
1

Optimizing Center Performance through
Coordinated Data Staging, Scheduling

and Recovery

Zhe Zhang, Chao Wang, Sudharshan S. Vazhkudai,
Xiaosong Ma, Gregory G. Pike, John W. Cobb, Frank Mueller

NC State University & Oak Ridge National Laboratory

2

Problem Space: Petascale Storage Challenge
• Unique storage challenges in scaling to PF scale

− 1000s of I/O nodes; 100K – 1M disks; Failure a norm, not an
exception!

− Data availability affects HPC center serviceability
• Storage failures: significant contributor to system down time

− Macroscopic view

− Microscopic view (from both commercial and HPC centers)
• In a year:

− 3% to 7% of disks fails; 3% to 16% of controllers; up to
12% of SAN switches;

− 8.5% of a million disks have latent sector faults
• 10 times expected rates specified by disk vendors

Storage, mem20 reboots/day15000Google

Storage, mem37.5 hrs23452NLCF (Jaguar)

Storage, CPU

Storage, CPU

Outage Source

40 hrs8192ASCI White

6.5 hrs8192ASCI Q

MTBF/I# CPUsSystem

3

Data Availability Issues in Users' Workflow
• Supercomputer service availability also affected by data staging

and offloading errors

• With existing job workflows
− Manual staging

• Error-prone
• Early staging and late offloading wastes scratch space
• Delayed offloading renders result data vulnerable

− Scripted staging
• Compute time wasted on staging at beginning of job
• Expensive

• Observations
− Supercomputer storage systems host transient job data
− Currently data operations not coordinated with job scheduling

4

Solution
• Novel ways to manage the way transient data is

− Scheduled and recovered
• Coordinating data storage with job scheduling

• On-demand, transparent data reconstruction to address
transient job input data availability

5

Solution
• Novel ways to manage the way transient data is:

− Scheduled and recovered
• Coordinating data storage with job scheduling

− Enhanced PBS script and Moab scheduling system
• On-demand, transparent data reconstruction to address

transient job input data availability

6

Solution
• Novel ways to manage the way transient data is:

− Scheduled and recovered
• Coordinating data storage with job scheduling

− Enhanced PBS script and Moab scheduling system
• On-demand, transparent data reconstruction to address

transient job input data availability
− Extended Lustre parallel file system

7

Solution
• Novel ways to manage the way transient data is:

− Scheduled and recovered
• Coordinating data storage with job scheduling

− Enhanced PBS script and Moab scheduling system
• On-demand, transparent data reconstruction to address

transient job input data availability
− Extended Lustre parallel file system

• Results:
− From center's standpoint:

• Optimized global resource usage
• Increased data and service availability

− From a user job standpoint:
• Reduced job turnaround time
• Scripted staging without charges

8

Coordination of Data Operations and Computation

• Treat data transfers as “data jobs”
− Scheduling and management

• Setup a zero-charge data queue
− Ability to account and charge if necessary

• Decomposition of stage-in, stage-out and compute jobs
• Planning

− Dependency setup and submission

Data Queue

Job Queue

Head Node

1. Stage Data
2. Compute Job
3. Offload Data

Job Script

I/O Nodes

Compute Nodes

Planner
1

2 after 1
3 after 2

9

#STAGEOUT any parameters here
#STAGEOUT scp /scratch/user/output/user@destination

Instrumenting the Job Script

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00

#STAGEIN any parameters here
#STAGEIN -retry 2
#STAGEIN hpss://host.gov/input_file /scratch/dest_file

• Example of Enhanced PBS job script

mpirun -np 128 ~/programs/myapp

10

stageout.pbs
#STAGEOUT any parameters here
#STAGEOUT scp /scratch/user/output/user@destination

Instrumenting the Job Script

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2
#STAGEIN hpss://host.gov/input_file /scratch/dest_file

• Example of Enhanced PBS job script

compute.pbs
mpirun -np 128 ~/programs/myapp

11

stageout.pbs
#STAGEOUT any parameters here
#STAGEOUT scp /scratch/user/output/user@destination

Instrumenting the Job Script

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2
#STAGEIN hpss://host.gov/input_file /scratch/dest_file

• Example of Enhanced PBS job script

compute.pbs
mpirun -np 128 ~/programs/myapp

12

stageout.pbs
#STAGEOUT any parameters here
#STAGEOUT scp /scratch/user/output/user@destination

Instrumenting the Job Script

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
stagein.pbs
#STAGEIN any parameters here
#STAGEIN -retry 2
#STAGEIN hpss://host.gov/input_file /scratch/dest_file

• Example of Enhanced PBS job script

compute.pbs
mpirun -np 128 ~/programs/myapp

13

On-demand, Transparent Data Recovery
• Ensuring availability of automatically staged data

− Against storage failures between staging and job dispatch
− Standard availability techniques (RAID) not enough

14

On-demand, Transparent Data Recovery
• Ensuring availability of automatically staged data

− Against storage failures between staging and job dispatch
− Standard availability techniques (RAID) not enough

• Recovery from staging sources
− Job input data transient on supercomputer, with immutable

primary copy elsewhere
• Natural data redundancy for staged data

− Network costs drastically reducing each year
− Better bulk transfer tools with support for partial data fetches

15

On-demand, Transparent Data Recovery
• Ensuring availability of automatically staged data

− Against storage failures between staging and job dispatch
− Standard availability techniques (RAID) not enough

• Recovery from staging sources
− Job input data transient on supercomputer, with immutable

primary copy elsewhere
• Natural data redundancy for staged data

− Network costs drastically reducing each year
− Better bulk transfer tools with support for partial data fetches

• Novel mechanisms to address “transient data availability”
− Augmenting FS metadata with “recovery info”

• Again, automatically extracted from job script
− Periodic file availability checking for queued jobs
− On-the-fly data reconstruction from staging source

16

Augmenting File System Metadata
• Metadata extracted from job script

− “source” and “sink” URIs recorded with staged files

• Implementation: Lustre parallel file system
− Utilizing file extended attribute (EA) mechanism
− New “recov” EA at metadata server

• Less than 64 bytes per file
• Minimal communication costs

− Additional Lustre commands
• lfs setrecov
• lfs getrecov

17

Failure Detection & File Reconstruction

• Periodic failure detection
− Parallel checking of storage units upon which dataset is striped

• Reconstruction:

MDSHeadnode ost1
ost2
ost3

Remote
Source

18

Failure Detection & File Reconstruction

• Periodic failure detection
− Parallel checking of storage units upon which dataset is striped

• Reconstruction:

MDSHeadnode
hpss://host.gov/foo

ost1
ost2
ost3

1

Remote
Source

19

Failure Detection & File Reconstruction

• Periodic failure detection
− Parallel checking of storage units upon which dataset is striped

• Reconstruction:

MDSHeadnode
hpss://host.gov/foo

ost1
ost6
ost3

2
1

Remote
Source

OST6 2

20

Failure Detection & File Reconstruction

• Periodic failure detection
− Parallel checking of storage units upon which dataset is striped

• Reconstruction:

MDSHeadnode
hpss://host.gov/foo

ost1
ost6
ost3

2
1

Remote
Source

3
(1M~2M)
(4M~5M)
(7M~8M)

OST6 2

21

Failure Detection & File Reconstruction

• Periodic failure detection
− Parallel checking of storage units upon which dataset is striped

• Reconstruction:

MDSHeadnode
hpss://host.gov/foo

ost1
ost6
ost3

2
1

Remote
Source

3
(1M~2M)
(4M~5M)
(7M~8M)

OST6 2

4

22

Putting it all together…

23

Performance - Overview

• Part I: Cost of reconstruction with our method
− Real systems
− Running our prototype on real cluster and data sources
− Testing the costs of each step of our reconstruction
− Using different system configurations and tasks

• Part II:
− Trace-driven simulations
− Taking result of Part I as parameters
− Using real system failure and job submission traces
− Simulating real HPC centers
− Considering both average performance and fairness

24

Reconstruction Testbed
• A cluster with 40 nodes at ORNL

− 2.0GHz Intel P4 CPU
− 768 MB memory
− 10/100 Mb ethernet
− FC4 Linux, 2.6.12.6 kernel
− 32 data servers, 1 metadata server, 1 client (also as headnode)

• Data sources
− NFS server at ORNL (Local NFS)
− NFS server at NCSU (Remote NFS)
− GridFTP server with PVFS file system at ORNL (GridFTP)

ORNL

NCSU

NFS

NFS

PVFS
Internet

Intranet

Intranet

25

• Finding failed server

Performance - Reconstruction

26

• Patching the lost data
Performance - Reconstruction

Local NFS

Local NFS Remote NFS GridFTP

27

• Patching the lost data
Performance - Reconstruction

Remote NFS

Local NFS Remote NFS GridFTP

28

• Patching the lost data
Performance - Reconstruction

GridFTP

Local NFS Remote NFS GridFTP

29

Simulation Setup

• Operational data from Los Alamos National Laboratory
http://institutes.lanl.gov/data/fdata
− System 20, with 512 nodes, 4CPUs/node

• Node failure trace
− 2,049 failure records over 1,349 days

• Job submission trace
− 489,376 job submission and completion records over 1,073 days

• Coupling failure & job traces
− Calculated failure rate, repair time, and generated I/O node failure

events
• Obtained scratch logs and file statistics from ORNL NLCF to

create input files and stating operations

30

• Mean wait time of jobs
• Standard deviation for wait time of jobs

• Performance degradation with larger stripe count w/o reconstruction
• Performance w. reconstruction close to ”no failure” case

Performance – Scheduling Simulation

31

Related Work: Coordination
• Coordinating data and job scheduling

− Stork, Condor and DAGMan: used to schedule data and computation
together in Grid environments

− Condor and SRM: used to schedule jobs where data is available
− Simulation studies in Grid suggest data-aware scheduling improves

job response time
− Focused as part of an application workflow rather than a set of HPC

center integrated services
• BAD-FS

− A “file system” for I/O intensive batch jobs on remote clusters
− Exposes distributed file system decisions to an external, workload-

aware scheduler
• IBP and Kangaroo:

− Address scratch space purging problem by timely offloading of results
− Do not address the scheduling or coupling of this activity along side

computation
• Moab has similar goals and allows staging specification

− However, it is not fault-tolerant
− Does not support offloading and is not cheap!

32

Related Work: Storage System Availability
• Standard data availability techniques designed with persistent

data in mind
− Multiple disk failure within a RAID-group can be crippling
− I/O node failovers not always possible (thousands of nodes)
− Replication consumes extra scratch space, which is an expensive

commodity

• We address availability of transient, job input data!

33

• In Summary
− Novel ways to schedule and recover transient data
− Coordination b/w data movement and computation

• Modification of production job scheduler (deployed @ ORNL)
− On-demand recovery techniques for data availability issue

• Extension of Lustre: transparent replacement of failed OSTs

• Next Steps
− Online recovery
− Result data offloading

Conclusion and Future Work

34

Questions?

This work is sponsored by:
• U.S. Department of Energy Contracts

− DE-AC05-00OR22725
− DE-FG02-05ER25685

• NSF Contract
− CCF-0621470

Project websites:
NCSU: http://research.csc.ncsu.edu/palm/
ORNL: http://www.csm.ornl.gov/~vazhkuda/Storage.html

