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Abstract— Checkpointing is an indispensable technique to 
provide fault tolerance for long-running applications in 
HPC settings. This article argues that a checkpoint storage 
system, optimized to operate in these environments, can 
offer multiple benefits: reduce the load on a traditional file 
system, offer high-performance through specialization, 
and, finally, optimize data management by taking into 
account checkpoint application semantics. Such a storage 
system can present a unifying abstraction to checkpoint 
operations, while hiding the fact that there are no 
dedicated resources to store the checkpoint data. 

We present stdchk, a checkpoint storage system for all 
layers of the HPC hierarchy. It scavenges node-local 
resources such as disk or memory space from 
participating compute nodes to build a low-cost storage 
system, offering a traditional file system interface for easy 
integration with applications. We present the stdchk 
architecture, its key performance optimizations, its 
support for incremental checkpointing and increased data 
availability. Our evaluation confirms that the stdchk 
approach is viable in all three settings—a loosely-
connected desktop grid, mid-sized clusters and extreme-
scale supercomputers. It offers a low-cost storage system 
with desirable performance characteristics: high write 
throughput as well as reduced storage space and network 
effort to save checkpoint images. 

I. INTRODUCTION 
High performance and high throughput computing 
applications produce massive amounts of data at 
extreme speeds. For example, several leadership 
applications in the areas of fusion, astrophysics and 
combustion running on the Jaguar PetaFlop machine at 
Oak Ridge National Laboratory (the top machine in the 
Top500 supercomputer list as of November 2009) 
already produce tens of TeraBytes (TB) of data during a 
single application run. Similarly, the FLASH [1] 
astrophysics application running on the Intrepid Blue 
Gene supercomputer at Argonne National Laboratory 
generates up to six million files of snapshot data during 
a single run. We might soon be faced with PetaBytes 
(PB) of data from a single application run. 

Modern parallel file systems (e.g., Lustre, PVFS) 
that attempt to meet these intense I/O demands by 
building atop thousands of I/O servers and tens of 
thousands of disks become highly expensive. A survey 
of DOE applications [2] indicated that many application 
teams deem a sustained 1GB/s I/O throughput for every 
TeraFlop of peak computing performance as necessary. 

Thus, a PetaFlop computer will require 1TB/sec of I/O 
bandwidth. The Jaguar PetaFlop supercomputer 
however offers a peak Lustre parallel file system access 
rate of only about 254GB/s, which is four times lower 
than I/O bandwidth rate desired by application teams, 
and two orders of magnitude lower than the theoretical 
estimate a balanced machine should provide according 
to Jim Gray [3].   

A key driver for these massive amounts of data sizes 
is checkpointing, an indispensable fault tolerance 
technique adopted by long-running applications. A 
parallel job, running on tens of thousands of compute 
cores for hours or days, checkpoints its state 
periodically during the course of its run in an attempt to 
offer the ability to recover the application state in case 
of failure. A high checkpoint frequency reduces the 
volume of computation that needs to be repeated in case 
of a failure, but generates more data. 

Checkpointing, however critical it may be, is time 
spent away from useful computation. Consider a 
100,000 core job on the Jaguar system that runs for 12 
hours and checkpoints every hour. For this job, in the 
worst case, when all of the memory per core (2GB) is 
saved as state information, 2.4PB of checkpoint data is 
produced during a run. Assuming that an application 
achieves the peak I/O rate, the above 2.4PB of snapshot 
data can be checkpointed in 2.6 hours, roughly 22% of 
the job's runtime.  

Thus, it is increasingly evident that applications will 
spend a substantial portion of their runtime preparing 
against failure. Compounding the problem further is the 
fact that, historically, I/O bandwidth has not scaled with 
processor frequencies and that the effective throughput 
achieved by any given application significantly 
deteriorates when the I/O channel is shared across 
multiple applications.  

While the problem is acute in extreme-scale 
systems, it also extends to mid-scale clusters and 
desktop grids (networks of workstations). Centralized 
file systems in clusters and desktop grids seldom offer 
I/O rates high enough for the data intensive checkpoint 
operation. The reason is that a small institution can 
hardly afford the expenses required to adequately 
provision a central file system. In these settings one 
alternative used in practice, especially in desktop grids, 
is checkpointing to node-local storage. However, local 
storage is bound to the volatility of the node itself. First, 
individual nodes in a desktop grid are usually 
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relinquished when their owner returns leaving little time 
to migrate checkpoint data. Second, desktops are 
themselves not highly reliable and failure is common. 
Thus, the locally stored checkpoint data is lost when the 
node crashes.  

In summary, we argue that the data intensive 
checkpointing operation is a critical problem in the 
entire HPC ecosystem which ranges from extreme-scale 
supercomputers to mid-scale clusters to desktop grids. 
This situation calls for novel techniques to address 
checkpointing in HPC systems, in a way that achieves 
the desired fault-tolerance level and yet does not 
compromise the overall system throughput. 

A. The Opportunity 

The availability of node-local resources (e.g., disk-
based storage, memory) and the associated explosion in 
interconnect speeds in the entire HPC ecosystem offers 
the opportunity to use them in a concerted fashion to 
serve checkpointing demands. For example, in extreme-
scale systems, nodes are diskless, yet these machines 
have tens to hundreds of TBs of main memory 
accessible through high-performance interconnects. The 
Jaguar machine at ORNL, for example, has around 
362TB of aggregate memory connected through an 
interconnect with a 3D torus topology that offers a 
398TB/s aggregate bandwidth and low latency. 

Table 1: Characteristics of supercomputers in Top500 
supercomputer list as of November 2009. 

System #Cores Aggregate 
Memory (TB) 

Top500 
Rank 

Jaguar Cray XT5 (ORNL) 224,256  362 1 
RoadRunner (LANL) 122,400  98 2 
Kraken Cray XT5 (UT) 99,072 129 3 
JUGENE (Juelich) 294,912 144 4 
Tianhe-1 (Tianjin) 71,680 98 5 

While the current use of node-local resources, in 
isolation, towards checkpointing poses challenges in 
terms of data reliability, such node-local resources can 
be aggregated to build a distributed storage system 
optimized for the checkpointing workload. This 
approach can help address concerns regarding the 
durability of the checkpoint image (through 
redundancy) and I/O throughput of the checkpoint 
operation (through parallelism, striping, and 
optimizations that exploit the specific nature of the 
checkpointing workload, for example the similarity 
between successive checkpoint images). 

Harnessing node-local disks in desktop grids and 
mid-sized clusters for checkpointing is a logical choice 
as these resources would have gone unused otherwise. 
However, harnessing memory in extreme-scale 
machines requires some justification. The main 
argument against it is that even though supercomputers 
have tens or hundreds of TBs of memory, modern 
applications are ever more memory-intensive and, 

consequently, cannot spare compute cores and their 
associated memory. However, application throughput 
cannot solely be measured based on FLOPS achieved. 
An application that uses up all the available cores and 
their memory will also invariably be stymied by the I/O 
bottleneck resulting from writing out large snapshot 
data due to such intense compute core and memory 
usage. Thus, dedicating a small fraction of the 
allocation (of cores and their memory), can expedite an 
application’s own turnaround time.   

Alternatively, jobs can oversubscribe for compute 
cores. For example, depending on the failure rate of the 
machine, a particular job might ask for up to 1% more 
cores than it actually needs and use them to improve 
application reliability (e.g., for failing over processes, or 
to support checkpointing). One can imagine an 
aggregated memory device built out of such pools. This 
approach has the advantage that it uses the application’s 
own over-subscribed processor allocation. Depending 
on the charging scheme and the constraints of each 
specific system, applications can factor such pools into 
their requests. For example, often applications are 
charged proportionally with the number of 
processors and the wall-time they use them. As the 
turnaround time is directly dependent on the 
checkpointing performance, more processors do mean 
higher charges but, potentially, for shorter time. 
Additionally, the application may decide what to 
optimize: the turnaround time or its costs. 

Constructing such an aggregate checkpoint storage 
system using node-local resources, however, is rife with 
several challenges in terms of providing high-speed 
parallel writes, data reliability, efficient use of scarce 
storage resources, and a traditional file system interface 
for applications 

B. Contributions 
We present stdchk, a checkpoint-specialized 

storage system for HPC that addresses the above issues. 
Much like how stdin and stdout input/output 
systems are ubiquitously available to applications, we 
argue that checkpointing is an I/O intensive operation, 
requiring a special ‘data path’. We show that this data 
path can be made available to HPC applications as a 
low-cost checkpoint-specialized storage system.  

We have successfully deployed and operated 
stdchk in a number of environments ranging from 
extreme-scale supercomputers (the BlueGene 
supercomputer at Argonne National Laboratory with 
our collaborators [4]), to clusters (at Oakridge National 
Laboratory and The University of British Columbia), to 
a utility computing environment (Amazon EC2, where 
the system provides a temporary high-throughput data 
space shared by multiple allocated nodes).  

While we base our solution on our previous storage 
system work that aggregates scavenged disk space to 
build a cache (write-once-read-many semantic) [5], 
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stdchk, however, is optimized for a different workload 
namely, high-speed writes of incremental versions of 
the same file. To this end, stdchk introduces several 
optimizations to render itself ‘checkpoint-friendly’ to 
HPC applications: 
§ High sequential write throughput. stdchk exploits 

the I/O parallelism that exists inherently in a multi-
node machine to provide a suite of write-optimized 
protocols that enable checkpointing at throughputs 
higher than what is currently feasible. Our results 
indicate an average throughput of up to 652MB/s in a 
cluster based on ramdisk aggregation. Compared to 
the Lustre parallel file system available in this 
production setup, stdchk offers a 5x throughput 
improvement. 

§ Support for incremental versioning. stdchk 
minimizes the size of the data stored using a novel 
solution to incremental checkpointing that exploits 
the commonality between successive checkpoint 
images. We put forth several heuristics that do not 
require application or operating system support to 
identify commonality between incremental versions 
of the same checkpoint image. Additionally, we 
evaluate these heuristics in the context of real 
applications. Our results indicate a substantial 
reduction in checkpoint data size and generated 
network traffic. A desired side-effect of this approach 
is that it enables applications to checkpoint at a finer 
granularity. 

§ Tunable data availability and durability. Since 
stdchk aggregates storage contributions from 
potentially transient nodes, standard replication 
techniques are used to ensure data availability and 
durability. Further, applications can decide the level 
of data availability/durability they require. 

§ Tunable write semantics. Additionally, stdchk 
gives applications the ability to choose between a 
write semantic that is pessimistic (the system call 
returns only after the desired level of replication is 
achieved) or optimistic (return immediately after data 
has been written safely once, while replication occurs 
in the background). This further gives applications 
control over the write throughput vs. data durability 
tradeoff. 

§ Automatic pruning of checkpoint images. stdchk 
offers efficient space management and automatic 
pruning of checkpoint images. These data 
management strategies lay the foundation for 
efficient handling of transient data. 

§ Easy integration with applications. stdchk 
provides a traditional file system API, using the 
FUSE (File system in user space) Linux kernel 
module [6, 7], for easy integration with applications  

To summarize, the novelty of our approach lies in 
recognizing that checkpointing can benefit from 
specialized storage system support and in bringing to 

bear a combination of storage solutions to address this 
specific workload. Our system builds on best practices 
from several domains: storage scavenging from peer-to-
peer storage systems, striping from parallel I/O, 
incremental checkpointing from versioned storage and 
data archiving, replication/encoding from storage 
systems concerned with data durability and applies them 
to checkpointing. 

The rest of this paper is organized as follows: the 
next section surveys the related work, section III 
presents the design considerations for a checkpointing 
oriented storage system, section IV details stdchk 
design, while section V presents an extensive evaluation 
study. Section VI concludes this study. 

II. RELATED WORK 
This section groups the efforts the major related to 

checkpointing under a number of categories. 
System-level support for checkpointing. Applications 

can use one of the following checkpointing solutions, 
each offering different transparency vs. performance 
tradeoffs. First, application-level checkpointing offers 
no transparency, yet performance is high as the 
application programmer manages the process of 
collecting and saving the application state. Second, 
checkpointing libraries (e.g., BLCR [8], DejaVu [9]), 
often available on large-scale clusters, provide an 
increased level of transparency by checkpointing at the 
process level. Finally, checkpointing with operating-
system level support offers complete transparency at the 
cost of ignoring application semantics, which can often 
be used to reduce storage requirements. Unlike stdchk 
none of these techniques entail storage system support 
and simply use the file system as is. 

Workload-optimized storage systems. Building 
storage systems geared for a particular class of I/O 
operations or for a specific access pattern is not 
uncommon. For example, the Google file system [10] 
optimizes for large datasets and append access; the Log-
structured file system [11] optimizes for writes, arguing 
that most reads are served by ever increasing memory 
caches; BAD-FS [12] optimizes for batch job 
submission patterns; FreeLoader [5] optimizes for 
write-once read-many data access and exploits the 
locality of interest and sequential access patterns of 
scientific data analysis. Parallel file systems (Lustre 
[13], PVFS [14], GPFS [15]) also target large datasets 
and provide high I/O throughput for parallel 
applications. In a similar vein, a checkpoint optimized 
storage system can be geared towards write-intensive 
I/O operations. 

Checkpointing-optimized storage systems. Recently, 
two checkpoint specialized storage systems have been 
proposed: PLFS and Zest [16] are both log-structured 
filesystems at the core. PLFS [17] is designed to support 
application-level checkpointing in which the 
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application’s N-to-1 write pattern (N processes writing 
to a single file) is rearranged into an N-to-N pattern that 
fits better the underlying parallel file system. The PLFS 
virtual interposition layer intercepts application writes 
and creates a container structure for each logical file. 
The container consists of folders per compute node, 
sequentially appended data within the folders from 
processes from the node and an index file with metadata 
on offsets. To read a checkpoint file, PLFS aggregates 
the index files, creating a lookup table for the file. In 
ZEST, instead of clients pushing data, manager threads 
on remote server disks pull the data from distributed 
queues whenever they are not busy. All three systems, 
stdchk, PLFS and ZEST use FUSE as an interposition 
technique. Both stdchk and PLFS maintain the 
application’s logical data format and work with 
unmodified applications, whereas ZEST does not. 
stdchk, however, uses node-local resources—node- 
disks and memory—to create the checkpoint storage 
system, whereas PLFS just rearranges the writes to a 
central file system. stdchk is fundamentally different 
from these systems in its attempt to use the same 
concept of aggregation as an overarching theme to 
create a checkpoint storage system at all levels of the 
HPC I/O hierarchy, from desktop grids to clusters to 
supercomputers. Additionally, stdchk can offer a high 
checkpointing throughput by exploiting the checkpoint 
data characteristics to reduce the storage volume, 
through transparent similarity detection. 

Diskless checkpointing. This technique uses 
neighboring compute node’s memory to save 
checkpoint data. Several systems adopt this approach 
[18, 19], but do not transfer the data to persistent 
storage. Further, these solutions are not concerted in 
their use of memory resources, leaving the application 
(or the checkpointing library) to handle the mechanics 
of data spilling over from one neighbor node’s memory 
to the other. stdchk seamlessly handles this through 
aggregation and striping. 

Contributory storage. A number of storage systems 
[5, 20, 21, 22] aggregate space contributions from 
collaborating users to provide a shared data store. Their 
basic premise is the availability of a large amount of 
idle disk space on personal desktops that are online for 
the vast majority of the time. The specific technical 
solutions, however, vary widely as a result of different 
targeted deployment environments (local vs. wide-area 
networks), different workloads (e.g., unrestricted file-
system workload vs. read-only workload vs. 
checkpointing workload), or different assumptions on 
user motivation to contribute storage (e.g., from systems 
that propose storage space bartering to motivate users to 
systems that assume collaborative users by default).  

Versioned Storage. Several file systems save periodic 
snapshots of an entire file system to recover from 

accidental file deletions or changes. Examples include 
Plan 9 [23] or AFS [24] that use a single policy that 
guides file retention for the entire file system and the 
Elephant file system [25] that incorporates user-
specified policies to determine which versions to retain. 
On the one side, the checkpoint scenario is more coarse-
grained in that each checkpoint is written sequentially. 
The flip side is that copy-on-write techniques used by 
the aforementioned systems offer no gains when entire 
files are written sequentially.  

Data-deduplication in storage systems. To reduce the 
amount of data sent to remote storage, LBFS [26] and 
JumboStore [27] detect similarity between file versions 
sent over the network by only transmitting the changed 
file ranges. The same approach was also used to detect 
copy right violations [28]. This is similar to utilities 
such as CVS and rsync that transmit deltas of files to 
bring server and user copies up to date. We evaluate this 
technique in our setting and find that its overhead is 
considerable.  

We have chosen to build stdchk by making use of 
concepts from previous work: storage aggregation using 
scavenging and striping, support for versioning and data 
deduplication. Based on these concepts, we have built a 
sophisticated storage infrastructure geared towards 
distributed checkpointing. The design and 
implementation of the stdchk storage system 
incorporates new functionality conducive to 
checkpointing namely: file replication, garbage 
collection, session semantics, and optimized write 
techniques that enable delegating to applications the 
control of the tradeoffs between data reliability and 
performance.  

III. DESIGN CONSIDERATIONS FOR A CHECKPOINT 
STORAGE SYSTEM 

A checkpoint-optimized storage system can bring 
significant benefits. First, such a system offloads the I/O 
intensive checkpoint operations from the traditional file 
system, thus alleviating the load on an expensive shared 
storage server. Second, this storage system can be 
optimized for the checkpoint operation. For example, it 
can reduce file system overhead associated with large 
writes as well as reduce data storage requirements. As a 
result, applications can checkpoint at a rate significantly 
higher than what is currently feasible with shared file 
systems. Third, checkpoint data is transient in nature 
and is often not maintained beyond the lifetime of a 
successful application run. Unlike a regular file system, 
a checkpoint storage system can be aware of this 
characteristic and act like a cache to purge or prune files 
using a combination of data usage, aging, and user 
specified policies. Finally, a checkpoint storage system 
needs to present only a unifying file system abstraction 
and can hide the fact that there are no dedicated 
resources to store the checkpoint data.  
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A. Checkpoint I/O Workload Characteristics 
This section summarizes the characteristics of a typical 
checkpoint workload. 
§ Applications typically create one file per process per 

timestep. Thus, a large parallel application, running 
for a few hours and checkpointing every 15 minutes, 
can easily create tens of thousands of files. 

§ Applications have distinct compute and checkpoint 
phases. Parallel applications on thousands of nodes 
can simultaneously access the storage system to save 
their images. 

§ Checkpoint data is transient in nature. Successive 
checkpoint images are produced throughout an 
application’s lifetime. These images are accessed only 
in the case of a failure, process migration, or for 
debugging or speculative execution. Depending on 
the usage scenario, a checkpoint image may become 
obsolete at the end of a checkpoint interval when a 
new image is produced, after the successful execution 
of the application, or, in case of migration, at process 
restart time. Alternatively, a checkpoint image might 
be useful in the long term for debugging and 
speculative execution. 

§ Low risk. Checkpoint image loss involves rolling-
back the computation to the image corresponding to 
the previous timestep. While, in the common case, 
this may affect the job turnaround time, data loss 
effects are dependent on the specific application 
execution scenario. 

With these workload characteristics in mind, let us look 
at some design goals for a checkpoint storage system. 

B. Design Goals 
This section describes the desirable properties of a 
checkpoint storage system. 
§ Performance. Elmootazbellah et al. [29] identify the 

performance of the storage system as the key driver 
for checkpointing overheads. Consequently, the 
checkpoint storage should be optimized for write 
performance, while a reasonable read performance is 
necessary to support timely job restarts. 

§ Easy-to-use interfaces. The storage system should 
provide an interface that enables easy integration with 
applications. Specialized libraries and interfaces, 
however optimized, cannot match the simplicity of 
file system interfaces.  

§ Low overhead. Although file system interfaces are 
desirable their overhead should be minimal. For 
instance, the overhead involved in metadata 
management and synchronization, can all be 
minimized for checkpoint storage. 

§ Support for incremental checkpoints and data 
sharing. To reduce the storage and I/O load, the 
storage system should be able to exploit data 
commonality between successive checkpoints. 

§ Scalability. The storage system should scale to 

support a large number of simultaneous client 
requests. For instance, multiple nodes, on which a 
parallel application is running, will likely checkpoint 
all at once. The aggregation system should also be 
able to amass memory/disk resources from a large 
number of processors/nodes. 

§ Flexible namespace. The storage system should 
provide a flexible naming scheme that enables easy 
identification of an entire set of checkpoint images as 
belonging to a particular application’s checkpoint 
operation. Additionally the namespace should support 
versioning. 

§ Support for checkpoint image management. The 
storage system should include components to manage 
checkpoint image lifetime according to user specified 
policies: e.g., complete replacement of checkpoint 
images when a new image is produced, removal of all 
images at successful completion of application, or 
long-term storage of checkpoint images. 

§ Data transfer to stable storage: Snapshot data stored 
in the aggregate memory based storage needs to be 
drained to stable storage (generally a shared parallel 
file system). This should be performed in an 
asynchronous fashion so that the application 
perceived throughput for writing a checkpoint does 
not suffer a significant impact. While this is also 
desired in an aggregate storage within a desktop grid, 
it is more important in memory based aggregation. 

IV. stdchk: A CHECKPOINT-FRIENDLY STORAGE 
SYSTEM 

Storage space scavenging is a good base for building a 
low-cost storage system in environments from desktop 
grids, to small clusters, to disk-less extreme-scale 
systems as the inherent parallelism in these 
environments can be harnessed to offer a high 
checkpoint throughput. 

A. System Architecture 
Overview. stdchk integrates two types of components: 
a metadata manager and a number of benefactor (or 
donor) nodes that contribute storage space or memory to 
the system. Datasets are fragmented into smaller chunks 
that are striped across benefactor nodes for fast storage 
and retrieval. This basic model is common to several 
other storage systems (e.g., GoogleFS, FreeLoader) as 
well. 
§ The metadata manager maintains the entire system 

metadata (e.g., donor node status, file chunk 
distribution, and dataset attributes). Similar to a 
number of other storage systems we have chosen a 
centralized metadata manager implementation. 

§ The benefactor nodes contribute disk space or and 
memory resources to the system. To facilitate 
integration, our design decouples, to the extent 
possible, the metadata manager and the benefactor 
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nodes, and in effect minimizes the set of functions 
benefactor nodes provide. Benefactor nodes interact 
with the manager to publish their status (on-/off-line) 
and free space using soft-state registration, serve 
client requests to store/retrieve data chunks, and run 
garbage collection algorithms. 

In the case of desktop grids and clusters, each 
workstation or cluster node runs a benefactor process 
and contributes disk space to the manager. In large-scale 
machines with no disks, the benefactor process runs on 
each compute node allocated to stdchk and harnesses 
memory from all the cores within the node. In our 
current implementation memory is harnessed in the 
form of ramdisk allocations.  

Data storage and retrieval operations are initiated by 
the client via the manager. When a client contacts the 
manager, the file to be written is divided by the system 
in equally sized chunks. The manager computes a 
striping plan, determines a set of benefactors to send 
chunks to, and a chunk to benefactor mapping. One 
striping policy we have implemented is to sort the 
benefactors on available memory space and then 
perform a round-robin striping across the top subset 
(stripe width) of them. Once clients obtain a striping 
‘map’, they interact with the benefactors directly, in 
parallel, to send the chunks to benefactors. Since the 
size of the checkpoint data, at any timestep, is not 
known a priori, storage space allocation is done 
incrementally. Clients eagerly reserve space with the 
manager for future writes. If this space is not used, it is 
asynchronously garbage collected. The client will need 
to adapt to situations such as an overrun of the initial 
width of benefactors. In such cases, the client contacts 
the manager again to readjust the width. Once the entire 
checkpoint operation is completed, the client commits 
the map to the manager, indicating a successful 
operation. To retrieve a file, the client first contacts the 
metadata manager to obtain the chunk-map, (i.e., the 
location of all chunks corresponding to the file), then 
the actual transfer of data chunks occurs directly 
between the storage nodes and the client, in parallel.  

The manager also stores metadata regarding 
benefactors’ space contributions, file versioning and 
replication as we describe in this section. The storage 
system is particularly geared for high-speed writes using 
striping and support for incremental checkpointing. In 
addition, stdchk offers tunable background replication 
and write semantics.  

The storage system is mounted under /dev/stdchk. 
Any file opened under this mounting directory is written 
to the aggregate storage system, thereby making 
stdchk easily available to client applications. The rest 
of this section describes stdchk’s main design 
choices. 

Session Semantics. A key decision shaping the design 

of a distributed storage system is the consistency model. 
Existing systems differ widely in terms of their write 
consistency semantics. Solutions range from 
unspecified consistency semantics (e.g., NFS [30]) to 
strong consistency, provided, for example through 
access serialization [31].  Our storage system provides 
session semantics [32]. Data commits are delegated to 
stdchk client proxies: when the client application 
eventually performs a close() operation, the client proxy 
will commit the chunk-map for the dataset to the 
manager. The fact that this operation is atomic ensures 
session consistency. We note that, strictly speaking, 
session semantic is not necessary for checkpointing 
operations as checkpoint images are immutable and 
have a single producer. However, introducing a clear 
and low-overhead consistency model gives a good path 
for future transitioning of stdchk towards a generic 
high-performance file system. 

Dealing with failures: Reliable writes. stdchk 
replicates data over multiple benefactors. However, 
replication introduces a new question: should a write 
operation return immediately after the first replica of the 
data has been persistently stored or wait until all data 
reaches the desired replication level. The tradeoff is 
between data-loss risk and write throughput. A client 
can choose to be conservative (pessimistic) and wait 
until a desired level of replication is achieved before 
declaring a write operation successful. In this case, the 
client favors data durability over high write throughput. 
Alternatively, an optimistic client can return as soon as 
a chunk is written to the first benefactor and let the 
background replication process bring about the desired 
replication level. In this case, the client favors write 
throughput over data durability. The choice between 
optimistic and pessimistic writes is a system 
configuration parameter.  

Data replication: User-defined replication targets. In 
our target environment, failure of benefactor nodes will 
be common. Any solution addressing data availability 
needs to factor the following: (1) facilitate fast writes so 
the application can quickly return to performing useful 
computation, (2) reliably store checkpoint data so that it 
is available if needed, and (3) provide good read 
performance to minimize restart delays. 
 To this end, we evaluated both erasure coding and 
replication. Erasure coding incurs significant 
computational overhead compared to replication. The 
checkpointing application has to compute the erasure 
code while writing the data. Alternatively, if this 
computation is performed in the background, after the 
write, it leads to significant network traffic to pull the 
different chunks to a single node, perform the encoding 
and redistribute them. Further, data reads involve 
equivalent computational and network traffic overheads. 
Additionally, using erasure codes prevents the efficient 
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use of data deduplication techniques to detect 
similarities between successive checkpoint images.  
 Replication, on the other hand, incurs no 
computational overhead, but involves larger space 
overhead for the same degree of reliability. Replication 
can be implemented as a background task, thereby 
imposing minimally on the application. Further, 
replication is easier to implement as it involves less 
complex data management. Finally, since checkpoint 
data is mostly transient in nature, the space overhead is 
transient. In some cases, the application might choose to 
keep the images for a prolonged duration, in which case, 
the data can be offloaded to more stable storage.  

Garbage collection. To decouple, to the extent possible, 
benefactors from metadata management, the file 
deletion is performed synchronously only at the 
manager which results in orphaned chunks at 
benefactors.  To reclaim space, benefactors periodically 
send a list of the set of chunks they store and the 
manager replies with the set of chunks that can be 
garbage collected. 

B. Write Optimizations for High Throughput 
Our implementation optimizes large, sequential writes, 
the most frequent operation in a checkpointing storage 
system. We have explored [33] the full space of write 
optimizations enabled by striping, and combining the 
use of local and remote I/O resources and have chosen 
to support what we call sliding window write technique 
as it is the most efficient and requires only memory 
resources at the client node. Sliding window write 
works as follows: The data written by the application is 
stored into a memory buffer. Full buffers are 
asynchronously written to stdchk benefactors, 
completely eliminating the use of local disk, and 
providing higher application perceived write 
throughput. Further to increase the write operation 
throughput stdchk stripes the write operation to a 
stripe-width of benefactors. 

C. Support for Incremental Checkpointing 
A checkpoint image typically involves a dump of the 
application’s memory, comprising of data structures and 
other state variables. Incremental versions of the same 
application image may produce (partially) similar files. 
This property can be used to improve the write 
throughput and/or reduce storage and network 
requirements, ultimately providing support for 
checkpointing at a higher frequency. The challenge, 
however, is to detect similarities at runtime without 
operating system or application support. 
 To investigate whether similarity between 
checkpoint images can be exploited in real settings we 
address the following three interrelated issues. First, we 
evaluate the potential gains from detecting similarity 
between successive checkpoint images. Second, we 

evaluate heuristics to understand the degree to which 
the task of detecting file similarity can be efficiently 
implemented by the storage system without application 
or operating system support. Third, we design the 
architecture to efficiently support these heuristics. This 
section presents the similarity detection heuristics we 
explore and the required architecture while Section V 
presents a detailed performance evaluation using real-
world application data. 

Heuristics to detect similarities. The generic problem of 
identifying the maximum common substring between 
two strings has a computational overhead O(n.m), where 
n and m are the lengths of the two strings. This is 
unacceptable in the context of file systems.  We, 
therefore, evaluate two heuristics that offer lower 
overheads. 
§ Fixed-size Compare-by-Hash (FsCH). This approach 

divides a file into equal-sized chunks, hashes them 
and uses the hashes to detect similar chunks. The 
main weakness of this approach is that it is not 
resilient to file insertions and deletions. An insertion 
of only one byte at the beginning of a file prevents 
this technique from detecting any similarity. 

§ Content-based Compare-by-Hash (CbCH).   Instead 
of dividing the file into equal-sized blocks, CbCH 
detects block boundaries based on content (as 
suggested by Brin et.al. [28] and used by LBFS [26] 
and JumboStore [27] storage systems). CbCH scans 
the file using a ‘window’ of m bytes and, for each 
position of the window, computes a hash of the 
corresponding string. A chunk boundary is declared 
if the lowest k bits of the hash are all zero. Then, 
identification of chunk similarity proceeds as above, 
based on chunk hashes. Statistically, k, the number of 
bits of the hash compared to zero allows controlling 
the average chunk size, while m, the window size, 
and p, the number of bytes the window is advanced 
every time, allow controlling the variation in chunk 
sizes and, additionally, influence the chunk size. 
Unlike FsCH, CbCH is resilient to data 
insertion/deletion, since inserting/deleting some 
bytes will only affect one block (two blocks if the 
changes are at a block boundary). The drawback is 
that CbCH requires hashing more data and, hence, 
results in larger computational overhead.  

Section V.C includes an extensive performance 
evaluation of these heuristics using checkpoint images 
from two real-world applications. We evaluated the rate 
of similarity detected and the computational overhead 
for application-/library-/VM-level checkpointing and 
different checkpoint intervals. Our results suggest that 
FsCH is the best approach for stdchk due to the 
balance it offers between throughput and reduced space 
consumption as a result of similarity detection.  

Architectural support. To support these heuristics and 
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to manage incremental checkpoint images efficiently, 
stdchk provides the following: 
§ Content based addressability. stdchk provides 

content-based naming of data chunks, i.e., chunks 
names are based on a hash of their content. An 
additional advantage of using content-based naming 
is that it enables data integrity checks, a feature that 
can be used to prevent faulty or malicious storage 
nodes from tampering with the chunks they store. 

§ Support for copy-on-write and versioning. 
Additionally, stdchk supports versioning and copy-
on-write, so that chunks that have been identified as 
similar can be shared between different file versions. 
When a new version of a checkpoint image is 
produced, only the new chunks need to be 
propagated to persistent storage. The new chunk-map 
will integrate the newly produced chunks and the 
chunks that have already been stored. 

D. Support for Automated, Time-Sensitive Data 
Management 

The burden of managing large volumes of data 
(checkpoint or output data) HPC applications produce 
can become onerous. We aim to add to the storage 
system, the intelligence to automatically manage files 
based on user-specified policies concerning their 
lifetimes. To this end, stdchk exploits the fact that 
checkpoint images are often used in a few standard 
scenarios. Most of the checkpoint data is time sensitive. 
For example, in a normal application scenario, 
checkpoint images are made obsolete by newer ones; 
while in a debugging scenario, all checkpoint images 
may need to be saved to enable debugging.  

We support this functionality through versioning, 
the use of a simple naming convention that helps 
recognize successive files from the same application, 
and the integration of user-specified metadata. By 
convention, files in stdchk are named as follows: 
A.Ni.Tj stands for an application A, running on node, Ni 
and checkpointing at timestep Tj. We treat all images—
from the many processes of application A running on 
nodes, N—as versions of the same file. Files from an 
application are organized within a folder for that 
application. The folder has special metadata concerning 
the time-related management of the files it contains. 
Currently we support the following scenarios: 
§ No intervention. All versions (from multiple time 

steps) are persistently stored indefinitely. 
§ Automated replace. New checkpoint images make 

older ones obsolete. 
§ Automated purge. Checkpoint images are 

automatically purged after a predefined time interval. 

E. Providing a Traditional File System Interface 
The strong requirement for a file system-like API is 
motivated by two observations. First, a traditional API 

is crucial for adoption and increased usability of the 
storage system. Second, in the specific context of 
checkpointing systems, the libraries that support 
checkpointing are complex pieces of code that, in some 
situations, are executed in kernel mode. Modification or 
even recompilation to integrate them with a custom 
storage system would be a high barrier to adoption and 
may be considered a security risk.  

 
Figure 1. File system call path through FUSE.  

We use FUSE, a Linux kernel module[7], similar to 
the other VFS modules (e.g. NFS, ext3). Once a FUSE 
volume is mounted, all system calls targeting the mount 
point are forwarded to the FUSE kernel module, which 
preprocesses and forwards them to user-level file 
system callbacks (see Figure 1). When the callback 
function finishes processing the system call, FUSE 
post-processes the call and returns the results to VFS. 
FUSE is officially merged into the Linux kernel starting 
with 2.6.14 version, further simplifying adoption of our 
user-space file system. 

Our user-space file system implementation maps the 
system calls to stdchk operations. Additionally, it 
handles granularity differences. For example, 
applications usually write in small blocks, while remote 
storage is more efficiently accessed in data chunks of 
the order of a megabyte. Further, our implementation is 
performance optimized for our deployment scenario. It 
provides high-performance writes, improves read 
performance through read-ahead and high volume 
caching, and caches metadata information so that most 
system readdir and getattr system calls can be answered 
without contacting the manager.  

F. On-the-fly Setup of the Storage System 
The ability to setup the checkpoint data store on-the-fly 
is necessary in some of the environments we target. 
Consider, for example a batch system where a user 
requests an allocation of 100,000 cores for a compute 
job. If stdchk is not deployed system-wide then the 
user needs to deploy it on-the fly, on a subset of 
allocated nodes dedicated to support checkpointing, as 
part of a user’s job script, before application startup. 
This usage scenario implies that the benefactor 
processes should be started on the thousands of nodes 
and should complete their soft-state registration with the 
manager process to enable mounting stdchk mount 
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point before the application starts. 
We have designed the scripts to support such 

scenarios for two environments: batch schedulers (e.g., 
PBS) and utility computing (Amazon’s EC2). Figure 2  
presents our PBS setup. Typically, the identities of 
nodes on which a parallel job will run are available to 
the user (in the PBS variable, “PBS_NODEFILE”) only 
when the job is scheduled by the resource manager. 
This information allows us to start the manager and 
benefactor processes before the job launch (Figure 2). 

 
#PBS -N stdchk-setup 
#PBS -l walltime=0:30:00,nodes=80:ppn=16 
NodeCores=16 
# Number of nodes executing the "actual" job 
MPI_Nodes=40 
# Number of processes 
let MPI_Processes=$MPI_Nodes*$NodeCores 
NodeCount=0 
# where to mount the stdchk filesystem 
MountPoint=/dev/stdchk 
# Set up manager and benefactors 
for machine in `uniq $PBS_NODEFILE` 
do 
  if [ $NodeCount -eq $MPI_Nodes ]; then 
    # Start the manager 
    ssh -f $machine "start_manager.sh" 
  elif [ $NodeCount -gt $MPI_Nodes ]; then 
    # Start the benefactors 
    ssh $machine -f "start_benefactor.sh" 
  fi 
  ((NodeCount++)); 
done 
NodeCount=0 
# setup stdchk interface on job nodes 
for machine in `uniq $PBS_NODEFILE` 
do 
  if [ $NodeCount -lt $MPI_Nodes ]; then 
    # Start stdchk interface 
    ssh $machine -f "start_interf.sh $ MountPt" 
  fi 
  ((NodeCount++)) 
done 
# Run the application 
mpirun -n $MPI_Processes ./MyJob $MountPoint 
# Shutdown stdchk processes 

Figure 2: Job script that sets up stdchk on 640 compute 
cores (40 nodes with 16 cores each), harnessing the 
memory therein. This storage is made available on a 
mount point, “/dev/stdchk” and then an mpirun of a 
640-core parallel job is initiated. 

The above script is a simple, sequential approach that is 
intended to demonstrate on-the-fly setup of the storage 
system. As the number of nodes allocated to stdchk 
grows, such an approach can be a bottleneck. However, 
the on-the-fly setup of stdchk itself can be composed 
as a parallel job just before the actual job startup. 

V. EVALUATION  
We evaluated our prototype using a range of micro- and 
macro-benchmarks. Except where specifically 
mentioned, we used a testbed composed of 22 
machines. Each machine has Xeon 2.3 GHz quad-core 
processor, 4GB memory, SATA disks, and 1Gbps NIC. 
For all configurations, we report averages and standard 
deviations over 50 runs.  
 

 

A. FUSE Overhead Evaluation 
We first evaluated the performance and the overhead of 
adopting FUSE for implementing a POSIX compliant 
file system. As a base for comparison, the sustained 
write throughput on a local disk with write caches 
enabled was 86.2MB/s. 

We use micro-benchmarks to estimate the overhead 
due to the additional context switch any user-level file 
system like FUSE entails. Thus, to evaluate FUSE 
module overheads we have built two simple file 
systems. The first one (‘FUSE to local I/O’ in Table I) 
simply redirects all write requests back to the local file 
system. The second (/stdchk/null) ignores the write 
operation and returns control immediately. Table 2, 
presents the time to write a 1 GB file to the local disk 
and to these two file systems. The results show that 
FUSE overhead is very low, about 2%, on top of local 
I/O operations.  

Table 2 Time to write a 1 GB file. 
 Local I/O FUSE to local I/O /stdchk/null 
Average Time (s) 11.80 12.00 1.04 
Standard deviation 0.16 0.24 0.03 

B. Write Throughput 
Our write implementation decouples the application 
write I/O from the actual network file transfer to 
benefactor nodes. Therefore, we define two 
performance metrics to compare the various alternatives 
for write-optimized operations described in Section 
IV.B). First, the application observed throughput (OT) 
is the write bandwidth observed by the application: the 
file size divided by the time interval between the 
application-level open() and close() system calls. 
Second, the achieved storage throughput (AT) uses the 
time interval between file open() and until the file is 
stored safely in stdchk storage (i.e., all remote I/O 
operations have completed). 
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Figure 3. The average and standard deviation (as error bars) 
for observed and achieved throughput (OT and AT). For 
comparison the figure also shows: the throughput of writing to 
the Local-I/O, to local I/O through the FUSE module (FUSE), 
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and to a dedicated NFS server (NFS) running on the same 
testbed.  

Figure 3, presents the observed and achieved 
throughput when the number of remote nodes to save 
data on (the stripe width) varies from one to eight 
benefactors. Higher concurrency allows the write 
interface to perform better in terms of OT (at around 
110 MB/s). This high throughput translates to shorter 
time for checkpoint operation as observed by the 
application. Further, the write interface completely 
avoids local IO and, hence, its performance is mainly 
influenced by the size of memory buffers allocated. 
Further, the write interface saturates the Gigabit 
network card with only two benefactors. 

C. Incremental Checkpointing: Feasibility Study 
This section presents evidence that supports our 
decision to include support for incremental 
checkpointing with stdchk. This subsection evaluates 
the potential gains from detecting similarity between 
successive checkpoint images as well as the 
performance characteristics of two heuristics to detect 
similarity that can operate at the file system level (that 
is, without application or operating system support). 
The subsection evaluates the performance of the entire 
storage system.  

The two heuristics we compared (described in 
section IV.C), fixed-size compare-by-hash (FsCH) and 
content-based compare-by-hash (CbCH), differ in their 
efficiency of detecting similarities and in the imposed 
computational overhead.  

Experiment setup. To quantitatively evaluate these 
heuristics along these two axes and to ground our 
comparison in the real-world, we use checkpoint-images 
from two popular scientific applications: a protein-
substrate complex biomolecular simulation (which we 
call BMS [34] for brevity), and BLAST [35], a 
bioinformatics protein/nucleic-acid sequence searching 
tool. BMS uses application-level checkpointing and we 
ran BLAST with library (using BLCR [8]) and virtual 
machine-based checkpointing (using Xen [36]). Table 3 
presents the traces’ details. 

Table 3: Characteristics of the collected checkpoints. 
App Checkpoint 

type 
Interval 
(min) 

# of 
checkpoints  

Average 
size (MB) 

BMS Application 1 100 2.7 
BLAST Library (BLCR) 5 902 279.6 
BLAST Library (BLCR) 15 654 308.1 
BLAST VM (Xen) 5 100  1024.8 
BLAST VM (Xen) 15 300  1024.8 

 
Summary of results. Table 4 presents the average ratio 
of the detected similarity and the achieved throughput 
(in MB/s) for the two techniques.  For each technique, 
the table presents the performance for key 

parameterization points. The results show that, in 
general: 
§ There is little similarity between checkpoint images 

collected using application-level techniques. This is 
due to the user-controlled, ideally-compressed format 
used to create these checkpoint images.  

§ The level of similarity for library-level checkpointing 
techniques is extremely high. For example, BLAST, 
using library based checkpointing (BLCR), generates 
checkpoints with up to 84% average similarity 
between successive images.  

A surprising result is the near-zero similarity observed 
using virtual machine based checkpointing. We have 
verified that this is due to the particular way in which 
Xen checkpoints. Xen optimizes for speed, and when 
creating checkpoints it saves memory pages in 
essentially random order. Further, to preserve the ability 
to recreate correct VM-images, Xen adds additional 
information to each saved memory page.  We are 
currently exploring solutions to create Xen checkpoint 
images that preserve the similarity between incremental 
checkpoint images.  

Table 4: Comparison of similarity detection heuristics. The 
table presents the average rate of detected similarity and the 
throughput in MB/s (in brackets) for each heuristic. 

 
Technique 

BMS BLAST 
App BLCR Xen 

 1 min 5 min 15 min 5 or 15 min 
FsCH 1KB 0.0%   [96] 25.0%   [99] 9.0%  [100] Low 

similarity 
for both 

FsCH and 
CbCH 

techniques. 

256KB 0.0% [102] 24.3% [110] 7.1% [112] 
1MB 0.0% [108] 23.4% [109] 6.3% [113] 

CbCH
-
SHA1 

overlap 0.0%  [1.5] 84.0%  [1.1] 70.9% [1.1] 
no-overlap 

m=20B, 
k=14b 

0.0% [28.4] 82% [26.6] 70% [26.4] 

From Table 4 we further observe that:  
§ FsCH has higher throughput (over 100MB/s) but 

pays in terms of similarity detection (when compared 
with CbCH) between successive checkpoints 
(similarity of up to 25%). 

§ With CbCH, aggressively configured to detect block 
boundaries, the similarity rate is extremely high. 
However, this significantly reduces the achievable 
throughput. When the window to detect block 
boundaries is advanced by one byte every time 
(labeled ‘overlap’ in Table 4), throughput degrades to 
as low as 1MB/s. Advancing the window with its size 
every time (labeled ‘no-overlap’ in Table 4), can 
improve throughput to about 26MB/s, which is still 
four times slower than FsCH.  

Detailed analysis. The CbCH results thus far present 
only an upper-bound for similarity detection but do not 
explore the tradeoff between similarity detection, 
throughput, and block size. The rest of this section 
explores this tradeoff with two implementations of 
CbCH: CbCH-SHA, and CbCH-Rabin. CbCH-SHA 
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uses the SHA1 hash function to hash every consecutive 
m bytes of the input data, while CbCH-Rabin uses 
Rabin fingerprinting algorithm [37] There are two 
important differences between these two hashing 
functions. First, SHA1 provides stronger collision 
resistance yet it is more computationally intensive. 
Second, Rabin-hashes can be computed incrementally, 
that is, if two partially overlapping strings are hashed 
one can reuse the partial hash computation for the 
common substring.  

We take advantage of the incremental computation 
property or Rabin fingerprints and experiment with two 
additional parameterizations overlap and no-overlap. 
The overlap configuration aggressively searches for 
block boundaries in the data by hashing every 
consecutive window of m bytes (i.e., it shifts the 
hashing window by one byte), this approach might 
detect more block boundaries but is computationally 
intensive. The no-overlap configuration, hashes non-
overlapping windows of m bytes (i.e., it shifts the 
hashing window by a complete window size), this 
approach is significantly less computationally intensive, 
but is less efficient in detecting block boundaries 

Table 5: The effect of m and k on CbCH-SHA no-overlap 
performance. The table presents the ratio of detected similarity 
(in percentage), the heuristic’s throughput in MB/s, the 
average resulting checkpoint size in KB, and the average 
(across all checkpoint images) of the minimum and maximum 
chunk sizes (Values for m in bytes and for k in bits) 

k                                             m à  20 32 64 128 256 
8 Similarity (%) 30.0 62.8 62.4 64.3 64.5 

Throughput (MB/s) 85.7 86.8 86.3 86.0 84.2 
Avg. size (KB) 519.2 522.4 530.7 547.3 579.5 
Avg. min size (KB) 325.1 275.6 210.1 350.2 257.1 
Avg. max size (KB) 614.3 627.3 668.9 787.3 967.9 

10 Similarity (%) 38.6 72.4 66.3 65.0 64.7 
Throughput (MB/s) 75.6 78.2 77.5 74.6 69.5 
Avg. size (KB) 539.3 552.5 584.7 654.8 778.9 
Avg. min size (KB) 265.9 283.9 294.7 409.2 380.8 
Avg. max size (KB) 893.9 890.0 1095.0 1491.2 2251.7 

12 Similarity (%) 77.3 73.4 65.6 63.0 60.7 
Throughput (MB/s) 47.0 53.6 50.2 52.3 53.6 
Avg. size (KB) 626.3 665.4 812.5 1076.3 1544 
Avg. min size (KB) 239.8 242.2 269.5 437.7 456.2 
Avg. max size (KB) 1683.8 1807.8 2632.5 3812.7 4510.4 

14 Similarity (%) 82.4 71.7 61.3 58.4 57.1 
Throughput (MB/s) 26.6 32.7 34.2 40.6 46.43 
Avg. size (KB) 930.8 1079.2 1635.6 2267.3 2908.6 
Avg. min size (KB) 514.9 232.0 449.5 528.8 506.8 
Avg. max size (KB) 3710.9 3639.5 4515.1 4662.2 4646.6 

CbCH-SHA Experimental results: Table 5 presents the 
effect of varying m (the window size) and k (the number 
of bits compared to zero to detect a block boundary) on 
the CbCH-SHA no-overlap performance. For all 
analysis in the rest of this section we use the 
BLAST/BLCR trace with 5-minute checkpoint 
intervals. In general, as the window size m increases, 
the ratio of detected similarity decreases, mainly due to 
the reduced opportunity to detect block boundaries, 

leading to larger blocks. On the other hand, we can 
control the block size by varying the number of zero 
bits we require to detect a boundary: lower k leads to 
smaller blocks. However, as k increases the variation in 
the block size increases (the table presents averages for 
the minimum and maximum detected block for each 
checkpoint image). 

CbCH-Rabin Experimental results: Table 6 presents the 
effect of varying m (the window size) and k (the number 
of bits compared to zero to detect a block boundary) 
when using the overlapping Rabin hashes (we name this 
technique CbCH-Rabin-overlap). Table 7 presents the 
results effect on CbCH, again when using non-
overlapping Rabin hashes (we name this technique 
CbCH-Rabin-non-overlap).  

Table 6: The effect of m and k on CbCH-Rabin overlap 
performance. The table presents the ratio of detected similarity 
(in percentage), the heuristic’s throughput in MB/s, the 
average resulting checkpoint size in KB, and the average 
minimum and maximum chunk sizes (Values for m in bytes 
and for k in bits) 

k                                             m à  20 32 64 128 256 
8 Similarity (%) 28.8 30.1 27.1 27.4 27.5 

Throughput (MB/s) 124.8 121.6 113.6 99.4 81.6 
Avg. size (KB) 128.1 128.2 128.2 128.3 128.5 
Avg. min size (KB) 60.8 51.9 45.8 98.1 59.3 
Avg. max size (KB) 149.2 140.6 136.7 135.6 132.9 

10 Similarity (%) 30.3 38.4 32.6 33.6 70.3 
Throughput (MB/s) 112.6 107.0 88.6 63.4 41.3 
Avg. size (KB) 128.5 128.5 128.7 128.9 129.1 
Avg. min size (KB) 26.3 24.7 26.6 69.0 29.7 
Avg. max size (KB) 158.5 166.3 143.2 144.1 137.3 

12 Similarity (%) 47.0 48.7 55.6 74.4 84.1 
Throughput (MB/s) 81.6 72.5 46.6 27.9 14.8 
Avg. size (KB) 130.0 130.0 130.5 131.0 131.5 
Avg. min size (KB) 121.7 34.3 80.9 103.2 115.3 
Avg. max size (KB) 308.2 238.6 192.8 236.7 157.8 

14 Similarity (%) 54.3 56.6 61.7 82.2 88.7 
Throughput (MB/s) 46.5 35.5 19.8 10.7 4.7 
Avg. size (KB) 134.1 134.8 136.1 137.2 140.0 
Avg. min size (KB) 54.4 85.9 27.8 85.8 98.1 
Avg. max size (KB) 353.4 288.0 341.6 263.2 274.1 

16 Similarity (%) 55.7 58.0 63.1 84.5 90.8 
Throughput (MB/s) 20.8 14.8 7.5 4.2 1.8 
Avg. size (KB) 147.4 149.9 154.9 155.7 165.1 
Avg. min size (KB) 127.3 85.9 91.6 48.5 98.1 
Avg. max size (KB) 546.6 715.4 884.4 769.9 628.0 

The performance results presented in Table 5, 6 and 
7, are multidimensional and highly non-uniform. This 
makes it difficult to draw generic conclusions. 
However, a number of observations can be made.  
• The CbCH-Rabin-overlap mechanism achieves the 

highest similarity detection ratio of 90.8%, while 
CbCH-SHA-non-overlap provides a similarity 
detection ratio below 80%, and CbCh-Rabin-non-
overlap below 70%. 

• The block size produced by CbCH-Rabin 
mechanisms is considerably smaller than the ones 
produced using CbCH-SHA. As a matter of fact, 
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CbCH-Rabin, on average, generates blocks smaller 
than 300KB in both mechanisms (overlap, and non-
overlap). For a file system this small block size 
may be undesirable as it increases the overhead on 
the central metadata, which may impair scalability. 
Further, Lian et. al. [38] study of storage systems 
reliability provides evidence that smaller block size 
lead to less reliable storage. 

• While the throughput of the CbCH mechanisms 
varies between the different configurations, CbCH-
Rabin-no-overlap often achieves more than twice 
similarity detection throughput the CbCH-Rabin-
overlap and CbCH-SHA achieve. 

Table 7: The effect of m and k on CbCH-Rabin non-overlap 
performance. The table presents the ratio of detected similarity 
(in percentage), the heuristic’s throughput in MB/s, the 
average resulting checkpoint size in KB, and the average 
minimum and maximum chunk sizes (Values for m in bytes 
and for k in bits) 

k                                             m à  20 32 64 128 256 
8 Similarity (%) 26.6 48.5 58.7 67.7 69.9 

Throughput (MB/s) 132.1 133.0 119.8 118.0 103.9 
Avg. size (KB) 130.3 131.6 144.2 148.8 176.8 
Avg. min size (KB) 4.3 88.2 69.0 39.4 100.2 
Avg. max size (KB) 230.1 254.0 486.2 581.8 961.8 

10 Similarity (%) 43.7 52.7 58.5 68.5 70.1 
Throughput (MB/s) 121.4 118.0 109.4 100.6 88.7 
Avg. size (KB) 136.8 143.3 157.1 181.0 237.8 
Avg. min size (KB) 98.3 85.6 66.4 64.8 85.0 
Avg. max size (KB) 298.2 352.8 786.0 1323.7 1627.2 

12 Similarity (%) 50.2 51.7 60.4 68.6 70.0 
Throughput (MB/s) 101.8 101.5 93.9 89.9 80.1 
Avg. size (KB) 155.0 164.1 189.7 219.0 316.4 
Avg. min size (KB) 83.2 78.4 58.6 88.1 85.5 
Avg. max size (KB) 758.4 918.7 2282.1 3228.5 5097.4 

14 Similarity (%) 51.5 52.6 61.5 67.5 69.5 
Throughput (MB/s) 85.7 86.1 86.0 85.1 77.4 
Avg. size (KB) 182.9 201.2 219.1 246.4 358.7 
Avg. min size (KB) 84.6 85.9 57.7 86.1 85.5 
Avg. max size (KB) 1530.9 6058.8 5568.1 7453.9 8192.0 

16 Similarity (%) 50.6 51.8 62.1 66.3 68.3 
Throughput (MB/s) 77.6 80.9 83.0 83.8 76.8 
Avg. size (KB) 205.8 221.2 233.4 255.0 367.7 
Avg. min size (KB) 85.9 85.9 85.8 86.1 85.5 
Avg. max size (KB) 5662.3 8192.0 8192.0 8192.0 8192.0 

Conclusion. While the CbCH mechanisms achieve 
higher similarity detection rates, they are more 
computationally intensive and either provide a low 
similarity detection throughput (such as CbCH-SHA, 
and CbCH-Rabin-overlap), or produce significantly 
smaller block sizes (such as CbCH-Rabin mechanisms). 

Since the stdchk write throughput is the main 
success metric we have chosen to implement FsCH in 
stdchk. FsCH offers a good rate of similarity 
detection, desired block sizes, with higher data 
throughput while also providing a simpler 
implementation path. We are currently exploring 
alternatives to provide a high-performance CbCH 
implementation by offloading the intensive hashing 
computations to the Graphical Processing Unit [39]. 

The results above also shed light on one key element 
namely, the checkpoint interval. Regardless of the 
similarity detection technique used the finer the 
checkpoint granularity, the higher the similarity 
between successive images (Table 4). For instance, 
when using FsCH, there is an average 3x improvement 
in commonality detection between a 15 and 5 minute 
checkpoint interval. Further, with FsCH, the checkpoint 
throughput is over 100MB/s. Consequently, the 
overhead generated by finer checkpoint granularity can 
be partially compensated by enabling similarity 
detection at the file system level.  

D. Incremental Checkpointing: End-to-End 
Performance 
The performance of the system when using 

similarity detection varies depending on the degree of 
data similarity present in the workload. To evaluate the 
entire performance spectrum we use the following three 
workloads: 
• Different: The first workload consists of writing 50 

completely different files (1GB each). This 
workload exposes all overheads, as all data need to 
be hashed and transferred across the network to 
storage nodes. Moreover, no similarity can be 
detected between writes, which implies no 
opportunity to reduce space or bandwidth usage.  

• Identical: The second workload represents the other 
end of the spectrum: it exposes an upper bound for 
the performance gains that can be obtained using 
similarity detection and maximizes the hash-
computation overheads in relation with other 
storage overheads. When the files are identical, 
data is transferred only once across the network yet 
similarity detection overheads still exist. This 
workload writes the same 1GB file 50 times. 

• Checkpoint: Finally the third workload represents a 
real application data. The experiment uses 100 
successive checkpoint images, taken at 5 minute 
intervals for the BLAST/BLCR. The average 
similarity detected between successive checkpoint 
images is 23% for 1MB blocks, with average 
checkpoint size of 280MB. 

Figure 4 presents the average observed (OT) and 
achieved throughput (AT) with FsCH for the three 
workloads. Three main observations can be derived: 
First, with the different workload, the similarity 
detection mechanism does not bring any benefits (it 
does not detect any similarity, and, consequently, does 
not bring storage space or network effort savings), but it 
degrades the system throughput by around 16% down to 
93MBs AT and 124BM OT. Second, with the identical 
workload, the similarity detection mechanism enables 
significantly (around 3.5x) higher system throughput 
(for both OT and AT). This is mainly due to two 
reasons: The data is identical, with the exception of the 
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first file, as a result no data is sent over the network, and 
the multithreaded implementation of the write interface 
enables parallelizing the similarity detection of multiple 
data blocks concurrently, enabling significantly higher 
similarity detection throughput. Finally, the checkpoint 
workload evaluation shows that the similarity detection 
enables around 3x higher throughput, retaining most of 
the performance benefits the similarity detection can 
provide (compared to the identical workload). 
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Figure 4. The application average and standard deviation (as 
error bars) observed throughput (OT) and the achieved storage 
throughput (AT) for the write interface with the similarity 
detection.  

E. Scalability and Memory Aggregation Evaluation 
To analyze the performance of aggregating memory on 
large-scale systems, we conducted a series of tests on 
the Smoky machine at ORNL. Smoky is a 1280 core 
Linux cluster (80 nodes, consisting of four quad-core 
2.0GHz AMD Opteron processors per node), 32 GB of 
memory per node, a 20Gb/s (2.5GB/s) InfiniBand 
interconnect, and access to a Lustre parallel filesystem 
through five 20Gb/s channels. 

Our intent with these tests was to study stdchk 
scalability properties and its memory-based write 
throughput. To this end, experiments consisted of 
setting up stdchk on-the-fly (as explained in Section 
IV.F) and checkpointing data from a MPI parallel job 
that runs on up to 560 processor cores (on 35 nodes, 16 
cores/node) and checkpoints around 840GB of memory 
(1.5GB/core). We measured the checkpoint throughput 
for stdchk and the machine’s Lustre parallel file 
system. stdchk was setup on another 35 nodes that 
contribute 25GB of memory each for a total of 875GB 
of aggregate memory based distributed storage. We 
used a stripe width of 8 nodes. The 560 MPI processes 
invoke MPI barrier and then start checkpointing 
simultaneously, creating a large and bursty I/O 
workload. 

Figure 5 shows a side-by-side comparison of 
stdchk and Lustre throughput performance for 
different MPI job sizes (from 16 to 560 cores). Each 
node checkpoints 1.5GB of data and the figure presents 

the average throughput offered to an MPI client. We 
observe that stdchk performs consistently better. In 
fact, we observe that for larger numbers of clients the 
performance difference is larger, suggesting that 
stdchk scales better than Lustre in this setup.  

 

 
Figure 5: Comparing stdchk and Lustre parallel file system 
throughput performance when checkpointing form a parallel 
MPI job running on 16 to 560 cores. The figure presents the 
average throughput offered to an MPI client. 

F. stdchk in Cloud Computing Environments 
This section presents an evaluation of stdchk in a 
cloud computing environment. In particular, we 
evaluate the performance of stdchk when aggregating 
storage resources from Amazon EC2 nodes [40].  

In cloud computing, stdchk does not only have the 
potential to offer a high performance and cost effective 
solution for a checkpointing workload, but also provides 
a high performance and cost effective shared storage 
system. Currently, on EC2, the storage system that is 
shared between the EC2 virtual nodes is Amazon’s S3 
storage. S3 not only charges the application for the 
space used, but also does not provide a POSIX 
compatible interface to access the data. stdchk, on the 
other hand, can be setup to provide a checkpoint 
friendly storage system or be used as a temporary 
shared storage system for the application. 

To assess the performance of stdchk in this cloud 
computing setup, we allocate a testbed of 20 nodes at 
Amazon EC2 (Note that the size of our experiments is 
limited only by our inability to obtain a larger node 
allocation form Amazon – 20 nodes is the maximum 
number of nodes available for individual users without 
special privileges). The nodes are classified by Amazon 
as “default” or “standard-small” nodes, providing (as 
advertised by Amazon), a computing power equivalent 
to 1.0-1.2 GHz 2007 Opteron processor, 1.7 GB RAM, 
and moderate IO performance. We setup stdchk with 
one manager, and 19 benefactor/client nodes (each node 
runs one benefactor, and one client), with stripe width 
of four. 



14 

Each client writes 100 files of 100MB each, 
amounting to around 186 GB of data, and 7600 manager 
transactions (four for each write operation). To ramp-up 
the load, clients start at 5s intervals. We compare the 
performance of stdchk against the performance of 
current approach suggested by Amazon, namely storing 
the files locally on the compute node, and then shipping 
them to S3 to make them available in a shared 
dataspace. Figure 6, presents the aggregate stdchk 
throughput. We observe a sustained peak throughput of 
about 310MB/s, around 3 times higher than the 
throughput provided by the current approach using S3. 
This demonstrates that our system is able to scale to 
match an intense workload, and provide a cost effective 
and POSIX compliant shared storage to the application 
on the cloud. 
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Figure 6. The aggregate throughput of stdchk and Amazon 
S3.  19 clients generate a synthetic workload to stress a 
stdchk pool supported by 19 benefactor nodes. 

VI. SUMMARY  
This paper presents the design and implementation of 
stdchk, a distributed checkpoint storage system for all 
layers of the HPC ecosystem. We have put forth 
arguments that support the premise that the I/O 
intensive checkpoint operation requires novel storage 
solutions. stdchk aggregates disk or memory-based 
storage resources to provide a traditional file system 
abstraction that facilitates easy integration with 
applications in a variety of HPC settings such as 
extreme-scale supercomputers, mid-scale clusters, and 
desktop grids. stdchk offers several checkpoint-
specific optimizations such as support for data 
reliability, incremental checkpointing, and lifetime 
management of checkpoint images. Our prototype 
evaluation indicates that stdchk can offer an 
application perceived checkpoint throughput 
significantly higher than what is feasible with current 
local I/O or network and parallel file system based 
checkpointing. Our novel solution to exploit similarity 
between incremental checkpoint images results in 
significantly lower storage space and network effort 
requirements. 
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