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Abstract 
 Performance Oriented Distributed Operating System (PODOS) is a clustering environment, being built on a 
monolithic Linux kernel. PODOS augments very few components to the Linux kernel in order to make it distributed. 
These minimal components are the Communication Manager (CM), the Resource Manager (RM), the PODOS File 
System (PFS) and the Global IPC (GIPC). Each one of these components are designed and implemented with key 
performance benefits. They are designed to exploit the basic Linux operating system in numerous ways. 
 In this paper we discuss the design, implementation and performance of the PODOS File System (PFS). We 
discuss a combination of the overall design and implementation strategies and their implications on the distributed file 
system usage and performance. These include a Hybrid Naming Scheme that strikes a balance between transparency 
and performance; an Assumed-mounts strategy which obviates the need for expensive remote file systems setup; a 
Lazy-update mechanism which modifies the Unix file sharing semantics by delaying updates to remote nodes; the use 
of state-full kernel threads as against state-less servers; the tweaking of the Linux VFS layer to map traditional i-node 
operations onto remote file access requests, thereby tightly integrating the PFS with the Linux file system; and the use 
of read-aheads for improved performance. 

The paper further discusses how the PFS, in conjunction with the underlying high-speed communication 
subsystem, that short-circuits the network protocol stack and further multiplexes virtual-circuits across multiple 
network interfaces, provides an efficient clustering environment for file sharing. 
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1.0 Introduction 
A variety of clustering systems exists, each 

with its own design goals and problem domain. In 
general, clustering systems tend to attack issues like 
performance, resource sharing, reliability, 
transparency, etc. Most of these design goals are 
conflicting and can never be accomplished in one 
system without some level of compromise [1]. Systems 
like Condor [2], Beowulf [3] provide high-
performance environments while systems like Amoeba 
(distributed operating system) [4], tend to provide a 
good resource-sharing environment. 

With these issues in mind, we are designing a 
distributed system, PODOS [5], an experimental Linux 
[6] cluster (being developed at the University of 
Mississippi). The primary intent is to explore the 
performance capabilities of a clustering system, but at 
the same time provide a good resource-sharing 
environment. Furthermore, we try to minimize the 
additions to the basic operating system [7]. Each node 
in the PODOS cluster is a monolithic Linux kernel 
comprising of the following components: 

The Communication Manager (CM) handles 
remote communication in the PODOS by using a 

custom protocol to interact with peer CMs in the 
cluster. Higher-level layers (RM, GIPC, PFS) use the 
CM to talk to their peer components in the cluster [7]. 

The Resource Manager (RM) in each node 
maintains global system state information, i.e., 
information about each node in the cluster. The RM 
makes use of the CM to transmit and receive system 
information in a broadcast or a piggybacked fashion 
among its peers [7]. 

The Global Inter Process Communication  
(GIPC) provides a mechanism with which processes 
can communicate in PODOS, by allocating a global 
PID (GPID) for every process in PODOS so that 
processes can be uniquely identified. GIPC further 
provides communication primitives for processes to 
communicate among themselves [7]. 

The PODOS File System (PFS) extends the 
basic operating system file capabilities to support 
distributed file access. Processes will be able to 
recognize non-local file names and invoke the PFS. 
PFS local-to-remote requests will be carried out by 
simply invoking the CM [7]. 

In the following sections, we will present an 
argument for the purpose of yet another distributed file 



system, by discussing the features of popularly used 
distributed file systems, their drawbacks, and how the 
PFS attempts to minimize these drawbacks. We then 
explain the overall structure and architecture of the 
PFS and finally present a few performance results. 
 

2.0 Distributed File Systems 
There are a number of distributed and 

network file systems, each with its own design goals. 
In this section, we will briefly look at two of them, the 
NFS [8] and Coda [9]. 

NFS is a network file system by Sun 
Microsystems, designed for a network of computers. 
NFS works in both LAN and WAN environments. 
NFS uses a standard networking protocol called 
Remote Procedure Calls (RPC) [10], which is built on 
sockets and UDP [11]. NFS is based on the virtual i-
node architecture, wherein a virtual i-node is 
constructed for each remote file. NFS uses state-less 
servers that increase their reliability but make them 
slower. NFS performs read-aheads and entire file 
caching [8]. 

Coda is a distributed file system from CMU. 
It uses the standard TCP/IP protocol. Coda is primarily 
intended to be a wide area distributed file system and 
implements an extensive caching mechanism for 
mobile and disconnected operation [9]. 

Before discussing the PFS let us briefly look 
at the communication protocol it uses, thereby 
justifying the need for yet another distributed file 
system. 
 

3.0 Communication in PODOS 
Communication in PODOS is handled by the 

CM. Higher-level PODOS layers (RM, PFS, GIPC) 
rely on the CM for packet transmission and reception. 
The CM in each node uses a specialized protocol to 
talk to its neighbors. The CM comprises of the 
following components [12]: 

The Communication Descriptor Table (CDT) 
is the CM’s interface to the other PODOS layers. The 
higher-level PODOS protocols register their packets 
with the CDT. The CM performs all the intricate 
details involved with packet transmission and 
timeouts. The CM also uses the CDT to construct a 
virtual-circuit (a connection for a longer duration), 
which helps in streamlining communication between 
peer components [12].  

Nodes in PODOS have been configured with 
multiple Ethernet interfaces to increase the LAN 
bandwidth. The CM exploits this architecture by 
multiplexing virtual-circuits (open-read-write-read…-
close calls) across these interfaces using a round-robin 
strategy. This is referred as Transmission-Group [12].  

The PODOS-packet protocol short-circuits 
the traditional network protocol stack (the OSI model 
[11]) to send and receive packets. The CM directly 
interacts with the datalink layer  (the Ethernet [13] 
driver) of the network stack, thereby bypassing all the 
other layers. Thus, the PODOS packets have a unique 
Ethernet protocol ID [12].  

The above mentioned features of the CM 
provide an excellent high-speed communication 
environment upon which higher-level layers could be 
built [12]. 
 

4.0 Motivation for PFS 
 Since PODOS employs a high-speed 
communication mechanism, we needed a file system 
that could exploit this feature of PODOS. The network 
file systems discussed in section 2.0 are based upon the 
traditional TCP and UDP protocols that were primarily 
designed for wide area networks. For example, the 
NFS uses a networking standard called RPC, which is 
built upon UDP (TCP versions are available too.). RPC 
is another layer over traditional networking protocol, 
which definitely makes programming simpler and the 
system more reliable, but also increases the latency 
time. Added to this, NFS uses state-less servers [8], 
which would make it reliable but slower. We needed to 
minimize the layer overhead and thus needed a file 
system that could function in such an environment. 
Further, we realized that an efficient file system could 
be designed and implemented with high performance 
benefits. We required a file system for a cluster in a 
local area network. This led to the evolution of the 
PODOS File System (PFS). 
 Let us look at the design and implementation 
of the PFS. 
 

5.0      The PFS 
 In this section, we will discuss the PODOS 
File System, its architecture and implementation. 
 

5.1 Overall Structure 
Each node in the PODOS cluster is named as 

linus1, linus2, linus<n>. Every node has its own 
unique file system, i.e., PODOS does not strive to 
provide a unified file system, but tries to provide a 
high-speed and efficient environment for sharing 
resources in other nodes. The following sections 
discuss a few important design decisions, which would 
dictate the manner in which the PFS would be used 
and would behave. They are: 

• Naming Scheme 
• Assumed Mounts 
• Lazy Update Semantics 

 
 



5.1.1 Naming Scheme 
 Every distributed file system has to have a 
naming convention that would help resolve local and 
remote file names. Traditionally, distributed systems 
have followed three approaches [4]: 

1. Machine name + path name of the file. 
2. Mounting remote file systems onto local file 

hierarchy. 
3. A single unified name space. 

In PODOS, we have adopted a hybrid approach 
between options 1 and 2. Remote file names have to be 
specified along with their machine names, but these 
machine names are tightly integrated into the local file 
system hierarchy as directories in order to facilitate 
easy access to remote files using traditional file system 
structure. For example, if “miaow” is a file that resides 
in the root directory of the node, “linus4”, then this file 
can be accessed from any other node by simply 
specifying, “/linus4/miaow”, where “linus4”  is a 
directory under “/”  in the local file system hierarchy. 
Typically, this directory could reside anywhere in the 
local file hierarchy. Hiding the machine names simply 
involves another layer of mapping (mapping machine 
names to local directories). It is a design tradeoff 
between performance and transparency. 
 
5.1.2 Assumed Mounts 

Every node in PODOS can access files and 
directories in every other node by specifying the 
machine name, followed by the path. Every node in the 
cluster is assumed mounted in every other node. No 
explicit mounting is necessary as required in NFS. 
NFS spends a lot of time creating virtual i-nodes 
(vnodes) for each remote file. This is essential for the 
design goals of NFS (stresses on reliability, supports 
wide-area mounts, etc.,) [8]. 

When an access is made to a file, 
“ /linus4/miaow”, the PFS, contacts the RM to check 
the validity of the node, “linus4”. The RM in turn 
contacts the SST to check if “linus4” is a valid host 
and if it is alive and finally returns its results to PFS. If 
RM returned a positive result, then the PFS proceeds to 
fetch the file. Thus, the PFS attempts to blend-in the 
remote file systems into the local file system hierarchy 
by treating machine names as implicit directories, and 
interpreting them appropriately. The entries “/linus4” , 
“/linus5” , etc., are created as directories in each node 
at startup. 
 
5.1.3 Lazy Update Semantics 

Typical distributed systems follow one of the 
following file sharing semantics [4]: 

1. Unix Semantics, where updates are 
visible immediately. 

2. Session Semantics, where updates are 
visible only after the file is closed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
Following the Unix semantics is very costly in a 
distributed scenario and session semantics leads to 
consistency problems. Thus, we employ a Lazy Update 
Semantics, which is a slightly modified version of the 
Unix semantics, wherein updates are made visible after 
a certain size (typically 1K). 

Let us look at the architecture and 
implementation of the PFS. 
 

5.2 Architecture 
In this section, we will discuss the following: 

• Mapping i-node operations 

• Kernel resident state-full threads 

• Read ahead caching 
These features help in making the PFS robust and 
highly tuned towards performance. 
 
5.2.1 Mapping i-node Operations 

The PFS is tightly integrated with the Linux 
file system and exploits its architecture for 
performance benefits (Figure 1). PFS uses the same 
file access primitives for both local and remote file 
operations. The PFS exploits the Linux operating 
system’s virtual file system (VFS) [6] interface to 
implement remote file access. The VFS is an elegant 
mechanism that is responsible for Linux file system’s 
flexibility and performance. The Linux operating 
system supports multiple file systems using the VFS 

Virtual 

PFS 

System 

loc
al 

 
 

 
Fo 

pfs 
open 

CDT CDT

Yet 
another 

PFS 
thread 

lan

User  

Kernel 

Disk 
open

inod
e/fil
e

 

File System 

Disk 
open 

inod
e/file 
Fops

 

i-node/ 
file 
File-ops 

i-node 
 
File-ops 

i-node/ 
file 
File-ops 

Local        Remote 
Files        Files 

LAN



interface. The VFS layer provides hooks and generic 
interfaces which specific file systems could use. 
Specific file system implementations (ext2, MSDOS, 
etc.,) implement these interfaces and can be plugged 
into the hooks. We have modified the VFS layer to 
incorporate support for remote file fetches. This is 
achieved through the i-node operations mapping 
technique. The i-node operations mapping, done at the 
active end, is a technique with which the file 
operations of an i-node are mapped to methods that 
implement remote file accesses. Let us look at how this 
is accomplished.  

Typically, in local file accesses, the VFS 
layer obtains the i-node of the file being fetched. This 
i-node is of type, struct inode *. This structure contains 
all necessary information about the file, its creation 
time, modification time, etc. It also contains the VFS 
element, i_op, of type struct  inode_operations *. It 
contains an element, default_file_ops, which is of type, 
struct file_operations *. This structure contains 
function pointers, which hold the addresses of the file 
system specific functions [6]. 

Once the VFS obtains the i-node, it simply 
makes a call inode->i_op->default_file_ops-
>open(inode, f) which invokes the file system specific 
open call. Inside the VFS layer, we map these i-node 
operations to functions that perform remote opens, 
reads and writes. The remote operations in the PFS are 
performed by pfs_open(), pfs_read(), pfs_write() and 
pfs_close(). The mapping is accomplished by: inode-
>i_op->default_file_ops-open=&pfs_open; this 
statement sets the function pointer to hold the address 
of the pfs_open() function. Read and write pointers are 
set as above (seeks could be done similarly). In short, 
the PFS uses the VFS architecture to channel remote 
file operation through traditional i-node structures. 
Thus, the advantages to this approach are: 

• Speed 
• Tight Integration with traditional file 

system. 
• Same primitives for local and remote 

accesses. 
We will discuss more about the functionality of the 
above mentioned methods in section 6.0. Let us look at 
kernel threads. 
 
5.2.2 State-full Kernel Threads 

A key design decision of the PFS is the use of 
kernel resident state-full threads. These threads are 
specialized kernel-level worker-bees of the PFS, 
started for each remote file request. These state-full 
threads reside at the passive end. State-full threads 
maintain the state information of the open files, like 
the file descriptor position. The use of state-full 
threads provides better performance and shorter 
messages over NFS that uses a state-less server. State-

less servers are typically more fault-tolerant but are 
slower and result in longer messages (as filename and 
position in the file has to be sent with each read/write 
request). 

The CM, upon receipt of a file fetch request, 
directs it to the PFS. The PFS spawns a thread (called 
“Yet Another PFS”) and keeps it in the kernel space. 
The reason behind having a kernel thread is to improve 
performance by minimizing the number of context 
switches that would result otherwise. The main PFS 
thread goes back to listening for further requests after 
creating the thread. Thus, it behaves like a concurrent 
server in processing remote requests. From then on, the 
kernel thread takes the responsibility of processing 
further requests with reference to the file. Once its 
properties are set, it opens the file using the local 
system’s file-primitives. After opening the file the 
kernel thread returns an acknowledgement (and the 
first block if read operation) and suspends itself. It 
wakes up whenever further requests to that particular 
file arrive, processes it and goes back to suspended 
state. The kernel thread remains alive until the file is 
closed at the active end. When the file is finally closed 
at the active end, the kernel thread closes the file 
locally and performs an exit. 
 
5.2.3 Read-ahead Caching 
 The PFS employs read-ahead caching to 
further improve the performance. It is traditional in 
distributed file systems to perform read-aheads. The 
PFS fetches data from the remote system in terms of 
1K blocks and buffers it in the Communication 
Descriptor Table. As long as the length of the data 
requested is less than the length of the data in the CDT, 
the PFS avoids making a remote fetch. The moment 
the length requested is greater than the length of the 
buffered data in the CDT, a 1K block is fetched from 
the remote end. Read-aheads are typical in file systems 
(even etx2 performs read-ahead; NFS performs read-
aheads and entire file caching). In general, read-aheads 
work on the principle that most file accesses are 
sequential, and drastically improve the file system 
performance [14]. 
 Let us look at the implementation in detail by 
analyzing a remote file fetch. 
 

6.0 Tracing a Remote File Fetch 
In this section, we will trace the execution of 

a remote file fetch, thereby discussing the various 
components of the PFS and their interaction with the 
CM and the RM. The protocol used by PFS for peer-
to-peer communication (PFS-PFS) is as follows: 
1. The open call at the active end 
• The active end initiates the remote request using 

an open system call in which it specifies the 



filename along the remote host name. For 
example, “/linus4/miaow”. 

• The PFS component in the VFS layer (pfs_open) 
contacts the RM, to check to see if “linus4” is a 
valid host in the cluster. The RM contacts the 
System State Table (SST) to verify details about 
“linus4” .  

 
The fd-cdt map 

• If “linus4”  is a valid host in the cluster, the RM 
returns a TRUE value. The PFS component in the 
VFS layer then initializes a remf structure, of type, 
struct remote_file *. The remote_file structure 
contains the following: 
struct remote_file { 
 …………. 
 char *host; 
 char *filename; 

/* the CDT index through which the remote 
file is accessed */ 

int cdt_active_ind;  
};  
This structure is stuffed into the private_data field 
of the file structure. All open files in the Linux 
operating system are maintained in a doubly 
linked list, each node of which is of type struct file 
*. The structure contains the following [6]: 
struct file { 
    ………………………… 
    struct file *f_next, *f_prev; 
    struct inode * f_inode; 
    struct file_operations * f_op; 
    void *private_data; 
}; 
This structure is typically allocated by the open 
call and subsequently used by read and write calls 
to refer to the specific file. 

• The PFS builds a packet and then invokes the CM 
to make a CDT entry and transmit the packet to 
the remote end. Once it makes an entry, it copies 
the cdt_active_ind to remf->cdt_active_ind and 
returns. This index is important because, it saves 
the search time for subsequent read and write 
calls, i.e., read and write calls can directly map 
onto the CDT entry to refer to the file and not 
search through the table. In short, the file 
descriptor is directly mapped onto the CDT entry. 
The structure of the CDT is as follows [12]: 
struct comm_desc_tab { 
 struct DOS_pkt pkt; 
 ………………………. 
 struct interface if_vc; 
 char read_ahead_buff[1024]; 
}; 
 

2. Passive end’s Response to open 
• At the passive end, the CM makes a CDT entry, 

establishes a virtual circuit and then invokes the 

PFS. The PFS spawns a kernel thread to process 
the file request and returns to listen to further 
requests. The thread spawned opens the file and 
returns the CDT index and its Global PID (address 
of the node + local PID) [5] along with the 
message (also returns the first block of data if it is 
a read operation) and suspends itself. 

 
3. read/write calls at the active end 
• Subsequent read/write calls at the active end go 

through the pfs_read and pfs_write methods in the 
PFS. The read/write calls directly map onto the 
CDT entry corresponding to the file based on the 
cdt_active_ind in the remote_file structure. The 
pfs_read and pfs_write access the CDT entries to 
fetch and write data. The pfs_read checks to see if 
the data in the read_ahead_buff (in the CDT) is 
greater than the requested length. If so, it copies 
the data from the CDT to the USER space into the 
read buffer specified along with the read call. In 
the case where the requested length is greater than 
the CDT buffer length, the PFS builds a packet 
(requesting for a 1K block), registers it with the 
CDT, and invokes the CM for transmission and 
blocks for the arrival of the data. Writes are 
typically stored in the CDT and flushed to the 
remote end after the CDT buffer reaches 1K. 

 
4. Passive end’s response to read/write 
• When the message arrives at the passive end, the 

CM realizes that the packet is on its way to the 
specific kernel thread and wakes it up. The thread 
reads or writes data, builds a packet and registers 
it with the CDT and invokes the CM to transmit 
the message. It then suspends itself waiting for 
further requests and remains alive until the file is 
closed. 

 
5. Active end closes the file 
• After the active end is done processing, it closes 

the file by making a close call, which is translated 
into a pfs_close call, which sends a message to the 
kernel thread at the remote end directing it to exit. 

In the following section, we will discuss the 
performance results of the PFS. 
 

7.0 Performance 
In this section, we present the preliminary 

performance results obtained by analyzing the PFS 
against NFS, network file system. All experiments 
were conducted with the following setup: 
• Using Pentium 133MHZ machines, with 32MB of 

RAM, interconnected with Ethernet [13] adapter 
cards (16 and 8 bit cards). 

• With default NFS block size of 1K. 



• In the case of NFS, the time taken to fetch the file, 
the first time is considered.  

• All time values presented are averaged 

milliseconds.  
Let us look at the experiments conducted. 
 

Experiment #1 
In this experiment, we compare the average 

time taken, by NFS and PFS, to fetch files of different 
sizes. We considered standard file sizes of 10K, 50K, 
100K, 500K and 1M. The graph depicts the results. 
The graph (Figure 2) uses a logarithmic scale for the y-
axis, to clearly show the performance gain achieved 
for all file sizes. The PFS consistently performs better 
than NFS for all file sizes. Usually, in file systems, 
most files accessed are less than or equal to 10K [14]. 
PFS has a considerable performance gain of around 30 
to 40 msecs over NFS for this file size. 

The time taken to fetch files are calculated as 
follows: In general, the time taken, by an active end, to 
read or write a block is the sum of the time spent by 
the kernel in the VFS layer and the suspend time. The 
suspend time is the sums of the dispatch time, the 
propagation time and the thread processing time. The 
dispatch time is sums of the time taken to build a 
PODOS packet, the time consumed to make a CDT 
entry and the time taken to transmit the packet and is 
usually around 200 to 300 microseconds. The 
propagation time is the sums of the forward 
propagation, the backward propagation and the time 
taken to filter out PODOS packets at both active and 
passive ends. The propagation time varies with 
network load. The transmit time is the time taken by 
the driver to allocate network buffers, the time taken to 

build Ethernet packets and the time taken to place the 
packet on the media. This is usually around 400 
microseconds. The thread processing time is the time 
taken to wake-up both the active end process (that 
made the request) and the passive end thread, the time 

taken by the thread to make a local read/write and its 
dispatch time. This is a couple of hundred 
microseconds. 
 

Experiment #2 
 The next couple of experiments were 
designed to test the effective utilization of the high-  
speed communication bed, by the PFS. In the previous 
experiment, all file fetches were made on the same 
network interface. In this experiment, the PFS makes 
use of the “Transmission-Group” feature of the CM, 
wherein virtual-circuits are multiplexed across 
multiple network interfaces [12]. To test this further, 
we studied the performance of this setup under varied 
network loads. These results were compared against 
NFS, which makes all file fetches on a single network  
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interface (immaterial of the load). The results under 
5%, 10%, 15% and 20% network loads are depicted in  
Figure3, Figure4, Figure5 and Figure6. Since the CM 
distributes virtual circuits uniformly using a round-
robin mechanism, the overall PFS performance is 
improved when compared against NFS. At all loads, 
the PFS consistently has a 30 to 50 msecs gain over 
NFS for file sizes around 10K, a 100 to 200 msecs gain 
for file sizes around 50K, and a couple of hundred 
msecs gain for file sizes around 100K. When 
clustering activities tend to be intense, these are 
considerable performance gains, which would improve 
overall system throughput. 

  
Listed below are the average times, in 

milliseconds, for the system calls: open, read and 
close. These were computed by studying the above 
results. 

          NFS           PFS 
open 2.4 1.5 
close 0.052 0.03 
read 10 6 
 

8.0 Conclusion 
We have presented PFS, a distributed file 

system for a cluster of workstations. We have 
described how PFS builds an efficient file-sharing 

environment on top of the high-speed communication 
subsystem. We then described the design and 
implementation of PFS, discussing its key features. A 
few design features discussed were: a hybrid naming 
scheme, Lazy updates and Assumed-mounts. 
Implementation features include: i-node operations 
mapping, read-aheads and state-full kernel threads. We 
then presented a performance analysis of the PFS 
comparing it with NFS, thereby showing the 
performance gains achieved. 
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