
Aggregate Memory as an Intermediate Checkpoint Storage Device
Samer Al-Kiswany *, Matei Ripeanu *, Sudharshan S. Vazhkudai †

* The University of British Columbia, {samera, matei}@ece.ubc.ca
† Oak Ridge National Laboratory, vazhkudaiss@ornl.gov

Abstract. Applications that generate bursty I/O load, like
checkpointing, require additional support to perform
efficiently on next generation petascale supercomputers. Tens
of thousands of processors, generating terabytes of snapshot
data at once at each timestep, can easily overwhelm a storage
system. Further, even at the current peak I/O bandwidth rates,
offered by parallel file system deployments at leadership class
facilities, an application is likely to spend a significant portion
of its runtime checkpointing. To address these issues, we
propose a checkpoint storage device, built from memory
resources, that acts as an intermediary to the central parallel
file system. Our system comprises of a dedicated manager that
aggregates memory resources from processors (benefactors)
and makes it available as a collective space for checkpointing
clients, using a standard POSIX file system interface. We
argue that such a system has the potential to alleviate the I/O
bandwidth bottleneck for bursty I/O operations like
checkpointing by aggregating memory and interprocessor
bandwidth.

I. INTRODUCTION
The Challenge: The advent of PetaFlop (PF)
supercomputers will pose fundamental challenges to
scalable, fault-tolerant HPC. At current sub-petaflop
levels, applications use tens of thousands of compute
cores (Table 1) for hours or days on end. In such
settings, checkpointing is an indispensable failure
impact mitigation technique.

Typically, a parallel job checkpoints its state
periodically during the course of its run in an attempt to
strike a balance between the cost of recovering the
application state in case of failure and checkpointing
overheads. A high checkpoint frequency results in a low
amount of computation that needs to be repeated in case
of a failure; it generates, however, more data, stressing
the I/O system. Additionally checkpointing is used for
other scenarios such as debugging and auditing where
the checkpoint frequency is predetermined.

Consider a 10,000 core job on the Oak Ridge
National Laboratory (ORNL) Jaguar system which has
2 GB of memory per core and no local disk. Assume
further that the job runs for 12 hours and checkpoints
every half hour. For this job, in the worst case, when all
of the memory per core is saved as state information,
500TB of checkpoint data is produced during a run.
Such data volumes can overwhelm any storage system.
As we scale to PF systems, this problem is likely to get
acute with the increase in the number of computing
cores and the amount of data to be saved at each
timestep.

Modern parallel file systems (e.g., Lustre [1],
PVFS [2] and GPFS [3]) attempt to cope with such

intense I/O demands by building atop thousands of I/O
servers and tens of thousands of disks. For example, the
Jaguar file system (based on Lustre) currently offers an
aggregate peak I/O bandwidth of around 55GB/s and
plans to scale to around 240 GB/s as the system reaches
one PF [4]. On this system, to checkpoint 20TB of data
each timestep (10,000 cores * 2 GB per core) at 55
GB/s would consume 6 minutes. Checkpointing every
half hour would require spending 20% of the run time
just to prepare against failure [5].

A survey of DOE applications [6] suggests that
most applications require a sustained 1GB/s I/O
throughput for every TeraFlop of peak computing
performance. Thus, a PF computer will require 1TB/sec
of I/O bandwidth, which is still two orders of magnitude
lower than the theoretical estimate of 100TB/s that a
balanced PF machine should provide according to Jim
Gray [7].

Compounding the problem is the fact that,
historically, I/O bandwidth has not scaled with
processor frequencies and that when the I/O channel is
shared across multiple applications, the effective
throughput achieved by any given application
significantly deteriorates.

This situation calls for novel techniques to address
checkpointing in PF systems, in a way that achieves the
desired fault-tolerance level and yet does not
compromise the overall system throughput.
Table 1: Number of cores and memory size for recent PF systems.

System #Cores Aggregate
Memory (TB)

Top500
Rank

RoadRunner (LANL) 122,400 98 1
BlueGene/L (LLNL) 212,992 69 2
BlueGene/P (ANL) 163,840 80 3
Ranger (TACC) 62,976 123 4
Jaguar Cray XT4 (ORNL) 31,328 62 5

An Opportunity: As a supercomputer’s cross-section
bandwidth is generally higher than its bandwidth to the
storage system, harnessing memory resources from a
dedicated processor pool to build a memory-based
checkpoint storage system (or simply to provide a large
buffer to temporarily receive the bursty checkpoint
workload) can significantly improve the checkpointing
performance as perceived by an application.

For example, each processing element (PE) in the
Jaguar Cray XT4 machine is a quadcore connected to its
memory using a 6.4 GB/s HyperTransport and is in turn
connected to six other PEs using a 3D-torus router
(switching speed of 45.6 GB/s). Consequently, Jaguar
can offer tens—even hundreds—of TB/s of aggregate
memory bandwidth. Table 2 depicts example machine

1

configurations from Cray [8].
Previous checkpoint solutions that target the

supercomputing space [9, 10] have not harnessed the
possibility of aggregating a dedicated set of memory
resources to accelerate the checkpointing operation and
have simply resorted to using the memory available
locally.
Table 2: Sample Cray XT3 machine configurations [8].

Cabinets #cores Memory
(TB)

Aggregate
Memory

BW(TB/s)

Memory
BW/PE
(GB/s)

Bisection
BW(TB/s)

6 548 4.3 2.5 4.5 0.7
24 2,260 17.7 14.5 6.4 2.2
96 9,108 71.2 58.3 6.4 5.8

320 30,508 239 196 6.4 11.7

Contributions: This article proposes a framework to
aggregate memory from dedicated PEs within extreme-
scale supercomputers. Such an aggregate memory-based
device can be used for in-memory checkpointing or, we
argue, as an intermediate staging ground to smooth out
bursty workloads such as checkpointing. This technique
will accelerate application’s data handover and, we
speculate, will enable apparent application checkpoint
rates of hundreds of GB/s or even a few TB/s. We have
further designed a scheme to transparently “lazily push”
or drain from the aggregate memory device to a shared
parallel file system as a means both to make room for
new incoming data and to reliably store it on stable
storage.

II. FEASIBILITY DISCUSSION
The following reasons make introducing an aggregate,
memory-based intermediary device to support
checkpointing feasible.

It is common in HPC job submission systems for
jobs to oversubscribe for processors to prepare for
failure. For example, depending on the failure rate of
the machine, a particular job might ask for 12,000 cores
instead of the 10,000 cores that it actually needs. The
remaining cores are used for failing over processes. One
can imagine, an aggregated memory device built out of
such pools. This approach has the advantage that it uses
the application’s own over subscribed processor
allocation. Depending on the charging scheme and the
constraints of each specific system, applications can
factor such pools into their requests. For example, often
applications are charged proportionally with the number
of processors x walltime used. As turnaround time is
directly dependent on the checkpointing performance,
more processors do mean higher charges but,
potentially, for shorter time. Additionally, the
application may decide what to optimize: the turnaround
time or to its costs.

Alternatively, if the HPC center observes that I/O
bandwidth bottleneck in checkpointing significantly
hampers its serviceability, a dedicated checkpoint
device based on harnessing memory resources from

dedicated processor pools can be installed as a system-
wide option. One can even extend this further and
consider better provisioning of the supercomputer by
way of providing processor-local flash memory, which
can then be aggregated to provide a dedicated
checkpointing device.

Aggregation of memory resources is also made
feasible as modern supercomputers are equipped with
tens—or even hundreds—of TBs of memory and
powerful interconnects (Table 2). There has been little
effort to use these resources collectively and in concert
with the storage system. While the HPC center’s shared
filesystem is crowded and struggling to meet user I/O
bandwidth demands, vast amounts of residual
bandwidth across these resources remain untapped.

Finally, a recent survey of Tier 1 applications for the
Jaguar system [6] that included application codes from
Fusion (GTC), Combustion (S3D), Climate (POP) and
Astrophysics (Chimera) suggests that most applications
seldom use all the available memory per core and there
is a significant amount of unused residual memory. In
such cases, local PE’s memory buffers can be used in
addition to the dedicated aggregate memory-based
checkpointing device to temporarily store the PE’s
snapshot data.

III. REQUIREMENTS FOR A MEMORY-AGGREGATION
SYSTEM THAT SUPPORTS BURSTY IO

In brief, we plan to aggregate memory form donor
nodes and use it as a large buffer between an application
that produces bursty write traffic (e.g., checkpointing)
and a storage system that cannot accommodate these
bursts without slowing down the application. This
architecture offers a number of tuning knobs:
 Relatively straightforward benchmarking to evaluate

the size and the frequency of checkpoint operations
can be used to approximate the size of the burst
generated by applications. This, in turn, offers a first
approximation for size of the aggregated memory
required to completely decouple the application and
the slower I/O channel. However, since data can be
simultaneously drained to stable storage a smaller
aggregate memory will suffice. For a more precise
estimate that takes the above factor into account we
additionally need to evaluate application’s write
throughput to the aggregate memory and the I/O
throughput to stable storage.

 The system can be configured to persist data form the
aggregated buffer to stable storage at every N
checkpoint operations (or never) rather than at each
checkpoint operation. Such a configuration would
still make checkpoint images temporarily available
(e.g., for application debugging and monitoring),
while preserving controlled reliability of the
application.

2

While checkpointing through an aggregate memory
device has the potential to improve the throughput of
the I/O system perceived by applications, it also poses
several constraints and challenges.
 Data transfer to stable storage: Snapshot data stored

in memory needs to be drained to stable storage
(generally a shared parallel file system). This should
be performed in an asynchronous fashion so that the
application perceived throughput for writing a
checkpoint does not suffer a significant impact.

 Automated management of transient checkpoint data:
Checkpoint data is transient in nature and is usually
not used beyond the lifetime of the run except for
debugging purposes. An application should be able to
specify the longevity of the snapshots and inform the
storage so that this can automate data management
and optimize space usage accordingly.

 Scalability: The aggregation system should be able to
amass memory resources from a large number of
processors and deal with parallel writes from
numerous client PEs.

 Transparency: The proposed system should not
require application support: applications should be
oblivious of the use of the aggregated memory
buffer.

IV. ARCHITECTURE
Starting from MosaStore storage system codebase [11]
we aim to build our aggregate memory-based device.
MosaStore is a storage system that aggregates disk
space contributions from connected machines. Our basic
architecture comprises benefactor processes, running on
each PE that contributes memory to the system and a
manager that aggregates these memory contributions
into a collective space.

Benefactor PEs can come and go depending on
volatility of the processor. To accommodate this
transient behavior, benefactors register with the
manager using a soft-state registration protocol:
initially they declare their intention to participate in
memory aggregation, then, every 30s they update the
manager about their status. This way the manager
knows which benefactor processes are alive and can
approximate the free space at each benefactor.

The manager keeps track of the memory contributions
from the benefactors and helps presenting a unified
storage space to client PEs. The manager maintains
metadata regarding individual benefactor contributions,
each benefactor’s status and potentially some history
about the benefactor. When a client contacts the
manager, the file to write is divided by the system in
equally sized chunks. The manager computes a striping
plan, determining a set of benefactors to send chunks to,
and a benefactor mapping. One striping policy we have
implemented is to sort the benefactors on available

memory space and then perform a round-robin striping
across a top subset (stripe width) of them. Once clients
obtain a striping ‘map’, they interact with the
benefactors directly to send the chunks to benefactors.
Since the size of the checkpoint data, at any timestep, is
not known a priori, the client will need to adapt to
situations such as an overrun of the initial width of
benefactors. In such cases, the client contacts the
manager again to readjust the width. Once the entire
checkpoint operation is completed, the client commits
the map to the manager, indicating a successful
operation.

Incremental Checkpointing: In our previous work
[12], we have built techniques to detect similarity
between successive checkpoint images in order to
minimize the amount of data written during each
timestep. A simple, yet elegant, strategy is to compute a
hash of the chunks and to store them as metadata at the
manager at each timestep, t. At (t+1)th timestep, the
hashes for chunks of the checkpoint image are
compared against the stored metadata to detect
similarity. If the chunk hashes are similar, then the new
chunk in question need not be written but only a
reference to the old chunk needs to be retrieved.

We experimented with this technique in the
context of checkpointing in a desktop grid environment.
For an aggregate memory based checkpointing device, a
similar technique can be adopted. The hash comparison
is a metadata operation that can be performed between
the client and the manager and does not involve the
chunks stored at the benefactors. Consequently, the
snapshot data from timestep, t, need not be maintained
in the aggregate memory during timestep, t+1.

Draining data to a central parallel file system (PFS).
The aggregate memory buffer needs to create room for
incoming snapshot data. Thus the data in aggregate
memory needs to be saved in stable storage. Pushing the
chunks in benefactor memory to a central PFS (e.g.,
Lustre, PVFS, GPFS) is coordinated independently by
each benefactor (using a FIFO order) and decoupled
from accepting application data.

The drained snapshot data needs to be saved in a
way that checkpoints can be easily recovered in case a
restart is needed. To this end, benefactor nodes write
data chunks as independent files but encode, in the file
name, all the chunk related information needed to
restore the original checkpoint file by coalescing the
files corresponding to individual chunks. We preserve
the space savings enabled by similarity detection by
using hard links.

Traditional file system API. To provide complete
client-side transparency we use FUSE [13], a Linux
kernel module. It provides the callback mechanism
enabling us to offer client access to this aggregate
memory system as a user-level file system. Once a

3

FUSE volume is mounted, all file system calls to the
mount point are forwarded to the FUSE kernel module,
which preprocesses and forwards them to our user-level
file system callbacks. FUSE is officially merged into the
Linux kernel starting with 2.6.14 version, further
simplifying adoption of our user space file system.

V. PRELIMINARY EVALUATION
We report here preliminary performance evaluation
results obtained on a small cluster. While these results
cannot support our claim that the proposed solution will
scale to petascale machines they do confirm that, on
smaller deployments, our prototype performs as
expected and achieves the desired performance level.
We hope to present a more thorough evaluation in case
this paper is accepted,.

Additionally, we have installed our aggregate
memory prototype on the BlueGene/P supercomputer at
Argonne National Laboratory as part of a larger
software suite. Therein, our system is used to aggregate
memory from multiple nodes for a mostly-read data
flow, in the opposite of the write-only data flow
checkpointing generates. Zhang et al. [14] report results
for this setup where our system was deployed at the
BlueGene/P pSet level (that is aggregating memory
from 64 nodes) on over 2,000 pSets.

A. The Platform
We evaluated our prototype using a range of limited
scale benchmarks. We used a 22-node cluster. Each
node has an Intel Quad Core Xeon 2.33GHz Processor,
4GB of RAM, and 1Gbps Ethernet card. For all
configurations, we report averages and standard
deviations based on 20 runs.

We first evaluated the performance and the overhead
of each individual component of our test platform.
Unlike in a supercomputer our cluster nodes have local
disks. The sustained write throughput on a local disk
with write caches enabled was 93.2MB/s. The peak
node-to-node network bandwidth, measured using iPerf
[15] is 117.38 MB/s.

B. Write Throughput to Aggregate Memory
Our implementation uses write buffers at the client to
decouple the application from the actual data transfer to
benefactor nodes. Therefore, we define two
performance metrics. First, the observed application
bandwidth (OAB) is the write bandwidth observed by
the application: the file size divided by the time interval
between the application-level open() and close() system
calls. Second, the achieved storage bandwidth (ASB)
uses the time interval between file open() and until the
data is entirely transferred off the processing element
(i.e., all remote I/O operations have completed). Three
main factors affect the performance of the write
operation: the client-side buffer size, the memory size
offered at each benefactor, and the number of

benefactors used in the write operation.
In this preliminary evaluation we performed a

number of experiments to estimate the effect of each of
these factors and we evaluate the maximum throughput
at which the aggregated cache can receive data.

 First, we evaluate the performance metrics form the
viewpoint of a single client, working in isolation.
Figure 1 and Figure 2, show the effect of client-side
buffer size on the observed application bandwidth
(OAB) and achieved storage bandwidth (ASB),
respectively, while varying the stripe width from one to
eight benefactors.

In these experiments the client successively writes
1GB files to the aggregated memory device and the data
is lazily saved to local disks (akin to draining to a
central file system). Each benefactor offers 1GB of
memory for aggregation.

The experiments show that the client-side interface’s
buffer size directly affects the observed application
bandwidth (OAB) and does not have a noticeable effect
on achieved storage bandwidth (ASB). Two
contributing nodes with 1Gbps NICs can saturate the
client 1Gbps link, achieving around 110MB/s of write
throughput, even when only 128MB client-side buffer is
used at the client.

0
100
200
300
400
500
600
700
800

1 2 4 8
Stripe Width

Th
ro

ug
hp

ut
 (M

B
/s

) .

128MB 256MB
512MB 1024MB

Figure 1. The average observed application bandwidth while varying
the client-side buffer size.

0

20

40

60

80

100

120

1 2 4 8
Stripe Width

Th
ro

ug
hp

ut
 (M

B
/s)

 .

128MB 256MB
512MB 1024MB

Local I/O IPerf

Figure 2. The average ASB while varying the file system buffer size.

4

Second, we asses the aggregate throughput multiple
clients can achieve when writing concurrently to the
aggregated memory device. In this experiment, seven
clients generate load as follows: each client writes,
back-to-back 20 files of 1GB each, amounting to around
140 GB of data. To ramp-up the load, clients start at 10s
intervals. Figure 3, presents the aggregate client
throughput. We observe a sustained peak throughput of
about 560MB/s. This indicates that the aggregate
memory device may be able to receive an intense
workload as we expect.

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300
Time (s)

Th
ro

ug
hp

ut
 (M

B
/s

) .

Figure 3. Throughput at larger scale: seven clients generate a
synthetic workload to stress an aggregate memory device pool
supported by 14 benefactor nodes.

VI. SUMMARY AND FUTURE WORK
This paper presents an architecture for an intermediate
storage device, built by aggregating memory resources,
as means to accelerate HPC applications that generate
bursty I/O workloads (e.g., checkpointing). Our system
preserves the standard POSIX I/O interface and
transparently interspaces the buffer obtained by
aggregating memory between the application and a
shared, parallel file system. As the intermediate memory
device not only aggregates memory but also
interprocessor bandwidth, the checkpointing clients can
store data at higher data rates. To strike a balance
between performance and fault tolerance, our system
also provides an asynchronous mechanism to drain the
snapshot data to stable storage, from where the data can
be retrieved if needed. We have conducted a
preliminary evaluation of our proof-of-principle
prototype. Our results indicate that the aggregate
memory device is able to deliver, as expected, a high-
write throughput.

We are working towards large-scale deployments
on ORNL’s Jaguar machine: aggregating at least a few
thousand PEs and scaling to an equal number of clients.
Next steps include optimized management of the
drained data on the central storage system, autonomic
sizing of the aggregate buffer, enabling seamless
restarts of applications using the snapshot data written
through our device, and harnessing residual memory on
the checkpointing client’s own PE.

VII. ACKNOWLEDGMENTS
This research was sponsored in part by the

Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL),
managed by UT-Battelle, LLC for the U. S. Department
of Energy under Contract No. DE-AC05-00OR22725. It
was also supported by grants from the National Science
and Engineering Research Council of Canada (NSERC)
and the Canadian Foundation for Innovation (CFI).

VIII. REFERENCES
1. Lustre website [cited 2008; Available from:

http://www.lustre.org/.
2. Philip H. Carns, Walter B. Ligon-III, Robert B. Ross,

and Rajeev Thakur. PVFS: A Parallel File System for
Linux Clusters. in 4th Annual Linux Showcase and
Conference. 2000. Atlanta, GA.

3. Frank Schmuck and Roger Haskin. GPFS: A Shared-
Disk File System for Large Computing Clusters. in 1st
USENIX Conference on File and Storage Technologies
(FAST'02). 2002.

4. Buddy Bland. Leadership Computing Facility (LCF)
Roadmap. 2007 [cited 2008; Available from:
www.csm.ornl.gov/SC2007/pres/Bland_LCFRoadmap_J
udy/Bland_LCFRoadmap_SC07.ppt.

5. Garth Gibson, Bianca Schroeder, Joan Digney, Volume
on Software Enabling Technologies for Petascale, and
Science., Failure Tolerance in Petascale Computers.
CTWatch Quarterly, Volume on Software Enabling
Technologies for Petascale Science, 2007. 3(4).

6. Application Requirements & Objectives for Petascale
Systems in HPCwire. 2008.

7. Gordon Bell, Jim Gray, and Alex Szalay, Petascale
computational systems. IEEE Computer, 2006. 39(1): p.
110-112.

8. Cray XT3 datasheet. [cited 2008; Available from:
www.cray.com.

9. James S. Plank, Kai Li, and Michael A. Puening.,
Diskless Checkpointing. IEEE Transactions on Parallel
and Distributed Systems, 1998. 9(10): p. 972-986.

10. L.M. Silva and J.G. Silva, Using two-level stable
storage for efficient checkpointing. IEE Proceedings -
Software, 1998. 145(6): p. 198-202.

11. MosaStore website. 2008 [cited 2008; Available from:
www.mosastore.com.

12. Samer Al-Kiswany, Matei Ripeanu, Sudharshan
Vazhkudai, and Abdullah Gharaibeh. stdchk: A
Checkpoint Storage System for Desktop Grid
Computing. in International Conference on Distributed
Computing Systems (ICDCS ‘08). 2008. Beijing, China.

13. FUSE, Filesystem in Userspace. [cited 2008; Available
from: http://fuse.sourceforge.net/.

14. Zhao Zhang, et al. Design and Evaluation of a
Collective I/O Model for Loosely-coupled Petascale
Programming. in Workshop on Many-Task Computing
on Grids and Supercomputers (MTAGS). 2008.

15. Iperf website. [cited 2008 April]; 2.0.2:[Available
from: http://dast.nlanr.net/Projects/Iperf/.

5

http://www.lustre.org/
http://www.csm.ornl.gov/SC2007/pres/Bland_LCFRoadmap_Judy/Bland_LCFRoadmap_SC07.ppt
http://www.csm.ornl.gov/SC2007/pres/Bland_LCFRoadmap_Judy/Bland_LCFRoadmap_SC07.ppt
http://www.cray.com/
http://www.mosastore.com/
http://fuse.sourceforge.net/
http://dast.nlanr.net/Projects/Iperf/

