Optimizing Center Performance through
Coordinated Data Staging, Scheduling
and Recovery

Zhe Zhang, Chao Wang, Sudharshan S. Vazhkudai,
Xiaosong Ma, Gregory G. Pike, John W. Cobb, Frank Mueller

NC State University & Oak Ridge National Laboratory

OAK
RIDGE

National Laboratory

Problem Space: Petascale Storage Challenge

* Unique storage challenges in scaling to PF scale

— 1000s of I/O nodes; 100K — 1M disks; Failure a norm, not an
exception!

— Data availability affects HPC center serviceability

* Storage failures: significant contributor to system down time
— Macroscopic view

System # CPUs MTBF/I Outage Source
ASCIQ 8192 6.5 hrs Storage, CPU
ASCIWhite 8192 40 hrs Storage, CPU
Google 15000 20 reboots/day Storage, mem
NLCF (Jaguar) 23452 37.5 hrs Storage, mem

— Microscopic view (from both commercial and HPC centers)
* In a year:

— 3%to 7% of disks fails; 3%to 16% of controllers; up to
12% of SAN switches;

- 8.5% of a million disks have latent sector faults

* 10 times expected rates specified by disk vendors
2

Data Availability Issues in Users' Workflow

* Supercomputer service availability also affected by data staging
and offloading errors

* With existing job workflows
— Manual staging

e Error-prone
e Early staging and late offloading wastes scratch space
* Delayed offloading renders result data vulnerable

— Scripted staging
 Compute time wasted on staging at beginning of job
* Expensive

* Observations
— Supercomputer storage systems host transient job data
— Currently data operations not coordinated with job scheduling

3

Solution

* Novel ways to manage the way transient data is
— Scheduled and recovered
* Coordinating data storage with job scheduling

 On-demand, transparent data reconstruction to address
transient job input data availability

Solution

* Novel ways to manage the way transient data is:
— Scheduled and recovered
* Coordinating data storage with job scheduling
— Enhanced PBS script and Moab scheduling system

 On-demand, transparent data reconstruction to address
transient job input data availability

Solution

* Novel ways to manage the way transient data is:
— Scheduled and recovered
* Coordinating data storage with job scheduling
— Enhanced PBS script and Moab scheduling system

 On-demand, transparent data reconstruction to address
transient job input data availability

— Extended Lustre parallel file system

Solution

Novel ways to manage the way transient data is:
— Scheduled and recovered
Coordinating data storage with job scheduling
— Enhanced PBS script and Moab scheduling system
On-demand, transparent data reconstruction to address
transient job input data availability
— Extended Lustre parallel file system
Results:
— From center's standpoint:
» Optimized global resource usage
* Increased data and service availability
— From a user job standpoint:
* Reduced job turnaround time
» Scripted staging without charges

7

Coordination of Data Operations and Computation

Treat data transfers as “data jobs”

— Scheduling and management
Setup a zero-charge data queue

— Ability to account and charge if necessary
Decomposition of stage-in, stage-out and compute jobs
* Planning
— Dependency setup and submission

Head Node Compute Nodes

1. Stage Data Job Queue

2. Compute Job a4 |=---
3. Offload Data

Planner /' Q Nodes
Teae Data Queue

2 after ¥~ ==mu_ —
3 after 2" i

Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file
mpirun -np 128 ~/programs/myapp

#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@Qdestination

Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp

stageout.pbs
#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@destination

10

Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp

stageout.pbs
#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@destination

11

Instrumenting the Job Script

 Example of Enhanced PBS job script

#PBS -N myjob
#PBS -1 nodes=128, walltime=12:00

stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2

#STAGEIN hpss://host.gov/input file /scratch/dest file

compute.pbs
mpirun -np 128 ~/programs/myapp

stageout.pbs
#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/user@destination

12

On-demand, Transparent Data Recovery

e Ensuring availability of automatically staged data
— Against storage failures between staging and job dispatch
— Standard availability techniques (RAID) not enough

13

On-demand, Transparent Data Recovery

e Ensuring availability of automatically staged data
— Against storage failures between staging and job dispatch
— Standard availability techniques (RAID) not enough

 Recovery from staging sources

— Job input data transient on supercomputer, with immutable
primary copy elsewhere

* Natural data redundancy for staged data
— Network costs drastically reducing each year
— Better bulk transfer tools with support for partial data fetches

14

On-demand, Transparent Data Recovery

e Ensuring availability of automatically staged data
— Against storage failures between staging and job dispatch
— Standard availability techniques (RAID) not enough

 Recovery from staging sources

— Job input data transient on supercomputer, with immutable
primary copy elsewhere

* Natural data redundancy for staged data
— Network costs drastically reducing each year
— Better bulk transfer tools with support for partial data fetches

* Novel mechanisms to address “transient data availability”
— Augmenting FS metadata with “recovery info”
e Again, automatically extracted from job script
— Periodic file availability checking for queued jobs
— On-the-fly data reconstruction from staging source

15

Augmenting File System Metadata

* Metadata extracted from job script
— “source” and “sink” URIs recorded with staged files

* Implementation: Lustre parallel file system

— Ultilizing file extended attribute (EA) mechanism
— New “recov” EA at metadata server

* Less than 64 bytes per file

* Minimal communication costs
— Additional Lustre commands

* Ifs setrecov

* Ifs getrecov

16

Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

17

Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo

[Fesanode] < —(ir—

18

Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo

~\—
Fesino] < —<— (W8} (=

ost3

[osTe] <2

19

Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo

[Headnode | < <751 [MDS }—{osti
AN %

ost6
ost3
(1M~2M)
(4M~5M) <§}
(7TM~8M)

- -

20

Failure Detection & File Reconstruction

* Periodic failure detection
— Parallel checking of storage units upon which dataset is striped

e Reconstruction:

hpss://host.gov/foo

) == (WS,
ost

(1M~2M)

SR &

- -

21

Putting it all together...

Machine Room
Head Node Compute Nodes
~ Job Seript Jobi Ouene =
1. Stage Data L ‘
: 2. ComputeJob | %
. 3. Offload Data |
Planner! ./ Vo ¥ 1/0 Nodes
L Data Queue ' ‘
Dafter 1”7 "=~ __ §
Saimis o -] | :
egular I/0 access
...lostageddata, . N CR————
Archivel v Seamless I/O access via
. S~ “data path”
NES h i /scratch
access || NONIE Parallel File
System
i O A AR
Staging/Offloading

22

End User

Source copy of dataset
accessed using: fip,
sep, GridFTP

Data [d==SL
Somrce | —t

Performance - Overview

e Part I: Cost of reconstruction with our method
— Real systems
— Running our prototype on real cluster and data sources
— Testing the costs of each step of our reconstruction
— Using different system configurations and tasks

* Part Il:
— Trace-driven simulations
— Taking result of Part | as parameters
— Using real system failure and job submission traces
— Simulating real HPC centers
— Considering both average performance and fairness

23

Reconstruction Testbed

* A cluster with 40 nodes at ORNL
— 2.0GHz Intel P4 CPU
— 768 MB memory
- 10/100 Mb ethernet
— FC4 Linux, 2.6.12.6 kernel
— 32 data servers, 1 metadata server, 1 client (also as headnode)

e Data sources
— NFS server at ORNL (Local NFS)
— NFS server at NCSU (Remote NFS)
— GridFTP server with PVFS file system at ORNL (GridFTP)

ORNL =
< Intranet >
NCSU
| <>
nternet
PVFS j

24

5

Loy i

|
2
I

" Cluswr Hm

A
V5

P i

!

Performance - Reconstruction

* Finding failed server

0.30 F
]
S 010
o)
& 005}
&
= 002
° .
$ oot
Yo
e
O
>
O

0.001

1 OST/OSS —F—

L

| 16 OST/OSS —¥K— -
. ._________‘}:{,..___, -

1 2 4 : . |

Number of storage nodes

25

Performance - Reconstruction
* Patching the lost data

1024

1MB stripe — |
2MB stripe —¢— . o
256 ' 4MB stripe —%— Whole file staging irv

64 |
Local NFS

16 ¢

Patching cost(seconds)

0.25 i ; ‘ 1
128MB 256MB 512MB 1GB oGB
File size

onds)
nds)
o
S
N
R
% !
. Go

Patching cost (sec
Patching cost (seconds

Local NFS Remote NFS
26

Performance - Reconstruction
e Patching the lost data

1024 : ‘
1MB stripe —+— _ o

— 2MB stripe —¢— Whole file staql[]g in
B 256 1 4MB stripe —%—
(- L
Q
& 64 |
= - Remote NFS
4 16 t
3]
g 4
=
ie
®
o 1

0.25 | | | |

128MB 256MB 512MB 1GB 2GB
File size

nd.
N
)
nds)
&5
S
N
eBn R
;)
. Go

cst (seconds

Patching ¢
Patching cost (seconds

Local NFS

Remote NFS
27

Performance - Reconstruction
* Patching the lost data

1MB stripe —— : _
256 2'MB stripe % Whole file Staqn?g in

g 4MB stripe —%—
o 64 |
o :
2 GridF TP
D
o)
0
o)
£
L
0
© Tt
o

0.25 ¢ ‘ . .]

128MB 256MB 512MB 1GB 2GB

File size

nd.
N
oD
3
&
nds)

st (seconds

Patching co
Patching cost (geconds

Local NFS Remote NFS
28

Simulation Setup

Operational data from Los Alamos National Laboratory
http://institutes.lanl.gov/data/fdata
— System 20, with 512 nodes, 4CPUs/node

Node failure trace
— 2,049 failure records over 1,349 days

Job submission trace
— 489,376 job submission and completion records over 1,073 days
Coupling failure & job traces

— Calculated failure rate, repair time, and generated 1/O node failure
events

Obtained scratch logs and file statistics from ORNL NLCF to
create input files and stating operations

29

Mean wait time(seconds)

Performance — Scheduling Simulation

Mean wait time of jobs
Standard deviation for wait time of jobs

30000 ' :
W. reconstruction
w/o reconstruction —&—
25000 | no failure —%—
20000
15000
100001
5000 % %
0 L |
4 8 16

Stripe count

32

SD of wait times(seconds)

100000 . :

W. reconstruction

w/o reconstruction —&— A
80000 | no failure ——

60000 -
40000 £
e i ¥ &
20000
0 I I
4 8 16 32

Stripe count

Performance degradation with larger stripe count w/o reconstruction
Performance w. reconstruction close to "no failure” case

30

Related Work: Coordination

Coordinating data and job scheduling

— Stork, Condor and DAGMan: used to schedule data and computation
together in Grid environments

— Condor and SRM: used to schedule jobs where data is available

— Simulation studies in Grid suggest data-aware scheduling improves
job response time

— Focused as part of an application workflow rather than a set of HPC
center integrated services

BAD-FS
— A "file system” for I/O intensive batch jobs on remote clusters
— Exposes distributed file system decisions to an external, workload-
aware scheduler
IBP and Kangaroo:
— Address scratch space purging problem by timely offloading of results
— Do not address the scheduling or coupling of this activity along side
computation
Moab has similar goals and allows staging specification
— However, it is not fault-tolerant
— Does not support offloading and is not cheap!

31

Related Work: Storage System Availability

e Standard data availability techniques designed with persistent
data in mind

— Multiple disk failure within a RAID-group can be crippling
— 1/O node failovers not always possible (thousands of nodes)

— Replication consumes extra scratch space, which is an expensive
commodity

* We address availability of transient, job input data!

32

Conclusion and Future Work

* In Summary

— Novel ways to schedule and recover transient data
— Coordination b/w data movement and computation

» Modification of production job scheduler (deployed @ ORNL)
— On-demand recovery techniques for data availability issue

» Extension of Lustre: transparent replacement of failed OSTs

* Next Steps

— Online recovery
— Result data offloading

33

Questions?

Project websites:
NCSU: http://research.csc.ncsu.edu/palm/
ORNL.: http://www.csm.ornl.gov/~vazhkuda/Storage.html

This work is sponsored by:

 U.S. Department of Energy Contracts
— DE-AC05-000R22725
— DE-FG02-05ER25685

e NSF Contract
— CCF-0621470

34

