A Java-based Science Portal for Neutron Scattering
Experiments

Sudharshan S. Vazhkudai*

ABSTRACT

The Spallation Neutron Source (SNS) is a state-of-the-art
neutron scattering facility recently commissioned by the US
Department of Energy (DOE). The neutron beam produced
at SNS will have an intensity that is an order of magni-
tude higher than existing facilities worldwide, enabling a
significantly better understanding of and exploration into
the structure of matter. The SNS is a billion-and-a-half
dollar investment supporting research that impacts diverse
science domains such as materials, chemistry, engineering,
polymers, structural biology, and superconductivity. Thou-
sands of scientists from around the world will annually per-
form experiments at SNS, ultimately producing petabytes of
raw data that must be reduced, curated, analyzed and visu-
alized. The SNS facility is developing a Java-based one-stop
shopping web portal with access to the broad spectrum of
data and computing services that will facilitate scientific dis-
covery by enabling geographically dispersed users to seam-
lessly access and utilize the SNS facility resources. In this ar-
ticle, we describe the design and implementation of the SNS
portal, focusing on several key architectural components,
highlighting the diverse usage of Java in a production envi-
ronment, ranging from enterprise level software composition
to remote interactive visualization and integration with high
performance distributed computing.

Categories and Subject Descriptors

D.2.11 [Software]: Software Engineering Software Archi-
tectures

General Terms
Design

Keywords

Neutron Science Portal, Java Web Portal, Service Oriented

*Computer Science and Mathematics Division, Oak Ridge
National Laboratory {vazhkudaiss,kohlja,schwidderj}@ornl.gov

(c) 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

PPPJ 2007, September 5-7, 2007, Lisbon, Portugal.

Copyright 2007 ACM 978-1-59593-672-1/07/0009 ...$5.00.

James A. Kohl*

Jens Schwidder*

Architecture

1. INTRODUCTION

Located at Oak Ridge National Laboratory (ORNL), the
Spallation Neutron Source (SNS) [14] is a large-scale leading-
edge neutron scattering facility that hopes to fundamen-
tally revolutionize the analysis and characterization of fine-
grained atomic/material structure. These advanced new ex-
perimental capabilities will drive scientific discovery across
a spectrum of domains, including materials, chemistry, engi-
neering, polymers, structural biology, magnetism and super-
conductivity. Yet there are many challenges to performing
state-of-the-art neutron science at this scale, toward which
SNS must blaze a trail and break new ground for the neutron
science community at large.

The SNS was recently commissioned by the US Depart-
ment of Energy (DOE), in collaboration with six national
laboratories, and will have at least eighteen distinct instru-
ments, each facilitating a certain aspect of neutron scat-
tering experimentation or research. These instruments will
produce an order of magnitude larger data than existing fa-
cilities. Three SNS instruments are already online and in
testing, and are already beginning to attract users, while
remaining and additional instruments will continue to come
online incrementally over the course of the next several years.

Traditionally, neutron scientists have conducted their ex-
periments/raw data collection in situ at various neutron fa-
cilities, and then departed with their datasets in hand for
analysis back at their home institutions. This was feasible
due to the relatively small size of these datasets. However,
at SNS, individual data file sizes will range from hundreds
of megabytes to several gigabytes and beyond, making the
relocation and storage of these large suites of experimental
data somewhat costly. Further, because most science teams
are collaborative in nature, across multiple geographically
distributed institutions, it becomes increasingly difficult for
each user to store and analyze a given experiment’s data
locally at their home site. The sharing of data and results
can be prohibitively slow. In conjunction with these prac-
tical concerns, ad hoc data management solutions also im-
ply a lack of reliable metadata and provenance information
about the processing of an experiment’s raw data and subse-
quent analysis results. A single unified and centralized data
storage and management infrastructure is imperative for the
full production scale of experiments that will be performed
at SNS, to ensure flexible and efficient accessibility and the
proper integrity of metadata management and tracking.

Another concern relates to the breadth and diversity of



analysis and reduction software for neutron science. Each
new instruments brings its own associated set of data anal-
ysis and reduction processes, and requires specially catered
and customized software tools, although these tools all tend
to build on the same common functional and mathematical
foundations. Until recently in the neutron science commu-
nity, there have not been proliferate and widely accepted
standards for analysis, reduction and visualization software,
leaving many users to fend for themselves in terms of actu-
ally processing the data. The result has been several dis-
parate, custom or ad hoc solutions, with much redundancy
and overlap in the existing community tools. This begs the
need for an overarching software infrastructure to provide
unified access and integration of these many software tools.

Even given a new cohesive and integrated software anal-
ysis infrastructure, the majority of users, especially at aca-
demic institutions, would often be confined to run analyses
just on local desktop computers. Only a handful of user
groups can afford the high-performance computing (HPC)
infrastructure truly required for timely processing of these
massive new datasets. Access to computational resources,

such as clusters with large in-core memory and high-throughput

mass storage archives, is required to properly and competi-
tively conduct the more sophisticated data analyses, or any
associated simulation/modeling of experimental samples.

Based on a series of end-user interviews, in conjunction
with community workshops of the Neutron Science Software
Initiative (NeSSI) conducted by SNS [14], an extensive set of
user requirements has been collected. Neutron science users
fall under three main categories: movice users, who desire
push-button interfaces; seasoned users, who will tweak the
tools provided and use them in novel ways; and expert users,
who desire direct shell access to their data workspace, with a
rich environment to write their own tools and compose cus-
tom workflows. All users desire that the facility maintain,
annotate and archive data, with a rich set of readily available
Graphical User Interfaces (GUISs) to sift and search through
data and browse their workspaces. The users don’t care how
or where the data is stored, as long as they have the ability
to easily and quickly access it, for running any community-
or facility-provided analysis tools, including composing cus-
tom workflows around them. Users also need the ability to
perform complex interactive visualizations of raw and re-
duced data, with seamless access to an HPC environment
for efficient data analysis, reduction and simulation.

SNS is taking an evolutionary step for the neutron science
community by providing one-stop shopping through the SNS
facility web site, with a diverse set of these key required ser-
vices, including analysis/visualization software, data host-
ing/sharing and computing/storage infrastructure. To ad-
dress the aforementioned requirements, SNS is building a
comprehensive software solution, with a Java-based web por-
tal and set of crucial back-end services. This portal approach
is beneficial because it provides a means for abstracting and
managing the complexity of the system, through a single
point of entry, and a common framework for defining the
various services and front-end user interfaces. Most users,
regardless of their sophistication with computers, have some
experience browsing the Internet in a web browser, so this
general presentation layer is amenable to many. Java it-
self lends a well-explored collaborative approach to software
development, with a variety of available development en-
vironments, tools and libraries. SNS can also capitalize on

an existing investment in several Java-based neutron science
tools, and experience with developing Java.

SNS users require that the diverse and sophisticated set of
neutron science services be readily available "any time, any-
where”, through the convenience of a standard web browser
front-end. Because the user base covers a wide breadth of
skills and experience, especially with respect to computa-
tional environments, it is crucial that the cost of entry be
minimal for the resulting system, with a shallow learning
curve and little or no required software installations on the
client machines, yet with flexibility /extensibility for more
advanced users.

Java is a natural technology on which to base this infras-
tructure, due to its portability and flexibility in inheriting
from and extending various existing standard classes. Java
is being used to implement many of the SNS software sub-
systems and services, as well as the encompassing portal
presentation layer. Numerous existing web portals and en-
terprise software solutions commonly use Java or Java-based
frameworks, due to their flexibility, potential for reuse and
the ease with which web-based applications can be developed
and deployed. However, applications in science and engi-
neering pose new challenges beyond merely serving static or
interactive web content.

The obstacles which SNS must surpass include:

o Gigabytes to terabytes of data from instrument data
acquisition systems must be archived in a scalable stor-
age system that is conducive to both long-term storage
as well as efficient dynamic web-based accesses. These
tens of thousands of datasets must be annotated and
cataloged for scalable searching and querying.

e As dataset sizes grow, so does the complexity of remote
visualization, including conducting interactive 1-D, 2-
D and 3-D views driven remotely from large archived
data though a web portal. This opens numerous issues
in terms of both web client and server-side caching of
data and geometry/image delivery to provide practical
levels of interactivity.

e Seamless and transparent access must be provided to
HPC cyberinfrastructure (massive supercomputers, high-
speed optical networks, parallel and networked file sys-
tems, and archival mass storage) to enable users to re-
motely conduct and monitor long-running data analy-
ses in progress.

e Remote execution of monolithic community-provided
analysis and reduction tools, replete with their own
independent GUI constructs, must be integrated with
the internally developed software infrastructure, and
displayed through the common web portal.

e A secure authentication and authorization layer must
be provided to control access these services and the
proprietary experiment data.

In the remainder of this paper, we present details of the
design and implementation of SNS software components that
address the aforementioned challenges, and discuss some of
the many research issues involved in their realization. We il-
lustrate scenarios where the use of Java has been apt in this
endeavor, and situations with a genuine need to interface



Web Desktop User
Browser Client Application

| |

Access and Authorization Control

Data Interface

Control Interface

|
/

Acquisition SNS Validated
Software

Analysis Interface
1

—
/ / A4S /.

Database and Flat File Access Protocols Computer Interface

Documentation
~em— 4TG5S
Results
Pl“-"s

Commercial
Packages

Legacy

/ /

Data Management

Figure 1: Overall SNS Software Architecture

with native operating system services, e.g. for simultane-
ous secure access to back-end Java services by multiple dis-
tinct users. We discuss our modular software build process
and the use of Maven to bring together a number of diverse
developmental efforts: code from our tightly-coupled inter-
nal development team, friendly developer contributions, and
open-source third-party and legacy software. Our solutions
highlight the diverse usage of Java ranging from enterprise
software composition to integration with high-performance
distributed computing.

2. SNSSOFTWARE ARCHITECTURE

To set the context for the remainder of the paper, this
section briefly overviews the overall software architecture at
SNS, as shown in Figure 1. The many functional blocks and
systems are organized in a modular layered fashion, allow-
ing a separation of concerns and extensibility/pluggability
of various subsystems. This organization is intended to be
very flexible, to support the wide range of use cases that are
expected, for users with varying degrees of sophistication
as well as programmatic access by other external software
environments. At the top level, access and use of the SNS
software services are made available from remote web clients
(the most common usage, and the main focus of this paper),
local desktop tools (for in situ use during actual experimen-
tation) and other large-scale software frameworks (for post-
mortem data acquisition/independent analysis approaches).

All of these access modes must first pass through an Ac-
cess and Authorization security layer, to validate the iden-
tity and permissions of a given end-user to use the underly-
ing software services and access specific experimental data
suites. It is crucial to exclude unauthorized access or mali-
cious external attacks, especially for the highly critical ex-
perimental control interfaces, but also to protect the high
value of the proprietary information contained in as-yet-
unpublished experimental results. As such, it is not suffi-
cient merely to identify a specific user as having general ac-
cess to the SNS software facilities, but the access to specific
proposals/experiments and results data must be controlled
on a per user basis (see Section 3). All requests/accesses
to the internal software services must be properly authen-
ticated /authorized before these operations can be executed,

and external access is only allowed at appropriately exported
interfaces within the internal service infrastructure.

There are three broad high-level functional interfaces ex-
ported through the top-level security layer: Controls, Data
and Analysis. The Control interface is primarily intended for
internal use for directly monitoring and controlling various
aspects of in-progress neutron scattering experiments and
samples. The main task of this interface is management of
the data acquisition system, to oversee details of the live
sample environment, including temperature, position, and
the starting/stopping of data collection. The Data inter-
face is a set of simple streamlined mechanisms for searching
and directly accessing data files from the permanent data
management system archives, including downloading, anno-
tating and uploading/submitting new user-generated files.
This interface is independent of the more specific and so-
phisticated data reduction and analysis functions, that are
provided as part of the Analysis interface, which can like-
wise access data, in whole or in part, and download/upload
various data files during data processing.

Most of the complexity in the SNS software architecture
resides in the Analysis interface, where a variety of numerical
algorithms can be applied in custom workflows, to systemat-
ically process (analyze, reduce and visualize) the experimen-
tal data. These algorithms operate on data at several levels
of complexity, from raw neutron event data to histograms
to reduced and energy/frequency domain representations.
Similarly, these algorithms and analysis/reduction functions
originate from a variety of sources, including internally de-
veloped and validated software, legacy /community and com-
mercial monolithic analysis tools, and custom user-provided
analysis codes. These different types of analysis functions,
across a broad spectrum of software paradigms and runtime
environments, must be seamlessly integrated into a unified
analysis framework. This allows interchangeable coopera-
tion among functions, in arbitrary custom pipeline com-
binations, for processing of experimental data. Some of
these software libraries and programs can be decomposed
or repackaged into individual software components that can
be directly integrated and composed into contiguous multi-
function analysis applications, potentially on-the-fly. Others
codes remain independent monolithic programs that must be
individually staged with proper input files, with subsequent
results collected for the next stage in the workflow pipeline.
Details of this complex “Application Management” task are
briefly explained in Section 6.

Underneath the higher level Data and Analysis interfaces,
there is a generic Java-based Data Management layer for ac-
cessing various archival and scratch data files, and a Com-
puting layer for low-level handling and monitoring of avail-
able computational resources, for executing the requested
data analysis pipelines. The base layer database archives
are used to organize and coordinate access to all experimen-
tal data and analysis results, with the associated meta-data
and provenance information, as well as provide user docu-
mentation, publications, experimental proposal details and
user preferences.

The focus of this paper is primarily on the presentation
of these various SNS facility services through a generic web
browser “portal” client. This “SNS Portal” environment pro-
vides a unified and flexible user environment for coordinat-
ing access to these services, as described in Section 3. The
majority of the portal environment software (both front-end



client and back-end services) is written in Java.

Java is generally a logical choice, as it enjoys a wide accep-
tance in science communities as a portable and standardized
development language, and a commonly supported delivery
mechanism for web-based content. It has been used in the
development of other science portals such as the Earth Sys-
tem Grid (ESG) [9]. In addition, many Grid-related por-
tals are based on Java technologies, and projects like Grid-
sphere [10] have done much to support the Java-based de-
velopment of portals for Grid communities.

3. PORTAL INFRASTRUCTURE

The “SNS Science Portal” is the front-end of the multi-
tiered SNS software architecture. The portal is intended to
support thousands of users per year as the facility matures.
It provides users with a rich interface to address their soft-
ware, computing and data needs. In its current form, the
SNS Portal is a Java applet and a suite of web services hosted
in a Tomcat servlet container as a web application. Tom-
cat itself runs behind an Apache web server. In addition to
Tomcat, several other internal software components and ser-
vices are hosted in a JBoss application server, running on a
separate database machine, to distribute the load and shield
external access. The web services expose the functionality
of SNS back-end software components through straightfor-
ward programmatic interfaces. In the following section, key
aspects of the front-end portal software are highlighted.

User Interface: As a science portal, the goal of SNS is to
provide its user base with a broad set of interactive function-
ality and controls, for a variety of data processing and analy-
sis operations. The user interface enables workspace brows-
ing, metadata/database searching, analysis/simulation tool
setup, visualization of large datasets, and composition of
data processing workflows. A Java Swing-based Ul was cho-
sen for the primary portal interface, given the breadth of
available widgets and classes, and the need for rapid de-
velopment and easy/portable deployment. Swing expedites
implementation of detailed graphical interfaces, with a great
degree of flexibility in UI design and manipulation options.

The portal front-end is written as a Java applet, which
must be trusted using digital signatures to allow for load-
ing/saving of files at front-end client computers. Yet SNS
is committed to supporting both “lightweight” portlet or
forms-based and “thick” applet-scale client interfaces. For
instance, to be inclusive of code contributions from the neu-
tron science and other user communities, third party tools
are sometimes written as lightweight portlets, adhering to
the JSR 168 standard to promote sharing (e.g., with OGCE
[13]). Applets have been prototyped to coexist with portlets
within a JSR compliant portal framework (such as Grid-
sphere or Jetspeed). The SNS portal also includes tradi-
tional web content serving, for basic facility information, on-
line instrument status, etc. This information is best served
as RSS feeds within a portlet.

Workspace Browsing: Much of an SNS user’s online expe-
riences are confined to activities within their workspace, and
the experimental/analysis data therein. A user can man-
age numerous files within the workspace, from experiments
conducted across many facilities, all viewed via the single
unified interface. The SNS portal presents a “file explorer”
view of the workspace, as shown in Figure 2. A user might
also desire to utilize additional views, such as one organized
by instrument usage proposals. The portal remains agnos-

File Visualization Reduction Applications Tools Help

[ DataBrowser | Search | Si
] ¢\ EBSS_7.nxs ®| [@BSS_117.setr
= OHess_7ms -
# [ 2006_1_2_8CI + [ entry
# 7888 = [ entry-diff
[ ES5_117 etr = A banks
0O B85 117 rmd azimuthal_angle
M0 BS5_117.5etr
[y ess_117.6¢
definition
duration i
[C) end tire x
“Properties |
Attribute Yalue
location -
type =
lastModified
length
TITLE Wanton samnla first run L7

StatusBar

Figure 2: Workspace browsing in the SNS portal

tic as to how data is stored in the SNS archives — the cur-
rent implementation is as a filesystem. However, the back-
end Workspace interface has been designed to abstract the
low-level data management implementation from the portal.
This abstract workspace service interface implements a basic
set of file operations and data extraction capabilities.

Within the workspace browsing GUI, the viewing of mul-
tiple file formats is supported. Each file format is associated
with a specific front-end viewer and a cooperative back-end
web service for appropriately serving data file contents. For
example, a “NeXus” file viewer displays a hierarchical view
of the common SNS data file format (discussed in Section
4), while Text and XML viewers simply display the plain
text contents of files. A “Properties” panel displays relevant
standard file information, including any additional format-
specific file metadata.

Security Infrastructure: SNS security infrastructure com-
prises of authentication followed by an authorization layer.
SNS has the rather restrictive requirement that authentica-
tion be little more than simple user name and text password-
based. This is to minimize complexity and ensure the com-
fort zone of our user base, as well as provide a scalable solu-
tion for the large number of distinct transient users annually
(e.g. it is not practical to issue secure electronic id cards or
one-time passwords just for a week or two of SNS portal
use). To this end, the portal utilizes a user name/password-
based authentication system called XCAMS, as generally
supported by ORNL for informal external users. XCAMS
is connected to an Apache module that provides the portal
with information about the authenticated user in the HTTP
header of all service requests. The portal security stub pulls
this information to instantiate a user principal object that
the back-end services can use to identify access permissions.
Once authenticated to the portal, users must be authorized
to use specific resources, including data, computing infras-
tructure, databases and—in the future—for externally con-
trolling the instruments themselves.

At the inception of SNS software architecture, the decision
was made to use UNIX user accounts and standard filesys-
tem access control lists (ACLs) to meter authorized access to
data and compute resources. (This decision was motivated



by the need for interactive shell access by advanced users, in
addition to portal-based usage.) The portal must therefore
map the authenticated user principal with back-end user ac-
counts to reconcile access to resources. Because the portal
server runs inside a Java Virtual Machine (VM), which itself
runs as user tomcat on the back-end web server machine, the
JVM is oblivious to the real UNIX user accounts and can-
not negotiate access. Specifically, there is no inherent JVM
mechanism for assuming any given user’s identity (i.e. “se-
tuid”), let alone for multiple simultaneous users in different
threads. Any back-end action on behalf of a portal user must
be performed as that user to adhere to file/group permis-
sions access control. For instance, users from one proposal
group cannot access data from another proposal, and data
analyses must be executed as “themselves” in the workspace
(this also enables the facility to monitor and track resource
usage).

A special native authorization layer interfaces the portal
servlets with underlying operating system services, e.g. to
negotiate with Data Management to access data or with
Application Management to secure access to computing re-
sources (see Section 6). In addition to UNIX accounts,
user credential and certificate mechanisms are required by
many HPC resources and distributed computing environ-
ments. A portal “Simulation” prototype provides authoriza-
tion through X.509 certificates to execute jobs on clusters
(e.g., the “TeraGrid,” a national cyberinfrastructure testbed
[15]). The following sections further discuss the design and
implementation of additional SNS back-end infrastructure.

4. DATA AND METADATA MANAGEMENT

By 2008, data generated at SNS will be on the order of
one Terabyte per day contained in over 20,000 files. By
2011, the cumulative data store is expected to reach over one
Petabyte. Thousands of users will access the datasets, in-
cluding downloading, data mining, and conducting real-time
analysis, visualization, and sophisticated metadata searches.
Data will be accessed through a mix of portal-, web- and
shell-based tools and services. The SNS data management
architecture must be flexible enough to address this diverse
usage, and scale as SNS ramps up its data production.

At the core of this data management architecture is the
SNS data repository, which is simply a networked file sys-
tem. Several alternatives were considered for the data stor-
age organization, such as SRB (Storage Resource Broker)
[20] and SRM (Storage Resource Manager) [21], which are
used in other science communities. However, the SNS re-
quirement to support both shell and web-portal users pre-
cludes the use of these (and other) more sophisticared solu-
tions. Many of these data management solutions cannot be
directly mounted as file systems for shell access.

Data is organized by experimental runs, which are stored
within project/proposal directories that are nested within
each instrument folder. Datasets are stored with basic UNIX
file access privileges so that only users belonging to the pro-
posal team can access them. Ultimately, all data files are
owned by SNS, and are eventually made world-readable via
a directory link in the “public” folder when the proposal be-
comes public/has been published.

SNS users also have file workspaces at the facility where
their proposal and public data is linked in from the main
data repository. In addition, users can create scratch anal-
ysis data and other personal data in their workspaces, en-

abling access through the portal from anywhere. The data
management system also provides user workspace manage-
ment services such as creation of user accounts, populating
user workspaces with links to accessible data, etc. Many
other user workspace administration activities are initiated
in response to this SNS proposal submission/creation.

Data on spin storage is archived in HPSS online archival
storage [19]. In the long run, all data cannot be maintained
on spin storage, so SNS is developing a database catalog
system atop both the file system and archival storage. An
active “window” of recent datasets will stay on disk file sys-
tems, while older data is accessible only from archival stor-
age. These database catalogs and the general data manage-
ment system provide Java interfaces via portal clients, using
remote method invocation and web services. The data man-
agement system currently supports transfer protocols such
as ftp and GridFTP [17], and hsi (Hierarchical Storage In-
terface, to access HPSS) [19].

In addition to storing and serving data to clients, the data
management system is also responsible for capturing meta-
data about SNS data. The system applied for this purpose is
called ICAT, which uses a common database schema to de-
fine neutron science data (adopted by both SNS and ISIS, a
neutron facility in the United Kingdom (UK)). The schema
comprises attributes covering proposal information, experi-
ment samples, instrument parameters, etc. The ICAT soft-
ware is written using Enterprise Java Beans (EJB) that in-
terface with an Oracle database at the back-end and present
a web service and remote method interface to the portal
front-end. The portal Ul presents a guided search interface
to the user based on the services provided by the metadata
management component. Users are initially presented with
all the data they are allowed to see. They can then trim
this set of results adding further constraints (such as select-
ing data from a specific principal investigator or experiment,
or with specific keywords in the title, etc.)

A note on the fundamental dataset building block is in
order here: SNS datasets are NeXus [12] files. NeXus is a
neutron-community hierarchical data format standard that
describes the dataset in terms of targets, detector counts,
pixel banks and x-y offsets. The data management system
provides specialized NeXus file format services, e.g. serving
file contents as XML to portal clients. To this end, we have
adapted an existing Java NeXus [12] library implementation.

Java has proven itself an excellent choice for the data man-
agement system, by incorporating existing software from
the Neutron Science community, such as JNexus and ICAT.
These Java-based tools integrated easily within the SNS in-
frastructure, along with standard data transfer tools such
as ftp and GridFTP, and provided a service layer atop the
underlying storage fabric (file and archival system) for web
clients. The flexibility and convenience of composing the dis-
parate Java interfaces expedited the development process.

5. REMOTE VISUALIZATION

A variety of existing neutron science visualization and
analysis tools are available for use at SNS, including ISAW
[11], DAVE [1], IDL [3], Matlab and many others. However,
many of these tools are commercial products or contain pro-
prietary interfaces and formats. Because the ISAW system
was available as open source and was already written in Java
(with the additional benefit of a friendly working relation-
ship between SNS and the ISAW developers), it was a clear



technology choice for the integration of some basic neutron
science “views” into the SNS Portal. A custom “subset” of
the ISAW classes was extracted and packaged by the ISAW
developers for inclusion in the SNS software infrastructure.

The challenge to using these handy ISAW view classes
was in wrangling and extending the associated internal data
management. Like most monolithic tools, ISAW assumes
that it can read data arrays into memory as needed from
available input files on the local filesystem. Clearly, when
running the ISAW viewer classes as part of a remote front-
end portal applet for the SNS, this is not logistically possi-
ble! Fundamentally, there must be a separation between the
local client data processing and the actual back-end data ac-
cess, which is implemented by replacing the core Java data
object classes with remote-capable counterparts. Data must
be loaded into the applet’s memory by invoking a special-
ized “data extraction” servlet, via URL from within the Java
applet. The servlet runs back on the portal web server ma-
chine, which has local (mounted) filesystem access and so
can open up the desired data files. The servlet extracts the
requested data array (or the desired subregion/elements of
it), and then transmits these data back to the front-end ap-
plet as the results/output of the servlet invocation.

For the purposes of the SNS Portal ISAW viewers, the size
of the multidimensional numerical data arrays that need to
be sent to the front-end applet can be quite large, on the
order of several hundred megabytes each. Therefore, an ef-
ficient custom data delivery protocol was created to directly
transmit the numerical values, without the overheads (or
benefits) of full Java object serialization. Every byte has an
impact in terms of network bandwidth, so eliminating the
additional Java state in a full numerical object class can help
reduce the latency in delivering these raw data. In a rather
primitive but ultimately concise approach, the arrays of nu-
merical values are output in simple ASCII format (rather
than the most efficient binary format, to guarantee integrity
across machines with heterogeneous data formats) and then
reassembled with minimal meta-data back into new numer-
ical Java arrays at the client side applet. This stream could
be further optimized by compression, however the current
implementation does not yet do this. Data arrays are orga-
nized into appropriate new applet side data classes, which
are then able to implement the interfaces required for driving
the ISAW viewer classes. These special applet variations of
the ISAW data classes are extended with additional “servlet-
friendly” methods that provide meta-data on the origins of
the data, and allow a variety of new operations relating to
updating the currently loaded array subregions (see below).

Unfortunately, due to the minimalistic client operating
environment expected for the diverse spectrum of poten-
tial SNS users, this servlet-based data linkage cannot as-
sume a significant amount of available/allocated memory in
the Java Virtual Machine (JVM) plug-in being run by the
client’s web browser. So, aside from having to deal with
the significant level of indirection or “distance” (latency) be-
tween the data and the applet, this portal infrastructure
must also deal with serious remote visualization and data
caching issues. Entire data arrays cannot be fully loaded
all at one time into the front-end client applet, but must
be incrementally or interactively loaded as needed to drive
the various viewer classes. This creates problems both in
terms of viewer application interfaces and local client data
management.

The basic assumption/expectation of the ISAW viewer
classes, to have fully in-core data residing in its internal
data classes, is no longer valid. This creates many com-
plications in trying to emulate an in-core data array at the
front-end data classes, by encapsulating a complex front-end
data caching scheme. In the worst case scenarios, based on
strict data usage and access patterns, some viewers required
additional “callback” hooks to allow automatic pre-fetching
of specific data elements prior to their use by the viewer.
(Fortunately, these special hooks could be added to the main
ISAW source tree without significant perturbation.)

In other more moderate cases, incremental data access
patterns allowed specific data subregions to be retrieved us-
ing a straightforward data caching algorithm, from inside
the front-end (impostor) data class methods. In all cases,
there is a small latency penalty to be paid while the required
data elements are downloaded on a “cache miss,” which man-
ifests as an occasionally “pause” during what would other-
wise be smooth scrolling or animation. However, by choos-
ing an appropriately small “cache block size” this latency can
be minimized, in part depending on the available network
bandwidth between the client and the back-end server.

These cache miss latencies could be further attenuated by
applying some level of “local disk caching” at the front-end
client machine. Given the restrictive JVM default of local
client memory, relative to the many hundreds of megabytes
required to store typical SNS data arrays, a great deal of
network bandwidth and latency could be avoided by caching
even a moderate amount of data subregions locally on a
client filesystem. With the current algorithm, every cache
miss triggers a full data replacement in the limited JVM in-
core memory space. By storing/retrieving some data locally,
many data requests could be handled more efficiently, with
minimal impact to the user’s available disk space. The only
additional requirement for this local client caching would
be that the portal applet must be signed, however this is
already required for other tangential logistical reasons.

Once the above fundamental data delivery capabilities
were woven into the original ISAW viewer classes, and these
classes integrated into the SNS Portal infrastructure, several
additional functional extensions were made to these Java
Swing viewer GUIs. In many cases, the original viewers
were custom designed for specific types of neutron science
data, and as such assumed particular data array dimension-
ality and axis arrangements. Yet for the SNS Portal’s ex-
tended application of these data viewers, it is beneficial to
be able to select the desired data dimensions to view in a
1-D, 2-D or even 3-D viewer, by extracting specific lower-
dimensional slabs or slices from data arrays of a higher di-
mensionality. Specific axes of a data array can be swapped,
to provide various orthogonal “probes” or “slices” through a
higher-dimensional array.

To support these orthogonal slicing and rotational oper-
ations, with appropriate navigation and zooming through
the source data arrays, the GUIs for each ISAW viewer were
extended by retrieving and extending the “built-in” ISAW
viewer control classes, thanks to some handy existing ac-
cessor methods provided by ISAW. Additional Java sliders
and selector elements were applied to “scroll” the selected
data region across a higher-dimensional array, and choose
the data axis, by label, to be applied for each given viewer
plotting axis. For example, when viewing a 3-D data array
in the 2-D image viewer, the slider chooses which 2-D slice



£ ViewDisplay2D
File Options Help

y_pixel_offset ( metre)

-02
¥_pixel_offset (metre)

X-Axis: x_pixel_offset =
Y-Axis: |y_pixel_offset A4
time_of_flight R

— [integrated [+

0.0 66660.0 133320.0 199980.0

Figure 3: SNS Portal’s Extensions to the ISAW 2-D
Image Viewer

of the larger volume is displayed, as can be seen in Figure
3. Swapping the 2 plotting axes among the 3 available data
axes allows all 6 variations/orientations of the image slice to
be selected. These successful GUI extensions to the origi-
nal ISAW viewers warrant integration back into the original
ISAW source tree, as part of a future collaboration.

One other significant challenge was encountered in in-
tegrating the animated 3-D Volume Viewer into the SNS
portal. This viewer uses a Java wrapper library onto the
OpenGL standard native graphics library, called “JOGL”.
Though this native JOGL solution works reasonably well in
a local non-applet execution of ISAW, it creates a number of
complications for remote applet-based execution. Whereas a
simple ISAW install script can place the appropriate JOGL
libraries in accessible filesystem locations for local ISAW
use, there is not a good standardized solution for on-the-fly
JOGL installation or usage within a standard Java applet
in a client web browser.

One solution is to manually install the JOGL libraries
on each client machine, which is error prone especially for
the non-computer-expert user (and violates a fundamental
7user friendliness” requirement for the SNS). Other common
JOGL solutions involve the use of specialized applet loader
classes, which can automatically detect the native client
operating environment and install the appropriate JOGL
shared object libraries. However, to utilize such a solution
would require that the entire SNS Portal applet be loaded
through this custom applet loader classes. This was not
deemed a wise decision from a software reliability and main-
tenance perspective. It is hoped that upcoming new Java
standards will integrate native OpenGL support, and that
ultimately this “temporary” snafu will be alleviated.

6. APPLICATION MANAGEMENT

The Application Manager (AM) is responsible for orches-
trating the execution of data analysis applications and in-
strument simulations that are submitted via the SNS Por-
tal. These various computational jobs are constructed in the

Pipeline Construction Ul o| Steering Ul |
| _— N
i i i
| Prmmmmamaccenaneacnao. [,
| '
: — i
: |
H H
e
1 Application | |
| &3 Steering |«
; |
i
I

% 1 Servi
I e
nput B

Translator
v 1

Job Script M

Generator

-+
N ; Authorization
N e * _Authentication
N Service
N\ Data
""" »| Management
Service

Figure 4: Application Manager

Application Manager

form of data pipelines that include both approved facility
and open community or commercial software packages, each
of which can be executed either interactively or in batch
mode. The overall AM design is illustrated in Figure 4,
which shows the design layout of the internal functional
blocks and their relation to other elements of the overall
software architecture (as defined in Section 2). Only a brief
overview of the many complexities of the AM design will be
covered here.

To specify and submit pipelined analysis or simulation
jobs, users interact with the Pipeline Construction User In-
terface (PCUI) to indicate the sequence of tools, each with
their own input/output data files, configuration files and
control parameters, to describe the desired overall pipeline
invocation. A custom tool parameter GUI is automatically
generated for each tool in the pipeline, based on meta-data
information obtained from the Tool Information Service (TIS)
database. An example of such an interface is provided in
Figure 5.

The TIS runs as a portal service and provides an XML-
based description of all the input parameters for each given
tool. This rich meta-data describes the names, command-
line invocation syntax, suggested widget elements for the
GUI, and tooltip and description information. There can
even be complex relationships described among tool param-
eters, such as required versus optional inputs, and even con-
dition inclusion or exclusion of sets of parameters based
on other dependent parameter’s settings. The Java applet
parses the TIS XML using the Commons-Digester library
and produces a “parameter tree” that contains all the pa-
rameter meta-data, including the organization of parameters
into high-level functional “groups.” This tree is traversed to
construct the tool GUI, and verify the set of inputs before
submission for execution.

The Input Translator (IT), another back-end portal ser-
vice, is presented with the full pipeline specification, consist-
ing of an ordered list of tools with their associated pipeline
connections and input parameter sets. The IT also obtains
tool meta-data information from the TIS, on the actual
location of these tools on various computational resources
including their invocation syntax and preferred execution
environment, and resolves specific details for the potential



Figure 5: Automatically Generated Tool GUI

execution targets. The Job Script Generator (JSG) mas-
sages this information into a set of executable command-line
scripts and identifies the data dependencies among them.
The scripts and dependencies are passed on to the Appli-
cation Instance Manager (AIM), which analyzes the data
dependencies and appropriately submits scripts with satis-
fied (“ready to execute”) data dependencies for scheduling

and execution.
The Execution Environment Selector (EES) is primarily a

scheduler and takes each “ready” script, along with any pre-
ferred execution locations and other data locality require-
ments, and identifies the best resource for its execution. In
its decision making process, the EES makes queries to the
Computing Resource Information Service (CRIS) to obtain
dynamic information on current resource loading and behav-
ior. The CRIS is implemented as a stand-alone persistent
Java database service that collects information from multi-
ple execution environments using the Ganglia cluster moni-
toring tool [2] and presents it as XML summaries. The CRIS
provides its services to the EES via Java RMI.

The Job Manager (JM) then obtains user authentication
information for the given job script on the target resource
(from queries to the Authorization and Authentication Ser-
vice discussed in Section 3) and actually schedules the job.
The JM handles the mechanics of negotiating access to the
resource location, staging the input data files and execu-
tion script, and submitting the job to its target resource’s
scheduling queue. Data files for processing are obtained via
interaction with the Data Management Service (see Section
4). Output data is stored back into the data management
system, in a scratch area of the user’s workspace, for visu-
alization or other exploration of the results. Jobs are moni-
tored using the Job Information Service (JIS) with a job-id
and other job related information that can be used to query
the status of the job.

The target locations for running SNS analysis and simu-
lation jobs can be any of the available instrument-dedicated
analysis computers, internal ORNL institutional clusters, or
the national cyberinfrastructure testbed, the TeraGrid [15].
In the current implementation, several execution modes are
provided through back-end Java portal services. First is a
simple remote shell-based execution through SSH. Second,
an execution interface has been implemented around Slurm
[4], which is a job execution tool for cluster management
that does its own localized scheduling and rudimentary load
balancing. Mechanisms have also been developed to allow

computation-intensive simulation jobs to be launched from
the SNS Portal on the TeraGrid using Globus [18]. If jobs
are run internally on ORNL machines, then the output data
can be easily captured onto local filesystems, and subse-
quently accessed on the portal server machine via standard
file system mounts. However, if jobs are run on external
locations such as TeraGrid, then GridFTP is used to move
the resulting data files back into the SNS data management
system (or other local scratch space).

6.1 SNSRemote Display Conduit

Many of the SNS analysis and reduction functions, and
most instrument simulation jobs, are basic command-line
tools or libraries that do not have extensive interactive GUIs.
However, some community standard neutron analysis tools
and other commercial tools provide (or require) the use of
an independent custom GUI panel to operate. Often such
tools cannot be separated out and directly integrated into
the SNS software infrastructure, such as the ISAW viewers
have been (see Section 5).

For these more challenging cases, the most convenient and
desirable scenario is that these individual tool GUIs be made
available directly to the end-user through the portal. When
the user submits a pipeline that contains one of these GUI
tools, the appropriate user interface should “magically” ap-
pear at the right moment, to let the user control the tool
and complete the desired analysis step. This requires much
additional infrastructure to coordinate the staging and in-
teractive remote display of the tool GUI to the end-user.

The SNS Remote Display Conduit currently applies a spe-
cialized extension of the “WeirdX” system by JCraft, Inc. [5],
to allow remote display of X Windows programs through a
client’s web browser. The SNS extension to this Java-based
X server is called “WeeerdX,” which integrates directly into
the SNS software infrastructure to allow a seamless display
of back-end analysis tool GUIs on the user’s client machine.

This solution is superior to other remote desktop clients,
such as the various incarnations of VNC, because WeeerdX
allows the full flexibility of stand-alone “rootless” windows
and subwindows on the client desktop. Most existing re-
mote desktop clients do not support rootless windows, or if
so, do not support rootless popups or subwindows. WeeerdX
provides a more natural “look and feel” versus these encapsu-
lated remote desktop clients, improving the seamless usabil-
ity by the end-user. WeeerdX also communicates with the
back-end using the high-level X event stream, rather than
channeling raw pixels from the back-end desktop. This pro-
vides the potential for a logical and practical compression
of the X event stream to help improve the responsiveness of
the GUIs.

However, great complexity exists in the WeirdX /WeeerdX
solution, in trying to cover and maintain support for the im-
mense collection of potential X server protocols, features and
extensions. While the current WeeerdX implementation is
moderately complete and functional, there are many unim-
plemented features that must be added before this system
will be considered fully functional.

7. MESSAGING AND LOGGING

Messaging: Many SNS software components send and re-
ceive notifications for events. One example is the completion
of an experiment run in the data acquisition system (DAS)
that triggers the archiving of a dataset in the data manage-



ment system. These events need to be distributed in a scal-
able and extensible fashion so that future components can
produce and receive messages without changes to the exist-
ing systems. The Java Messaging Service (JMS) API pro-
vides a solution for the above requirements. It specifies an
API for common messaging semantics like publish/subscribe
(topics) and point-to-point communication (queues). The
JMS API has been implemented by a number of different
providers.

The SNS messaging system uses JBossMQ, the JMS im-
plementation in JBoss 4.x. JBossMQ serves as the message
broker that client components connect to in order to send or
receive messages. It was a convenient choice since we were
already using JBoss. However, other JMS implementations
like ActiveMQ [6] could have also been used. The SNS soft-
ware components take advantage of the different messaging
semantics JMS supports. Most messages are published us-
ing topics so that multiple clients can subscribe to events.
Some client systems that need to send messages, like the
DAS system for instruments, are not written in Java. For
non-Java clients, we created a simple web service that allows
injecting messages into the JMS based system. The client
can use simple HTTP POST requests to submit messages.
The message body uses a custom XML format that is used
to generate Java SNS message objects. So far, we are not
faced with non-Java clients that need to receive messages.
However, we anticipate this need in the future.

Logging: The SNS software requires logging for a variety
of purposes (debug logs, access and usage logs to meet audit-
ing requirements, etc.). The logging mechanism is also used
for runtime monitoring. The SNS software is distributed
across many machines, which necessitates distributed log-
ging. The Java components of the SNS Portal use the Log4]j
API to generate log events. Logdj is a flexible Java API that
is extensible and can be configured in various ways. Using
Log4j, we are able to direct log events to various targets from
local log files to databases. Log information that needs to
be retained for auditing—Ilike access logs—are sent to an
SQL database. Information can also be sent through JMS,
which allows any number of client components to monitor
log events within the portal software. Critical log events in
some components are also sent out via email to administra-
tors. Basic debug information and log events are written to
local files as a backup mechanism in case the distributed log-
ging fails. Further, all of the above can be configured with-
out any changes to the component producing the log events.
A central Log Manager, under development, will provide
access to logs collected in databases and allow browsing, fil-
tering, and searching through a web-based interface.

8. PROJECT MANAGEMENT

The SNS portal development effort consists of a core devel-
opment team that is in-house. In addition, there are other
external collaborators from universities and non-profit or-
ganizations. Since the team is distributed across different
sites, it was important for us to find ways in which differ-
ent aspects of the portal can be developed independently of
each other, and in parallel. This is accomplished using a
combination of Subversion, Trac [16], Maven [7] and Con-
tinuum [8].

We use a Subversion repository (SVN) in combination
with a ticket management system, Trac. We have setup sev-
eral SVN and Trac combinations for the different aspects of

the portal to help streamline the notification messages and
have individual roadmaps for different Portal components.
In order to manage and build our Java projects we decided
to use Maven 2. Maven is a project management tool from
the Apache Software Foundation based on the concept of
a project object model (POM). Our motivation for using
Maven was the easy sharing of build libraries through inter-
nal Maven repositories. Projects can elegantly define depen-
dencies between each other through the POM. We created
Maven repositories for the following purposes: snapshots, re-
leases, and to deploy a number of third party Java libraries
that were not available through other Maven repositories.
Source code inherited from other Java projects were con-
verted into Maven projects and added to SVN. For all other
external dependencies, we included the binary versions in
our internal repositories to make them easily available for
our development. For each external dependency, we created
a POM that documented the source of the dependency and
why it was included. Another desirable side effect of using
Maven is profile management. For instance, during the de-
velopment cycle, we are required to build and deploy the
portal software on different machine configurations. Maven
allows us to configure different profiles with settings specific
to our development, test, or production setups. One exam-
ple is the use of different authentication tools based on the
machine the software is deployed on.

We needed a Continuous Integration (CI) system that
would allow us to automate basic processes and centralize
common operations. This can significantly reduce the learn-
ing curve for a developer to setup the project environment
on his local development machine. We used Continuum as
our CI system due to its closeness to Maven. Each Maven
project is added to Continuum for automatic builds every
hour. In addition to the basic builds, additional goals have
been configured that allow developers to deploy snapshots
of artifacts to the internal repository and make them avail-
able to the rest of the team. The use of Continuum ensures
that the deployed libraries correspond to a specific revision
in SVN. The main projects are also configured with goals
that allow push button deployments to development, test,
and production machines. Further, the use of Continuum
for build and deployment also obviates the need for every
developer to require direct write access to Maven reposito-
ries.

9. CONCLUSION

SNS is a state-of-the-art neutron scattering facility that
will revolutionize the way neutron science is conducted. Such
a facility requires robust software, catering to diverse user
requirements including data access, data analysis, visual-
ization and secure remote access. In this article, we have
presented the SNS software architecture and the portal de-
velopment. SNS portal is evolving as a one-stop shop for all
of the above mentioned user needs. We have discussed the
design rationale and the Java-based implementation of the
internals of the SNS portal. We have shown how Java has
served as an excellent candidate for the portal web applica-
tion, its front-end interface and the back-end abstractions
to mask disparate implementations. Further, we have dis-
cussed in detail, the design and implementation of the SNS
software components such as data management, application
management, remote visualization, messaging, logging, au-
thentication and authorization. A sizable portion of the code



in all of the above has been in Java, dealing with the con-
joined use of databases and file systems for data manage-
ment, high performance distributed computing and access to
clusters and national testbeds for application management,
different authentication modes and communication between
these components. Our experience building the science por-
tal, the back-end software components and catering to a
large user base supports our choice of Java-based tools for
a diverse set of tasks, ranging from software composition to
viz caching to distributed computing.

10. ACKNOWLEDGMENT

This work was supported by the U.S. Department of En-
ergy, Office of Science, under contract No. DE-AC05-000R2275
with UT-Battelle, LLC.

11. REFERENCES

[1] Dave - data analysis and visualization environment.
http://www.ncnr.nist.gov/dave/.

[2] Ganglia monitoring system.
http://ganglia.sourceforge.net/.

[3] Idl: The data visualization and analysis platform.
http://www.ittvis.com/idl/.

[4] Slurm: A highly scalable resource manager.
http://www.llnl.gov/linux/slurm/.

[6] Weirdx - pure java x window system server.
http://www.jcraft.com/weirdx/.

[6] Apache activemq. http://activemq.apache.org, 2007.

[7] Apache maven. http://maven.apache.org/, 2007.

[8] Apache maven continuum.
http://maven.apache.org/continuum/, 2007.

[9] Esg: Earth system grid.
http://www.earthsystemgrid.org/, 2007.

[10] Gridsphere portal framework.

http://www.gridsphere.org/gridsphere/gridsphere,

2007.

| Isaw. http://www.pns.anl.gov/computing/isaw/, 2007.

| Nexus. http://www.nexus.anl.gov/, 2007.

| Ogce. http://www.ogce.org/index.php, 2007.

4] Spallation neutron source. http://www.sns.gov, 2007.

| Teragrid. http://www.teragrid.org, 2007.

| Trac. http://trac.edgewall.org/, 2007.

] J. Bester, 1. Foster, C. Kesselman, J. Tedesco, and

S. Tuecke. GASS: A data movement and access service

for wide area computing systems. In Proceedings of the

Sizth Workshop on 1/0 in Parallel and Distributed

Systems, 1999.

[18] I. Foster and C. Kesselman. The globus project: A
status report. In Proceedings of the IPPS/SPDP 98
Heterogeneous Computing Workshop, 1998.

[19] M. Gleicher. HSI: Hierarchical storage interface for
HPSS. http://www.hpss-collaboration.org/hpss/HSI/.

[20] A. Rajasekar, M. Wan, and R. Moore. MySRB & SRB
- components of a data grid. In Proceedings of the 11
th International Symposium on High Performance
Distributed Computing, 2002.

[21] A. Shoshani, A. Sim, and J. Gu. Storage resource
managers: Essential components for the grid. In
J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid
Resource Management: State of the Art and Future
Trends, 2003.



