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Problem Space: Petascale Storage Challenge

* Unique storage challenges in scaling to PF scale

— 1000s of I/O nodes; 100K — 1M disks; Failure a norm, not an
exception!

— Data availability affects HPC center serviceability

* Storage failures: significant contributor to system down time
— Macroscopic view

System # CPUs MTBF/I Outage Source
ASCIQ 8192 6.5 hrs Storage, CPU
ASCIWhite 8192 40 hrs Storage, CPU
Google 15000 20 reboots/day Storage, mem
NLCF (Jaguar) 23452 37.5 hrs Storage, mem

— Microscopic view (from both commercial and HPC centers)
* In a year:

— 3%to 7% of disks fails; 3%to 16% of controllers; up to
12% of SAN switches;

- 8.5% of a million disks have latent sector faults

* 10 times expected rates specified by disk vendors
2



Data Availability Issues in Users' Workflow

* Supercomputer service availability also affected by data staging
and offloading errors

* With existing job workflows
— Manual staging

e Error-prone
e Early staging and late offloading wastes scratch space
* Delayed offloading renders result data vulnerable

— Scripted staging
 Compute time wasted on staging at beginning of job
* Expensive

* Observations
— Supercomputer storage systems host transient job data
— Currently data operations not coordinated with job scheduling
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Solution

* Novel ways to manage the way transient data is
— Scheduled and recovered
* Coordinating data storage with job scheduling

 On-demand, transparent data reconstruction to address
transient job input data availability
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Solution

Novel ways to manage the way transient data is:
— Scheduled and recovered
Coordinating data storage with job scheduling
— Enhanced PBS script and Moab scheduling system
On-demand, transparent data reconstruction to address
transient job input data availability
— Extended Lustre parallel file system
Results:
— From center's standpoint:
» Optimized global resource usage
* Increased data and service availability
— From a user job standpoint:
* Reduced job turnaround time
» Scripted staging without charges
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Coordination of Data Operations and Computation

Treat data transfers as “data jobs”

— Scheduling and management
Setup a zero-charge data queue

— Ability to account and charge if necessary
Decomposition of stage-in, stage-out and compute jobs
* Planning
— Dependency setup and submission
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Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file
mpirun -np 128 ~/programs/myapp

#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@Qdestination



Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp

stageout.pbs
#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@destination
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Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
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#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp
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Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp

stageout.pbs
#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@destination
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On-demand, Transparent Data Recovery

e Ensuring availability of automatically staged data
— Against storage failures between staging and job dispatch
— Standard availability techniques (RAID) not enough
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On-demand, Transparent Data Recovery

e Ensuring availability of automatically staged data
— Against storage failures between staging and job dispatch
— Standard availability techniques (RAID) not enough

 Recovery from staging sources

— Job input data transient on supercomputer, with immutable
primary copy elsewhere

* Natural data redundancy for staged data
— Network costs drastically reducing each year
— Better bulk transfer tools with support for partial data fetches

* Novel mechanisms to address “transient data availability”
— Augmenting FS metadata with “recovery info”
e Again, automatically extracted from job script
— Periodic file availability checking for queued jobs
— On-the-fly data reconstruction from staging source
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Augmenting File System Metadata

* Metadata extracted from job script
— “source” and “sink” URIs recorded with staged files

* Implementation: Lustre parallel file system

— Ultilizing file extended attribute (EA) mechanism
— New “recov” EA at metadata server

* Less than 64 bytes per file

* Minimal communication costs
— Additional Lustre commands

* Ifs setrecov

* Ifs getrecov
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Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:
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Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:
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Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo
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Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo
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Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo
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Putting it all together...
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Performance - Overview

e Part I: Cost of reconstruction with our method
— Real systems
— Running our prototype on real cluster and data sources
— Testing the costs of each step of our reconstruction
— Using different system configurations and tasks

* Part Il:
— Trace-driven simulations
— Taking result of Part | as parameters
— Using real system failure and job submission traces
— Simulating real HPC centers
— Considering both average performance and fairness
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Reconstruction Testbed

* A cluster with 40 nodes at ORNL
— 2.0GHz Intel P4 CPU
— 768 MB memory
- 10/100 Mb ethernet
— FC4 Linux, 2.6.12.6 kernel
— 32 data servers, 1 metadata server, 1 client (also as headnode)

e Data sources
— NFS server at ORNL (Local NFS)
— NFS server at NCSU (Remote NFS)
— GridFTP server with PVFS file system at ORNL (GridFTP)

ORNL =
< Intranet >
NCSU
| <>
nternet
PVFS j
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Performance - Reconstruction

* Finding failed server
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Performance - Reconstruction
* Patching the lost data
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Performance - Reconstruction
e Patching the lost data
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Performance - Reconstruction
* Patching the lost data
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Simulation Setup

Operational data from Los Alamos National Laboratory
http://institutes.lanl.gov/data/fdata
— System 20, with 512 nodes, 4CPUs/node

Node failure trace
— 2,049 failure records over 1,349 days

Job submission trace
— 489,376 job submission and completion records over 1,073 days
Coupling failure & job traces

— Calculated failure rate, repair time, and generated 1/O node failure
events

Obtained scratch logs and file statistics from ORNL NLCF to
create input files and stating operations
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Mean wait time(seconds)

Performance — Scheduling Simulation
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Related Work: Coordination

Coordinating data and job scheduling

— Stork, Condor and DAGMan: used to schedule data and computation
together in Grid environments

— Condor and SRM: used to schedule jobs where data is available

— Simulation studies in Grid suggest data-aware scheduling improves
job response time

— Focused as part of an application workflow rather than a set of HPC
center integrated services

BAD-FS
— A "file system” for I/O intensive batch jobs on remote clusters
— Exposes distributed file system decisions to an external, workload-
aware scheduler
IBP and Kangaroo:
— Address scratch space purging problem by timely offloading of results
— Do not address the scheduling or coupling of this activity along side
computation
Moab has similar goals and allows staging specification
— However, it is not fault-tolerant
— Does not support offloading and is not cheap!
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Related Work: Storage System Availability

e Standard data availability techniques designed with persistent
data in mind

— Multiple disk failure within a RAID-group can be crippling
— 1/O node failovers not always possible (thousands of nodes)

— Replication consumes extra scratch space, which is an expensive
commodity

* We address availability of transient, job input data!
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Conclusion and Future Work

* In Summary

— Novel ways to schedule and recover transient data
— Coordination b/w data movement and computation

» Modification of production job scheduler (deployed @ ORNL)
— On-demand recovery techniques for data availability issue

» Extension of Lustre: transparent replacement of failed OSTs

* Next Steps

— Online recovery
— Result data offloading
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Questions?

Project websites:
NCSU: http://research.csc.ncsu.edu/palm/
ORNL.: http://www.csm.ornl.gov/~vazhkuda/Storage.html

This work is sponsored by:

 U.S. Department of Energy Contracts
— DE-AC05-000R22725
— DE-FG02-05ER25685

e NSF Contract
— CCF-0621470
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