

Figure 5 shows a side-by-side comparison of
stdchk and Lustre throughput performance for
different MPI job sizes (from 16 to 560 cores). Each
node checkpoints 1.5GB of data and the figure presents

the average throughput offered to an MPI client. We
observe that stdchk performs consistently better. In
fact, we observe that for larger numbers of clients the
performance difference is larger, suggesting that
stdchk scales better than Lustre in this setup.

Figure 5: Comparing stdchk and Lustre parallel file system
throughput performance when checkpointing form a parallel
MPI job running on 16 to 560 cores. The figure presents the
average throughput offered to an MPI client.

F. stdchk in Cloud Computing Environments
This section presents an evaluation of stdchk in a
cloud computing environment. In particular, we
evaluate the performance of stdchk when aggregating
storage resources from Amazon EC2 nodes [40].

In cloud computing, stdchk does not only have the
potential to offer a high performance and cost effective
solution for a checkpointing workload, but also provides
a high performance and cost effective shared storage
system. Currently, on EC2, the storage system that is
shared between the EC2 virtual nodes is Amazon’s S3
storage. S3 not only charges the application for the
space used, but also does not provide a POSIX
compatible interface to access the data. stdchk, on the
other hand, can be setup to provide a checkpoint
friendly storage system or be used as a temporary
shared storage system for the application.

To assess the performance of stdchk in this cloud
computing setup, we allocate a testbed of 20 nodes at
Amazon EC2 (Note that the size of our experiments is
limited only by our inability to obtain a larger node
allocation form Amazon – 20 nodes is the maximum
number of nodes available for individual users without
special privileges). The nodes are classified by Amazon
as “default” or “standard-small” nodes, providing (as
advertised by Amazon), a computing power equivalent
to 1.0-1.2 GHz 2007 Opteron processor, 1.7 GB RAM,
and moderate IO performance. We setup stdchk with
one manager, and 19 benefactor/client nodes (each node
runs one benefactor, and one client), with stripe width
of four.

14

Each client writes 100 files of 100MB each,
amounting to around 186 GB of data, and 7600 manager
transactions (four for each write operation). To ramp-up
the load, clients start at 5s intervals. We compare the
performance of stdchk against the performance of
current approach suggested by Amazon, namely storing
the files locally on the compute node, and then shipping
them to S3 to make them available in a shared
dataspace. Figure 6, presents the aggregate stdchk
throughput. We observe a sustained peak throughput of
about 310MB/s, around 3 times higher than the
throughput provided by the current approach using S3.
This demonstrates that our system is able to scale to
match an intense workload, and provide a cost effective
and POSIX compliant shared storage to the application
on the cloud.

0

100

200

300

400

500

0 200 400 600 800
Time (s)

A
gg

er
ag

te
 W

rit
e

Th
ro

ug
hp

ut
 (M

B
/s

) .

stdchk
S3

Figure 6. The aggregate throughput of stdchk and Amazon
S3. 19 clients generate a synthetic workload to stress a
stdchk pool supported by 19 benefactor nodes.

VI. SUMMARY
This paper presents the design and implementation of
stdchk, a distributed checkpoint storage system for all
layers of the HPC ecosystem. We have put forth
arguments that support the premise that the I/O
intensive checkpoint operation requires novel storage
solutions. stdchk aggregates disk or memory-based
storage resources to provide a traditional file system
abstraction that facilitates easy integration with
applications in a variety of HPC settings such as
extreme-scale supercomputers, mid-scale clusters, and
desktop grids. stdchk offers several checkpoint-
specific optimizations such as support for data
reliability, incremental checkpointing, and lifetime
management of checkpoint images. Our prototype
evaluation indicates that stdchk can offer an
application perceived checkpoint throughput
significantly higher than what is feasible with current
local I/O or network and parallel file system based
checkpointing. Our novel solution to exploit similarity
between incremental checkpoint images results in
significantly lower storage space and network effort
requirements.

VII. ACKNOWLEDGMENTS
This research was sponsored in part by the Laboratory
Directed Research and Development Program of Oak
Ridge National Laboratory (ORNL), managed by UT-
Battelle, LLC for the U. S. Department of Energy under
Contract No. DE-AC05-00OR22725. It was also
supported by grants from the National Science and
Engineering Research Council of Canada (NSERC) and
the Canadian Foundation for Innovation (CFI). In
addition, we thank Pratul Agarwal from ORNL for
providing us with application-level checkpoint images,
and Abdullah Gharaibeh from UBC for his insightful
comments.

REFERENCES
[1] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, et al.,

FLASH: An Adaptive Mesh Hydrodynamics Code for
Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series, 2000. 131.

[2] D. Kothe and R. Kendall, Computational Science
Requirements for the Leadership Computing. NCCS -
ORNL Technical report., 2007.

[3] G. Bell, J. Gray, and A. Szalay, Petascale computational
systems. IEEE Computer, 2006. 39(1): p. 110-112.

[4] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, et al. Design
and Evaluation of a Collective I/O Model for Loosely-
coupled Petascale Programming. in Workshop on
Many-Task Computing on Grids and Supercomputers
(MTAGS). 2008.

[5] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland,
et al., Constructing collaborative desktop storage caches
for large scientific datasets. ACM Transaction on
Storage (TOS), 2006. 2(3): p. 221 - 254.

[6] FUSE, Filesystem in Userspace,
http://fuse.sourceforge.net/. 2007.

[7] FUSE, Filesystem in Userspace. [cited 2008;
http://fuse.sourceforge.net/.

[8] P. H. Hargrove and J. C. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux Clusters. in
Proceedings of SciDAC. 2006.

[9] J. Ruscio, M. Heffner, and S. Varadarajan. Dejavu:
Transparent user-level checkpointing, migration, and
recovery for distributed systems. in Proceedings of 21st
IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 2007. Long Beach, CA, USA.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. in 19th ACM Symposium on Operating
Systems Principles. 2003. Lake George, NY.

[11] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. in
ACM Transactions on Computer Systems. February
1992.

[12] J. Bent, D. Thain, A. C.Arpaci-Dusseau, R. H. Arpaci-
Dusseau, et al. Explicit Control in a Batch-Aware
Distributed File System. in Proceedings of the 1st
USENIX Symposium on Networked Systems Design and
Implementation (NSDI '04). 2004. San Francisco,
California.

[13] Lustre, http://www.lustre.org/. 2007.
[14] P. H. Carns, W. B. Ligon-III, R. B. Ross, and R. Thakur.

PVFS: A Parallel File System for Linux Clusters. in 4th

15

Annual Linux Showcase and Conference. 2000. Atlanta,
GA.

[15] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. in 1st USENIX
Conference on File and Storage Technologies
(FAST'02). 2002.

[16] P. Nowoczynski, N. Stone, J. Yanovich, and J.
Sommerfield, Zest: Checkpoint Storage System for
Large Supercomputers, in Petascale Data Storage
Workshop. 2008.

[17] J. Bent, G. Gibson, G. Grider, B. McClelland, et al.
PLFS: A Checkpoint Filesystem for Parallel
Applications. in Supercomputing. 2009.

[18] J. S. Plank, K. Li, and M. A. Puening., Diskless
Checkpointing. IEEE Transactions on Parallel and
Distributed Systems, 1998. 9(10): p. 972-986.

[19] G. Bronevetsky and A. Moody, Scalable I/O Systems via
Node-Local Storage: Approaching 1 TB/sec File I/O.
Lawrence Livermore National Laboratory Technical
Report LLNL-TR-415791, 2009.

[20] J. Cipar, M. D. Corner, and E. D. Berger. TFS: A
Transparent File System for Contributory Storage. in
Proceedings of the 5th USENIX Conference on File and
Storage Technologies FAST '07. 2007.

[21] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, et al.
TotalRecall: System Support for Automated Availability
Management. in NSDI'04. 2004.

[22] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs. in
International Conference on Measurement and
Modeling of Computer Systems(SIGMETRICS). 2000.

[23] D. Presotto. Plan 9. in USENIX Workshop on Micro-
kernels and Other Kernel Architectures. 1992.

[24] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, et al., Scale and Performance in a Distributed
File System. ACM Transactions on Computer Systems,
1988. 6(1).

[25] D. J. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, et al. Deciding when to forget in the Elephant
file system. in 17th ACM Symposium on Operating
Systems Principles (SOSP 99). 1999.

[26] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. in Symposium on
Operating Systems Principles (SOSP). 2001. Banff,
Canada.

[27] K. Eshghi, M. Lillibridge, L. Wilcock, G. Belrose, et al.
JumboStore: Providing Efficient Incremental Upload
and Versioning for a Utility Rendering Service. in
USENIX Conference on File and Storage Technologies,
FAST. 2007.

[28] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection
mechanisms for digital documents. in ACM SIGMOD.
1995.

[29] E. N. Elnozahy and J. S. Plank, Checkpointing for Peta-
Scale Systems: A Look into the Future of Practical
Rollback-Recovery. Transactions on Dependable and
Secure Computing, 2004.

[30] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, et al.
NFS Version 3: Design and Implementation. in
Proceedings of the Summer 1994 USENIX Technical
Conference. 1994.

[31] M. P. Herlihy and J. M. Wing, Linearizability: a

correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1990. 12(3): p. 463 - 492.

[32] A. S. Tanenbaum, Distributed Systems: Principles and
Paradigms. 2002: Prentice Hall.

[33] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A.
Gharaibeh. stdchk: A Checkpoint Storage System for
Desktop Grid Computing. in International Conference
on Distributed Computing Systems (ICDCS ‘08). 2008.
Beijing, China.

[34] P. K. Agarwal, Role of Protein Dynamics in Reaction
Rate Enhancement by Enzymes. Journal of the American
Chemical Society, 2005. 127(43): p. 15248 -15256.

[35] S. F. Altschul, W. Gish, W. Miller, E. Myers, et al.,
Basic Local Alignment Search Tool. Molecular Biology,
1990. 215: p. 403–410.

[36] P. Barham, B. Dragovic, K. Fraser, S. Hand, et al. Xen
and the Art of Virtualization. in ACM Symposium on
Operating Systems Principles (SOSP). 2003.

[37] M. O. Rabin. Fingerprinting by random polynomials. in
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University. 1981.

[38] Q. Lian, W. Chen, and Z. Zhang. On the Impact of
Replica Placement to the Reliability of Distributed Brick
Storage Systems. in IEEE International Conference on
Distributed Computing Systems (ICDCS). 2006.

[39] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan,
et al. StoreGPU: Exploiting Graphics Processing Units
to Accelerate Distributed Storage Systems. in
ACM/IEEE International Symposium on High
Performance Distributed Computing (HPDC). 2008.

[40] Amazon Elastic Compute Cloud (EC2). [cited 2010;
http://aws.amazon.com/ec2/.

