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Abstract. Applications that generate bursty I/O load, like 
checkpointing, require additional support to perform 
efficiently on next generation petascale supercomputers. Tens 
of thousands of processors, generating terabytes of snapshot 
data at once at each timestep, can easily overwhelm a storage 
system. Further, even at the current peak I/O bandwidth rates, 
offered by parallel file system deployments at leadership class 
facilities, an application is likely to spend a significant portion 
of its runtime checkpointing. To address these issues, we 
propose a checkpoint storage device, built from memory 
resources, that acts as an intermediary to the central parallel 
file system. Our system comprises of a dedicated manager that 
aggregates memory resources from processors (benefactors) 
and makes it available as a collective space for checkpointing 
clients, using a standard POSIX file system interface. We 
argue that such a system has the potential to alleviate the I/O 
bandwidth bottleneck for bursty I/O operations like 
checkpointing by aggregating memory and interprocessor 
bandwidth. 

I. INTRODUCTION 
The Challenge: The advent of PetaFlop (PF) 
supercomputers will pose fundamental challenges to 
scalable, fault-tolerant HPC. At current sub-petaflop 
levels, applications use tens of thousands of compute 
cores (Table 1) for hours or days on end. In such 
settings, checkpointing is an indispensable failure 
impact mitigation technique.  

Typically, a parallel job checkpoints its state 
periodically during the course of its run in an attempt to 
strike a balance between the cost of recovering the 
application state in case of failure and checkpointing 
overheads. A high checkpoint frequency results in a low 
amount of computation that needs to be repeated in case 
of a failure; it generates, however, more data, stressing 
the I/O system.  Additionally checkpointing is used for 
other scenarios such as debugging and auditing where 
the checkpoint frequency is predetermined. 

Consider a 10,000 core job on the Oak Ridge 
National Laboratory (ORNL) Jaguar system which has 
2 GB of memory per core and no local disk. Assume 
further that the job runs for 12 hours and checkpoints 
every half hour. For this job, in the worst case, when all 
of the memory per core is saved as state information, 
500TB of checkpoint data is produced during a run. 
Such data volumes can overwhelm any storage system. 
As we scale to PF systems, this problem is likely to get 
acute with the increase in the number of computing 
cores and the amount of data to be saved at each 
timestep. 

Modern parallel file systems (e.g., Lustre [1], 
PVFS [2] and GPFS [3]) attempt to cope with such 

intense I/O demands by building atop thousands of I/O 
servers and tens of thousands of disks. For example, the 
Jaguar file system (based on Lustre) currently offers an 
aggregate peak I/O bandwidth of around 55GB/s and 
plans to scale to around 240 GB/s as the system reaches 
one PF [4]. On this system, to checkpoint 20TB of data 
each timestep (10,000 cores * 2 GB per core) at 55 
GB/s would consume 6 minutes. Checkpointing every 
half hour would require spending 20% of the run time 
just to prepare against failure [5]. 

A survey of DOE applications [6] suggests that 
most applications require a sustained 1GB/s I/O 
throughput for every TeraFlop of peak computing 
performance. Thus, a PF computer will require 1TB/sec 
of I/O bandwidth, which is still two orders of magnitude 
lower than the theoretical estimate of 100TB/s that a 
balanced PF machine should provide according to Jim 
Gray [7].  

Compounding the problem is the fact that, 
historically, I/O bandwidth has not scaled with 
processor frequencies and that when the I/O channel is 
shared across multiple applications, the effective 
throughput achieved by any given application 
significantly deteriorates. 

This situation calls for novel techniques to address 
checkpointing in PF systems, in a way that achieves the 
desired fault-tolerance level and yet does not 
compromise the overall system throughput.   
Table 1: Number of cores and memory size for recent PF systems.  

System #Cores Aggregate 
Memory (TB) 

Top500 
Rank 

RoadRunner (LANL) 122,400  98 1 
BlueGene/L (LLNL) 212,992 69 2 
BlueGene/P (ANL) 163,840 80 3 
Ranger (TACC) 62,976 123 4 
Jaguar Cray XT4 (ORNL) 31,328 62 5 

An Opportunity: As a supercomputer’s cross-section 
bandwidth is generally higher than its bandwidth to the 
storage system, harnessing memory resources from a 
dedicated processor pool to build a memory-based 
checkpoint storage system (or simply to provide a large 
buffer to temporarily receive the bursty checkpoint 
workload) can significantly improve the checkpointing 
performance as perceived by an application.  

For example, each processing element (PE) in the 
Jaguar Cray XT4 machine is a quadcore connected to its 
memory using a 6.4 GB/s HyperTransport and is in turn 
connected to six other PEs using a 3D-torus router 
(switching speed of 45.6 GB/s). Consequently, Jaguar 
can offer tens—even hundreds—of TB/s of aggregate 
memory bandwidth. Table 2 depicts example machine 
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configurations from Cray [8].  
Previous checkpoint solutions that target the 

supercomputing space [9, 10] have not harnessed the 
possibility of aggregating a dedicated set of memory 
resources to accelerate the checkpointing operation and 
have simply resorted to using the memory available 
locally.  
Table 2: Sample Cray XT3 machine configurations [8]. 

Cabinets #cores Memory 
(TB) 

Aggregate 
Memory 

BW(TB/s) 

Memory 
BW/PE 
(GB/s) 

Bisection 
BW(TB/s)

6 548 4.3 2.5 4.5 0.7 
24 2,260 17.7 14.5 6.4 2.2 
96 9,108 71.2 58.3 6.4 5.8 

320 30,508 239 196 6.4 11.7 

Contributions: This article proposes a framework to 
aggregate memory from dedicated PEs within extreme-
scale supercomputers. Such an aggregate memory-based 
device can be used for in-memory checkpointing or, we 
argue, as an intermediate staging ground to smooth out 
bursty workloads such as checkpointing. This technique 
will accelerate application’s data handover and, we 
speculate, will enable apparent application checkpoint 
rates of hundreds of GB/s or even a few TB/s. We have 
further designed a scheme to transparently “lazily push” 
or drain from the aggregate memory device to a shared 
parallel file system as a means both to make room for 
new incoming data and to reliably store it on stable 
storage. 

II. FEASIBILITY DISCUSSION 
The following reasons make introducing an aggregate, 
memory-based intermediary device to support 
checkpointing feasible.  

It is common in HPC job submission systems for 
jobs to oversubscribe for processors to prepare for 
failure. For example, depending on the failure rate of 
the machine, a particular job might ask for 12,000 cores 
instead of the 10,000 cores that it actually needs. The 
remaining cores are used for failing over processes. One 
can imagine, an aggregated memory device built out of 
such pools. This approach has the advantage that it uses 
the application’s own over subscribed processor 
allocation. Depending on the charging scheme and the 
constraints of each specific system, applications can 
factor such pools into their requests. For example, often 
applications are charged proportionally with the number 
of processors x walltime used. As turnaround time is 
directly dependent on the checkpointing performance, 
more processors do mean higher charges but, 
potentially, for shorter time. Additionally, the 
application may decide what to optimize: the turnaround 
time or to its costs.  

Alternatively, if the HPC center observes that I/O 
bandwidth bottleneck in checkpointing significantly 
hampers its serviceability, a dedicated checkpoint 
device based on harnessing memory resources from 

dedicated processor pools can be installed as a system-
wide option. One can even extend this further and 
consider better provisioning of the supercomputer by 
way of providing processor-local flash memory, which 
can then be aggregated to provide a dedicated 
checkpointing device. 

Aggregation of memory resources is also made 
feasible as modern supercomputers are equipped with 
tens—or even hundreds—of TBs of memory and 
powerful interconnects (Table 2). There has been little 
effort to use these resources collectively and in concert 
with the storage system. While the HPC center’s shared 
filesystem is crowded and struggling to meet user I/O 
bandwidth demands, vast amounts of residual 
bandwidth across these resources remain untapped. 

Finally, a recent survey of Tier 1 applications for the 
Jaguar system [6] that included application codes from 
Fusion (GTC), Combustion (S3D), Climate (POP) and 
Astrophysics (Chimera) suggests that most applications 
seldom use all the available memory per core and there 
is a significant amount of unused residual memory. In 
such cases, local PE’s memory buffers can be used in 
addition to the dedicated aggregate memory-based 
checkpointing device to temporarily store the PE’s 
snapshot data.  

III. REQUIREMENTS FOR A MEMORY-AGGREGATION 
SYSTEM THAT SUPPORTS BURSTY IO 

In brief, we plan to aggregate memory form donor 
nodes and use it as a large buffer between an application 
that produces bursty write traffic (e.g., checkpointing) 
and a storage system that cannot accommodate these 
bursts without slowing down the application. This 
architecture offers a number of tuning knobs: 
 Relatively straightforward benchmarking to evaluate 

the size and the frequency of checkpoint operations 
can be used to approximate the size of the burst 
generated by applications.  This, in turn, offers a first 
approximation for size of the aggregated memory 
required to completely decouple the application and 
the slower I/O channel. However, since data can be 
simultaneously drained to stable storage a smaller 
aggregate memory will suffice. For a more precise 
estimate that takes the above factor into account we 
additionally need to evaluate application’s write 
throughput to the aggregate memory and the I/O 
throughput to stable storage.  

 The system can be configured to persist data form the 
aggregated buffer to stable storage at every N 
checkpoint operations (or never) rather than at each 
checkpoint operation. Such a configuration would 
still make checkpoint images temporarily available 
(e.g., for application debugging and monitoring), 
while preserving controlled reliability of the 
application.  
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While checkpointing through an aggregate memory 
device has the potential to improve the throughput of 
the I/O system perceived by applications, it also poses 
several constraints and challenges. 
 Data transfer to stable storage: Snapshot data stored 

in memory needs to be drained to stable storage 
(generally a shared parallel file system). This should 
be performed in an asynchronous fashion so that the 
application perceived throughput for writing a 
checkpoint does not suffer a significant impact. 

 Automated management of transient checkpoint data: 
Checkpoint data is transient in nature and is usually 
not used beyond the lifetime of the run except for 
debugging purposes. An application should be able to 
specify the longevity of the snapshots and inform the 
storage so that this can automate data management 
and optimize space usage accordingly. 

 Scalability: The aggregation system should be able to 
amass memory resources from a large number of 
processors and deal with parallel writes from 
numerous client PEs. 

 Transparency: The proposed system should not 
require application support: applications should be 
oblivious of the use of the aggregated memory 
buffer.  

IV. ARCHITECTURE 
Starting from MosaStore storage system codebase [11] 
we aim to build our aggregate memory-based device. 
MosaStore is a storage system that aggregates disk 
space contributions from connected machines. Our basic 
architecture comprises benefactor processes, running on 
each PE that contributes memory to the system and a 
manager that aggregates these memory contributions 
into a collective space.  

Benefactor PEs can come and go depending on 
volatility of the processor. To accommodate this 
transient behavior, benefactors register with the 
manager using a soft-state registration protocol: 
initially they declare their intention to participate in 
memory aggregation, then, every 30s they update the 
manager about their status. This way the manager 
knows which benefactor processes are alive and can 
approximate the free space at each benefactor.  

The manager keeps track of the memory contributions 
from the benefactors and helps presenting a unified 
storage space to client PEs. The manager maintains 
metadata regarding individual benefactor contributions, 
each benefactor’s status and potentially some history 
about the benefactor. When a client contacts the 
manager, the file to write is divided by the system in 
equally sized chunks. The manager computes a striping 
plan, determining a set of benefactors to send chunks to, 
and a benefactor mapping. One striping policy we have 
implemented is to sort the benefactors on available 

memory space and then perform a round-robin striping 
across a top subset (stripe width) of them. Once clients 
obtain a striping ‘map’, they interact with the 
benefactors directly to send the chunks to benefactors. 
Since the size of the checkpoint data, at any timestep, is 
not known a priori, the client will need to adapt to 
situations such as an overrun of the initial width of 
benefactors. In such cases, the client contacts the 
manager again to readjust the width. Once the entire 
checkpoint operation is completed, the client commits 
the map to the manager, indicating a successful 
operation.  

Incremental Checkpointing: In our previous work 
[12], we have built techniques to detect similarity 
between successive checkpoint images in order to 
minimize the amount of data written during each 
timestep. A simple, yet elegant, strategy is to compute a 
hash of the chunks and to store them as metadata at the 
manager at each timestep, t. At (t+1)th timestep, the 
hashes for chunks of the checkpoint image are 
compared against the stored metadata to detect 
similarity. If the chunk hashes are similar, then the new 
chunk in question need not be written but only a 
reference to the old chunk needs to be retrieved.  

We experimented with this technique in the 
context of checkpointing in a desktop grid environment. 
For an aggregate memory based checkpointing device, a 
similar technique can be adopted. The hash comparison 
is a metadata operation that can be performed between 
the client and the manager and does not involve the 
chunks stored at the benefactors. Consequently, the 
snapshot data from timestep, t, need not be maintained 
in the aggregate memory during timestep, t+1.  

Draining data to a central parallel file system (PFS). 
The aggregate memory buffer needs to create room for 
incoming snapshot data. Thus the data in aggregate 
memory needs to be saved in stable storage. Pushing the 
chunks in benefactor memory to a central PFS (e.g., 
Lustre, PVFS, GPFS) is coordinated independently by 
each benefactor (using a FIFO order) and decoupled 
from accepting application data. 

The drained snapshot data needs to be saved in a 
way that checkpoints can be easily recovered in case a 
restart is needed. To this end, benefactor nodes write 
data chunks as independent files but encode, in the file 
name, all the chunk related information needed to 
restore the original checkpoint file by coalescing the 
files corresponding to individual chunks. We preserve 
the space savings enabled by similarity detection by 
using hard links. 

Traditional file system API. To provide complete 
client-side transparency we use FUSE [13], a Linux 
kernel module. It provides the callback mechanism 
enabling us to offer client access to this aggregate 
memory system as a user-level file system. Once a 
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FUSE volume is mounted, all file system calls to the 
mount point are forwarded to the FUSE kernel module, 
which preprocesses and forwards them to our user-level 
file system callbacks. FUSE is officially merged into the 
Linux kernel starting with 2.6.14 version, further 
simplifying adoption of our user space file system. 

V. PRELIMINARY EVALUATION 
We report here preliminary performance evaluation 
results obtained on a small cluster.  While these results 
cannot support our claim that the proposed solution will 
scale to petascale machines they do confirm that, on 
smaller deployments, our prototype performs as 
expected and achieves the desired performance level.  
We hope to present a more thorough evaluation in case 
this paper is accepted,.  

Additionally, we have installed our aggregate 
memory prototype on the BlueGene/P supercomputer at 
Argonne National Laboratory as part of a larger 
software suite. Therein, our system is used to aggregate 
memory from multiple nodes for a mostly-read data 
flow, in the opposite of the write-only data flow 
checkpointing generates. Zhang et al. [14] report results 
for this setup where our system was deployed at the 
BlueGene/P pSet level (that is aggregating memory 
from 64 nodes) on over 2,000 pSets. 

A. The Platform  
We evaluated our prototype using a range of limited 
scale benchmarks. We used a 22-node cluster. Each 
node has an Intel Quad Core Xeon 2.33GHz Processor, 
4GB of RAM, and 1Gbps Ethernet card. For all 
configurations, we report averages and standard 
deviations based on 20 runs.  

We first evaluated the performance and the overhead 
of each individual component of our test platform. 
Unlike in a supercomputer our cluster nodes have local 
disks.  The sustained write throughput on a local disk 
with write caches enabled was 93.2MB/s. The peak 
node-to-node network bandwidth, measured using iPerf 
[15] is 117.38 MB/s.  

B. Write Throughput to Aggregate Memory 
Our implementation uses write buffers at the client to 
decouple the application from the actual data transfer to 
benefactor nodes. Therefore, we define two 
performance metrics. First, the observed application 
bandwidth (OAB) is the write bandwidth observed by 
the application: the file size divided by the time interval 
between the application-level open() and close() system 
calls. Second, the achieved storage bandwidth (ASB) 
uses the time interval between file open() and until the 
data is entirely transferred off the processing element 
(i.e., all remote I/O operations have completed). Three 
main factors affect the performance of the write 
operation: the client-side buffer size, the memory size 
offered at each benefactor, and the number of 

benefactors used in the write operation.  
In this preliminary evaluation we performed a 

number of experiments to estimate the effect of each of 
these factors and we evaluate the maximum throughput 
at which the aggregated cache can receive data.  

 First, we evaluate the performance metrics form the 
viewpoint of a single client, working in isolation.  
Figure 1 and Figure 2, show the effect of client-side 
buffer size on the observed application bandwidth 
(OAB) and achieved storage bandwidth (ASB), 
respectively, while varying the stripe width from one to 
eight benefactors.  

In these experiments the client successively writes 
1GB files to the aggregated memory device and the data 
is lazily saved to local disks (akin to draining to a 
central file system). Each benefactor offers 1GB of 
memory for aggregation.  

The experiments show that the client-side interface’s 
buffer size directly affects the observed application 
bandwidth (OAB) and does not have a noticeable effect 
on achieved storage bandwidth (ASB). Two 
contributing nodes with 1Gbps NICs can saturate the 
client 1Gbps link, achieving around 110MB/s of write 
throughput, even when only 128MB client-side buffer is 
used at the client. 
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Figure 1. The average observed application bandwidth while varying 
the client-side buffer size.  
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Figure 2. The average ASB while varying the file system buffer size.  
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Second, we asses the aggregate throughput multiple 
clients can achieve when writing concurrently to the 
aggregated memory device. In this experiment, seven 
clients generate load as follows: each client writes, 
back-to-back 20 files of 1GB each, amounting to around 
140 GB of data. To ramp-up the load, clients start at 10s 
intervals. Figure 3, presents the aggregate client 
throughput. We observe a sustained peak throughput of 
about 560MB/s. This indicates that the aggregate 
memory device may be able to receive an intense 
workload as we expect. 
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Figure 3. Throughput at larger scale: seven clients generate a 
synthetic workload to stress an aggregate memory device pool 
supported by 14 benefactor nodes. 

VI. SUMMARY AND FUTURE WORK 
This paper presents an architecture for an intermediate 
storage device, built by aggregating memory resources, 
as means to accelerate HPC applications that generate 
bursty I/O workloads (e.g., checkpointing). Our system 
preserves the standard POSIX I/O interface and 
transparently interspaces the buffer obtained by 
aggregating memory between the application and a 
shared, parallel file system. As the intermediate memory 
device not only aggregates memory but also 
interprocessor bandwidth, the checkpointing clients can 
store data at higher data rates. To strike a balance 
between performance and fault tolerance, our system 
also provides an asynchronous mechanism to drain the 
snapshot data to stable storage, from where the data can 
be retrieved if needed. We have conducted a 
preliminary evaluation of our proof-of-principle 
prototype. Our results indicate that the aggregate 
memory device is able to deliver, as expected, a high-
write throughput.  

We are working towards large-scale deployments 
on ORNL’s Jaguar machine: aggregating at least a few 
thousand PEs and scaling to an equal number of clients. 
Next steps include optimized management of the 
drained data on the central storage system, autonomic 
sizing of the aggregate buffer, enabling seamless 
restarts of applications using the snapshot data written 
through our device, and harnessing residual memory on 
the checkpointing client’s own PE.  
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