
The PODOS File System – Exploiting the High-Speed
Communication Subsystem

Sudharshan Vazhkudai Tobin Maginnis

Department of Computer and Information Science

University of Mississippi
302, Weir Hall, University, MS 38677, USA

Abstract
 Performance Oriented Distributed Operating System (PODOS) is a clustering environment, being built on a
monolithic Linux kernel. PODOS augments very few components to the Linux kernel in order to make it distributed.
These minimal components are the Communication Manager (CM), the Resource Manager (RM), the PODOS File
System (PFS) and the Global IPC (GIPC). Each one of these components are designed and implemented with key
performance benefits. They are designed to exploit the basic Linux operating system in numerous ways.
 In this paper we discuss the design, implementation and performance of the PODOS File System (PFS). We
discuss a combination of the overall design and implementation strategies and their implications on the distributed file
system usage and performance. These include a Hybrid Naming Scheme that strikes a balance between transparency
and performance; an Assumed-mounts strategy which obviates the need for expensive remote file systems setup; a
Lazy-update mechanism which modifies the Unix file sharing semantics by delaying updates to remote nodes; the use
of state-full kernel threads as against state-less servers; the tweaking of the Linux VFS layer to map traditional i-node
operations onto remote file access requests, thereby tightly integrating the PFS with the Linux file system; and the use
of read-aheads for improved performance.

The paper further discusses how the PFS, in conjunction with the underlying high-speed communication
subsystem, that short-circuits the network protocol stack and further multiplexes virtual-circuits across multiple
network interfaces, provides an efficient clustering environment for file sharing.

Keywords: Distributed File Systems, Clustering, Distributed Operating Systems.

1.0 Introduction
A variety of clustering systems exists, each

with its own design goals and problem domain. In
general, clustering systems tend to attack issues like
performance, resource sharing, reliability,
transparency, etc. Most of these design goals are
conflicting and can never be accomplished in one
system without some level of compromise [1]. Systems
like Condor [2], Beowulf [3] provide high-
performance environments while systems like Amoeba
(distributed operating system) [4], tend to provide a
good resource-sharing environment.

With these issues in mind, we are designing a
distributed system, PODOS [5], an experimental Linux
[6] cluster (being developed at the University of
Mississippi). The primary intent is to explore the
performance capabilities of a clustering system, but at
the same time provide a good resource-sharing
environment. Furthermore, we try to minimize the
additions to the basic operating system [7]. Each node
in the PODOS cluster is a monolithic Linux kernel
comprising of the following components:

The Communication Manager (CM) handles
remote communication in the PODOS by using a

custom protocol to interact with peer CMs in the
cluster. Higher-level layers (RM, GIPC, PFS) use the
CM to talk to their peer components in the cluster [7].

The Resource Manager (RM) in each node
maintains global system state information, i.e.,
information about each node in the cluster. The RM
makes use of the CM to transmit and receive system
information in a broadcast or a piggybacked fashion
among its peers [7].

The Global Inter Process Communication
(GIPC) provides a mechanism with which processes
can communicate in PODOS, by allocating a global
PID (GPID) for every process in PODOS so that
processes can be uniquely identified. GIPC further
provides communication primitives for processes to
communicate among themselves [7].

The PODOS File System (PFS) extends the
basic operating system file capabilities to support
distributed file access. Processes will be able to
recognize non-local file names and invoke the PFS.
PFS local-to-remote requests will be carried out by
simply invoking the CM [7].

In the following sections, we will present an
argument for the purpose of yet another distributed file

system, by discussing the features of popularly used
distributed file systems, their drawbacks, and how the
PFS attempts to minimize these drawbacks. We then
explain the overall structure and architecture of the
PFS and finally present a few performance results.

2.0 Distributed File Systems
There are a number of distributed and

network file systems, each with its own design goals.
In this section, we will briefly look at two of them, the
NFS [8] and Coda [9].

NFS is a network file system by Sun
Microsystems, designed for a network of computers.
NFS works in both LAN and WAN environments.
NFS uses a standard networking protocol called
Remote Procedure Calls (RPC) [10], which is built on
sockets and UDP [11]. NFS is based on the virtual i-
node architecture, wherein a virtual i-node is
constructed for each remote file. NFS uses state-less
servers that increase their reliability but make them
slower. NFS performs read-aheads and entire file
caching [8].

Coda is a distributed file system from CMU.
It uses the standard TCP/IP protocol. Coda is primarily
intended to be a wide area distributed file system and
implements an extensive caching mechanism for
mobile and disconnected operation [9].

Before discussing the PFS let us briefly look
at the communication protocol it uses, thereby
justifying the need for yet another distributed file
system.

3.0 Communication in PODOS
Communication in PODOS is handled by the

CM. Higher-level PODOS layers (RM, PFS, GIPC)
rely on the CM for packet transmission and reception.
The CM in each node uses a specialized protocol to
talk to its neighbors. The CM comprises of the
following components [12]:

The Communication Descriptor Table (CDT)
is the CM’s interface to the other PODOS layers. The
higher-level PODOS protocols register their packets
with the CDT. The CM performs all the intricate
details involved with packet transmission and
timeouts. The CM also uses the CDT to construct a
virtual-circuit (a connection for a longer duration),
which helps in streamlining communication between
peer components [12].

Nodes in PODOS have been configured with
multiple Ethernet interfaces to increase the LAN
bandwidth. The CM exploits this architecture by
multiplexing virtual-circuits (open-read-write-read…-
close calls) across these interfaces using a round-robin
strategy. This is referred as Transmission-Group [12].

The PODOS-packet protocol short-circuits
the traditional network protocol stack (the OSI model
[11]) to send and receive packets. The CM directly
interacts with the datalink layer (the Ethernet [13]
driver) of the network stack, thereby bypassing all the
other layers. Thus, the PODOS packets have a unique
Ethernet protocol ID [12].

The above mentioned features of the CM
provide an excellent high-speed communication
environment upon which higher-level layers could be
built [12].

4.0 Motivation for PFS
 Since PODOS employs a high-speed
communication mechanism, we needed a file system
that could exploit this feature of PODOS. The network
file systems discussed in section 2.0 are based upon the
traditional TCP and UDP protocols that were primarily
designed for wide area networks. For example, the
NFS uses a networking standard called RPC, which is
built upon UDP (TCP versions are available too.). RPC
is another layer over traditional networking protocol,
which definitely makes programming simpler and the
system more reliable, but also increases the latency
time. Added to this, NFS uses state-less servers [8],
which would make it reliable but slower. We needed to
minimize the layer overhead and thus needed a file
system that could function in such an environment.
Further, we realized that an efficient file system could
be designed and implemented with high performance
benefits. We required a file system for a cluster in a
local area network. This led to the evolution of the
PODOS File System (PFS).
 Let us look at the design and implementation
of the PFS.

5.0 The PFS
 In this section, we will discuss the PODOS
File System, its architecture and implementation.

5.1 Overall Structure
Each node in the PODOS cluster is named as

linus1, linus2, linus<n>. Every node has its own
unique file system, i.e., PODOS does not strive to
provide a unified file system, but tries to provide a
high-speed and efficient environment for sharing
resources in other nodes. The following sections
discuss a few important design decisions, which would
dictate the manner in which the PFS would be used
and would behave. They are:

• Naming Scheme
• Assumed Mounts
• Lazy Update Semantics

5.1.1 Naming Scheme
 Every distributed file system has to have a
naming convention that would help resolve local and
remote file names. Traditionally, distributed systems
have followed three approaches [4]:

1. Machine name + path name of the file.
2. Mounting remote file systems onto local file

hierarchy.
3. A single unified name space.

In PODOS, we have adopted a hybrid approach
between options 1 and 2. Remote file names have to be
specified along with their machine names, but these
machine names are tightly integrated into the local file
system hierarchy as directories in order to facilitate
easy access to remote files using traditional file system
structure. For example, if “miaow” is a file that resides
in the root directory of the node, “linus4”, then this file
can be accessed from any other node by simply
specifying, “/linus4/miaow”, where “linus4” is a
directory under “/” in the local file system hierarchy.
Typically, this directory could reside anywhere in the
local file hierarchy. Hiding the machine names simply
involves another layer of mapping (mapping machine
names to local directories). It is a design tradeoff
between performance and transparency.

5.1.2 Assumed Mounts

Every node in PODOS can access files and
directories in every other node by specifying the
machine name, followed by the path. Every node in the
cluster is assumed mounted in every other node. No
explicit mounting is necessary as required in NFS.
NFS spends a lot of time creating virtual i-nodes
(vnodes) for each remote file. This is essential for the
design goals of NFS (stresses on reliability, supports
wide-area mounts, etc.,) [8].

When an access is made to a file,
“ /linus4/miaow”, the PFS, contacts the RM to check
the validity of the node, “linus4”. The RM in turn
contacts the SST to check if “linus4” is a valid host
and if it is alive and finally returns its results to PFS. If
RM returned a positive result, then the PFS proceeds to
fetch the file. Thus, the PFS attempts to blend-in the
remote file systems into the local file system hierarchy
by treating machine names as implicit directories, and
interpreting them appropriately. The entries “/linus4” ,
“/linus5” , etc., are created as directories in each node
at startup.

5.1.3 Lazy Update Semantics

Typical distributed systems follow one of the
following file sharing semantics [4]:

1. Unix Semantics, where updates are
visible immediately.

2. Session Semantics, where updates are
visible only after the file is closed.

Figure 1
Following the Unix semantics is very costly in a
distributed scenario and session semantics leads to
consistency problems. Thus, we employ a Lazy Update
Semantics, which is a slightly modified version of the
Unix semantics, wherein updates are made visible after
a certain size (typically 1K).

Let us look at the architecture and
implementation of the PFS.

5.2 Architecture
In this section, we will discuss the following:

• Mapping i-node operations

• Kernel resident state-full threads

• Read ahead caching
These features help in making the PFS robust and
highly tuned towards performance.

5.2.1 Mapping i-node Operations

The PFS is tightly integrated with the Linux
file system and exploits its architecture for
performance benefits (Figure 1). PFS uses the same
file access primitives for both local and remote file
operations. The PFS exploits the Linux operating
system’s virtual file system (VFS) [6] interface to
implement remote file access. The VFS is an elegant
mechanism that is responsible for Linux file system’s
flexibility and performance. The Linux operating
system supports multiple file systems using the VFS

Virtual

PFS

System

loc
al

Fo

pfs
open

CDT CDT

Yet
another

PFS
thread

lan

User

Kernel

Disk
open

inod
e/fil
e

File System

Disk
open

inod
e/file
Fops

i-node/
file
File-ops

i-node

File-ops

i-node/
file
File-ops

Local Remote
Files Files

LAN

interface. The VFS layer provides hooks and generic
interfaces which specific file systems could use.
Specific file system implementations (ext2, MSDOS,
etc.,) implement these interfaces and can be plugged
into the hooks. We have modified the VFS layer to
incorporate support for remote file fetches. This is
achieved through the i-node operations mapping
technique. The i-node operations mapping, done at the
active end, is a technique with which the file
operations of an i-node are mapped to methods that
implement remote file accesses. Let us look at how this
is accomplished.

Typically, in local file accesses, the VFS
layer obtains the i-node of the file being fetched. This
i-node is of type, struct inode *. This structure contains
all necessary information about the file, its creation
time, modification time, etc. It also contains the VFS
element, i_op, of type struct inode_operations *. It
contains an element, default_file_ops, which is of type,
struct file_operations *. This structure contains
function pointers, which hold the addresses of the file
system specific functions [6].

Once the VFS obtains the i-node, it simply
makes a call inode->i_op->default_file_ops-
>open(inode, f) which invokes the file system specific
open call. Inside the VFS layer, we map these i-node
operations to functions that perform remote opens,
reads and writes. The remote operations in the PFS are
performed by pfs_open(), pfs_read(), pfs_write() and
pfs_close(). The mapping is accomplished by: inode-
>i_op->default_file_ops-open=&pfs_open; this
statement sets the function pointer to hold the address
of the pfs_open() function. Read and write pointers are
set as above (seeks could be done similarly). In short,
the PFS uses the VFS architecture to channel remote
file operation through traditional i-node structures.
Thus, the advantages to this approach are:

• Speed
• Tight Integration with traditional file

system.
• Same primitives for local and remote

accesses.
We will discuss more about the functionality of the
above mentioned methods in section 6.0. Let us look at
kernel threads.

5.2.2 State-full Kernel Threads

A key design decision of the PFS is the use of
kernel resident state-full threads. These threads are
specialized kernel-level worker-bees of the PFS,
started for each remote file request. These state-full
threads reside at the passive end. State-full threads
maintain the state information of the open files, like
the file descriptor position. The use of state-full
threads provides better performance and shorter
messages over NFS that uses a state-less server. State-

less servers are typically more fault-tolerant but are
slower and result in longer messages (as filename and
position in the file has to be sent with each read/write
request).

The CM, upon receipt of a file fetch request,
directs it to the PFS. The PFS spawns a thread (called
“Yet Another PFS”) and keeps it in the kernel space.
The reason behind having a kernel thread is to improve
performance by minimizing the number of context
switches that would result otherwise. The main PFS
thread goes back to listening for further requests after
creating the thread. Thus, it behaves like a concurrent
server in processing remote requests. From then on, the
kernel thread takes the responsibility of processing
further requests with reference to the file. Once its
properties are set, it opens the file using the local
system’s file-primitives. After opening the file the
kernel thread returns an acknowledgement (and the
first block if read operation) and suspends itself. It
wakes up whenever further requests to that particular
file arrive, processes it and goes back to suspended
state. The kernel thread remains alive until the file is
closed at the active end. When the file is finally closed
at the active end, the kernel thread closes the file
locally and performs an exit.

5.2.3 Read-ahead Caching
 The PFS employs read-ahead caching to
further improve the performance. It is traditional in
distributed file systems to perform read-aheads. The
PFS fetches data from the remote system in terms of
1K blocks and buffers it in the Communication
Descriptor Table. As long as the length of the data
requested is less than the length of the data in the CDT,
the PFS avoids making a remote fetch. The moment
the length requested is greater than the length of the
buffered data in the CDT, a 1K block is fetched from
the remote end. Read-aheads are typical in file systems
(even etx2 performs read-ahead; NFS performs read-
aheads and entire file caching). In general, read-aheads
work on the principle that most file accesses are
sequential, and drastically improve the file system
performance [14].
 Let us look at the implementation in detail by
analyzing a remote file fetch.

6.0 Tracing a Remote File Fetch
In this section, we will trace the execution of

a remote file fetch, thereby discussing the various
components of the PFS and their interaction with the
CM and the RM. The protocol used by PFS for peer-
to-peer communication (PFS-PFS) is as follows:
1. The open call at the active end
• The active end initiates the remote request using

an open system call in which it specifies the

filename along the remote host name. For
example, “/linus4/miaow”.

• The PFS component in the VFS layer (pfs_open)
contacts the RM, to check to see if “linus4” is a
valid host in the cluster. The RM contacts the
System State Table (SST) to verify details about
“linus4” .

The fd-cdt map

• If “linus4” is a valid host in the cluster, the RM
returns a TRUE value. The PFS component in the
VFS layer then initializes a remf structure, of type,
struct remote_file *. The remote_file structure
contains the following:
struct remote_file {
 ………….
 char *host;
 char *filename;

/* the CDT index through which the remote
file is accessed */

int cdt_active_ind;
};
This structure is stuffed into the private_data field
of the file structure. All open files in the Linux
operating system are maintained in a doubly
linked list, each node of which is of type struct file
*. The structure contains the following [6]:
struct file {
 …………………………
 struct file *f_next, *f_prev;
 struct inode * f_inode;
 struct file_operations * f_op;
 void *private_data;
};
This structure is typically allocated by the open
call and subsequently used by read and write calls
to refer to the specific file.

• The PFS builds a packet and then invokes the CM
to make a CDT entry and transmit the packet to
the remote end. Once it makes an entry, it copies
the cdt_active_ind to remf->cdt_active_ind and
returns. This index is important because, it saves
the search time for subsequent read and write
calls, i.e., read and write calls can directly map
onto the CDT entry to refer to the file and not
search through the table. In short, the file
descriptor is directly mapped onto the CDT entry.
The structure of the CDT is as follows [12]:
struct comm_desc_tab {
 struct DOS_pkt pkt;
 ……………………….
 struct interface if_vc;
 char read_ahead_buff[1024];
};

2. Passive end’s Response to open
• At the passive end, the CM makes a CDT entry,

establishes a virtual circuit and then invokes the

PFS. The PFS spawns a kernel thread to process
the file request and returns to listen to further
requests. The thread spawned opens the file and
returns the CDT index and its Global PID (address
of the node + local PID) [5] along with the
message (also returns the first block of data if it is
a read operation) and suspends itself.

3. read/write calls at the active end
• Subsequent read/write calls at the active end go

through the pfs_read and pfs_write methods in the
PFS. The read/write calls directly map onto the
CDT entry corresponding to the file based on the
cdt_active_ind in the remote_file structure. The
pfs_read and pfs_write access the CDT entries to
fetch and write data. The pfs_read checks to see if
the data in the read_ahead_buff (in the CDT) is
greater than the requested length. If so, it copies
the data from the CDT to the USER space into the
read buffer specified along with the read call. In
the case where the requested length is greater than
the CDT buffer length, the PFS builds a packet
(requesting for a 1K block), registers it with the
CDT, and invokes the CM for transmission and
blocks for the arrival of the data. Writes are
typically stored in the CDT and flushed to the
remote end after the CDT buffer reaches 1K.

4. Passive end’s response to read/write
• When the message arrives at the passive end, the

CM realizes that the packet is on its way to the
specific kernel thread and wakes it up. The thread
reads or writes data, builds a packet and registers
it with the CDT and invokes the CM to transmit
the message. It then suspends itself waiting for
further requests and remains alive until the file is
closed.

5. Active end closes the file
• After the active end is done processing, it closes

the file by making a close call, which is translated
into a pfs_close call, which sends a message to the
kernel thread at the remote end directing it to exit.

In the following section, we will discuss the
performance results of the PFS.

7.0 Performance
In this section, we present the preliminary

performance results obtained by analyzing the PFS
against NFS, network file system. All experiments
were conducted with the following setup:
• Using Pentium 133MHZ machines, with 32MB of

RAM, interconnected with Ethernet [13] adapter
cards (16 and 8 bit cards).

• With default NFS block size of 1K.

• In the case of NFS, the time taken to fetch the file,
the first time is considered.

• All time values presented are averaged

milliseconds.
Let us look at the experiments conducted.

Experiment #1
In this experiment, we compare the average

time taken, by NFS and PFS, to fetch files of different
sizes. We considered standard file sizes of 10K, 50K,
100K, 500K and 1M. The graph depicts the results.
The graph (Figure 2) uses a logarithmic scale for the y-
axis, to clearly show the performance gain achieved
for all file sizes. The PFS consistently performs better
than NFS for all file sizes. Usually, in file systems,
most files accessed are less than or equal to 10K [14].
PFS has a considerable performance gain of around 30
to 40 msecs over NFS for this file size.

The time taken to fetch files are calculated as
follows: In general, the time taken, by an active end, to
read or write a block is the sum of the time spent by
the kernel in the VFS layer and the suspend time. The
suspend time is the sums of the dispatch time, the
propagation time and the thread processing time. The
dispatch time is sums of the time taken to build a
PODOS packet, the time consumed to make a CDT
entry and the time taken to transmit the packet and is
usually around 200 to 300 microseconds. The
propagation time is the sums of the forward
propagation, the backward propagation and the time
taken to filter out PODOS packets at both active and
passive ends. The propagation time varies with
network load. The transmit time is the time taken by
the driver to allocate network buffers, the time taken to

build Ethernet packets and the time taken to place the
packet on the media. This is usually around 400
microseconds. The thread processing time is the time
taken to wake-up both the active end process (that
made the request) and the passive end thread, the time

taken by the thread to make a local read/write and its
dispatch time. This is a couple of hundred
microseconds.

Experiment #2
 The next couple of experiments were
designed to test the effective utilization of the high-
speed communication bed, by the PFS. In the previous
experiment, all file fetches were made on the same
network interface. In this experiment, the PFS makes
use of the “Transmission-Group” feature of the CM,
wherein virtual-circuits are multiplexed across
multiple network interfaces [12]. To test this further,
we studied the performance of this setup under varied
network loads. These results were compared against
NFS, which makes all file fetches on a single network

PDFS-NFS

10

100

1000

10000

Figure 2 File Size

T
im

e
(m

ill
i s

ec
o

n
d

s)

NFS 110 480 950 4720 9301

PDFS 75 340 700 3500 7200

10K 50K 100K 500K 1M

5% Network Load

100

1000

10000

Figure 3 File Size

T
im

e
(m

ill
i s

ec
o

n
d

s)

NFS 130 550 1200 5700 10100

PDFS 89 400 900 4200 8200

10K 50K 100K 500K 1M

10% Network Load

100

1000

10000

Figure 4 File Size

T
im

e
(m

ill
i s

ec
o

n
d

s)

NFS 150 640 1300 6500 10900

PDFS 101 500 1070 5100 9250

10K 50K 100K 500K 1M

interface (immaterial of the load). The results under
5%, 10%, 15% and 20% network loads are depicted in
Figure3, Figure4, Figure5 and Figure6. Since the CM
distributes virtual circuits uniformly using a round-
robin mechanism, the overall PFS performance is
improved when compared against NFS. At all loads,
the PFS consistently has a 30 to 50 msecs gain over
NFS for file sizes around 10K, a 100 to 200 msecs gain
for file sizes around 50K, and a couple of hundred
msecs gain for file sizes around 100K. When
clustering activities tend to be intense, these are
considerable performance gains, which would improve
overall system throughput.

Listed below are the average times, in

milliseconds, for the system calls: open, read and
close. These were computed by studying the above
results.

 NFS PFS
open 2.4 1.5
close 0.052 0.03
read 10 6

8.0 Conclusion
We have presented PFS, a distributed file

system for a cluster of workstations. We have
described how PFS builds an efficient file-sharing

environment on top of the high-speed communication
subsystem. We then described the design and
implementation of PFS, discussing its key features. A
few design features discussed were: a hybrid naming
scheme, Lazy updates and Assumed-mounts.
Implementation features include: i-node operations
mapping, read-aheads and state-full kernel threads. We
then presented a performance analysis of the PFS
comparing it with NFS, thereby showing the
performance gains achieved.

References
[1] A. Goscinski, "Distributed Operating Systems The
Logical Design," Addison-Wesley Publishing
Company, 1991.
[2] M.J. Litzkow, M. Livny, and M.W. Mutka,
"Condor-A Hunter of Idle Workstations," Proceedings
of the 8th International Conference on Distributed
Computing Systems, June 1988, pp. 104-111.
[3] P. Merkey, "Beowulf Project at CESDIS,"
http://beowulf.gsfc.nasa.gov, 1994.
[4] A.S. Tanenbaum, "Distributed Operating Systems,”
Prentice Hall, 1995.
[5] S. Vazhkudai, P.T. Maginnis, "Performance
Oriented Distributed Operating System (PODOS),"
Technical report Computer Science Department,
University of Mississippi, May 99.
[6] L. Torvalds, "Linux Kernel Site,"
http://www.kernel.org, May 1993.
[7] P.T. Maginnis, "Design Considerations for the
Transformation of MINIX into a Distributed Operating
System," Proceedings of the 1988 ACM 16th Annual
Computer Science Conference, 1988, pp. 608-615.
[8] S.M. Inc., "NFS: Network File system Protocol
Specification," SRI Network Information Center, vol.
RFC 1094, Mar. 1989.
[9] P. Braam, "The Venus Kernel Interface,"
http://www.coda.cs.cmu.edu, Mar. 1998.
[10] A.D. Birrell, B.J. Nelson, "Implementing Remote
Procedure Calls," ACM Trans. On Computer Systems,
Feb 1984, vol. 2, pp. 39-59.
[11] A.S. Tanenbaum, "Network Protocols," ACM
Computing Surveys, vol. 13, no. 4, Dec. 1981, pp. 453-
489.
[12] S. Vazhkudai, P.T. Maginnis, "A High
Performance Communication Subsystem for PODOS,"
Proceedings of the 1st IEEE International Workshop on
Cluster Computing, December 99, pp. 81-91.
[13] D.R. Boggs, J.C. Mogul, C.A. Kent, "Measured
Capacity of an Ethernet: Myths and Reality," ACM
SIGCOMM’88 Symposium, vol. 18, no. 4, Aug. 1988,
pp. 222-234.
[14] M. Satyanarayanan, "A Study of File Sizes and
Functional Lifetimes," Proc. 8th Symp. On Operating
Systems principles, ACM, 1984, pp. 96-108.

15% Network Load

100

1000

10000

Figure 5 File Size

T
im

e
(m

ill
i s

ec
o

n
d

s)

NFS 178 720 1520 7500 11700

PDFS 124 605 1200 6200 10400

10K 50K 100K 500K 1M

20% Network Load

100

1000

10000

Figure 6 File Size

T
im

e
(m

ill
i s

ec
o

n
d

s)

NFS 200 880 1600 8000 13500

PDFS 150 715 1340 6700 12000

10K 50K 100K 500K 1M

