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Abstract Client-side data caching serves as an excellent mechanism to store and ana-

lyze the rapidly growing scientific data, motivating distributed, client-side caches built

from unreliable desktop storage contributions to store and access large scientific data.

They offer several desirable properties, such as performance impedance matching, im-

proved space utilization, and high parallel I/O bandwidth. In this context, we are faced

with two key challenges: (1) the finite amount of contributed cache space is stretched

by the ever increasing scientific dataset sizes and (2) the transient nature of volunteered

storage nodes impacts data availability. In this article, we address these challenges by

exploiting the existence of external, primary copies of datasets. We propose a novel

combination of prefix caching, collective download, and remote partial data recovery

(RPDR), to deal with optimal cache space consumption and storage node volatility.

Our evaluation, performed on our FreeLoader prototype, indicates that prefix caching

can significantly improve the cache hit rate and partial data recovery is better than

(or comparable to) many persistent-data availability techniques.

1 Introduction

The ever increasing disk capacity combined with decreasing cost per gigabyte has cre-

ated larger amounts of unused disk space on desktop computers. Studies have shown

that, on average, half of the disk space on desktop workstations is free and that this

fraction is only increasing as disks become larger [2,14]. As a result, numerous dis-

tributed file systems exist that aggregate desktop storage, both in the local [2,9] and

the wide-area [15,16] environments. These distributed storage systems aim at delivering

⋆ This work builds on several of our previously published studies. While we included extended
introduction of the FreeLoader framework [56,57] as well as our combination of prefix caching
and collective download techniques [32], this paper proposes the novel RDPR technique as
well as a new striping-enabled cache management algorithm. We also discussed methods to
combine RDPR with prefix caching and collective download techniques. Overall, more than
60% of the manuscript’s content has not been previously published.
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reliable and persistent storage with data availability levels commensurate to centralized

file servers.

Scientists are faced with rapidly increasing amounts of data collected from physi-

cal experiments, observatory instruments, and computer simulations [22,52]. Scientists

prefer to archive their datasets at shared repositories, such as the mass storage systems

(e.g., HPSS [12]) and data centers (e.g., SDSS [46]). These systems often reside close

to high-end computing or instrument facilities, with convenient and fast data transfer

capabilities to and from the latter. They provide large capacity and fault tolerance.

However, scientific computing workflows are often distributed, requiring further anal-

ysis and visualization on scientists’ local workstations. For instance, the resulting data

may have to be visualized to glean insights or to add tweaks to the processing using

a feedback loop. Consequently, scientists’ personal workstations are an integral part

of their job workflow. Personal workstations possess indispensable display and inter-

active processing capabilities, but often lack sufficient storage capacity or bandwidth.

Despite the growing PC storage space, scientific dataset sizes can easily overwhelm a

single workstation. The upshot is that end-users are not able to store all their data

locally and often resort to expensive, repeated wide-area data movement.

There exists a performance impedance mismatch between the rates at which end-

user applications consume data locally and retrieve data from shared repositories. De-

spite the performance improvement in recent years, wide-area data transfers are the

most common bottleneck in an end-to-end scientific data processing workflow [54]. Ag-

gregated storage within the scientist’s LAN provides a low-cost alternative to buying

and maintaining dedicated storage servers or clusters. In addition to space aggrega-

tion, striping data on multiple nodes, each of which contributing a fraction of its un-

used storage, also enables bandwidth aggregation. This results in better overall access

throughput. These techniques have been shown to be viable in our previous work on

FreeLoader [56,57], an aggregate storage infrastructure for large scientific datasets.

Scientists normally perform a variety of processing tasks on groups of datasets (e.g.,

time-series results generated from a recent parallel simulation) for a limited period of

time, typically days or weeks. Meanwhile, colleagues working in the same research area

tend to have shared interests on common data [24]. Therefore, the collective free space

is suitable to be positioned as a cache for remote data. This reduces repeated wide-area

data migration costs for scientists reusing hot datasets and helps achieve better access

throughput than retrieving data from one’s local hard disk. Compared to quota-based

resource allocation, common in general-purpose file systems, a cache replacement policy

allows for better capacity management. It accommodates large datasets and achieves

better overall space utilization.

However, existing systems cache scientific datasets in their entirety, while scavenged

storage systems have to be particularly careful about space and bandwidth usage. We

show that storing large datasets in their entirety is not necessary, and propose a novel

combination of prefix caching and collective download, two techniques originating from

the multimedia data streaming and parallel I/O fields respectively [32]. Prefix caching

allows the storage of only partial datasets, while collective download allows seamless

and fast parallel downloads of the uncached suffix. In particular, our proposed approach

achieves efficient parallel data retrieval from external scientific data repositories by

issuing large, sequential file transfer requests. It further maintains high local cache

access performance by rearranging the data for finer-grained data striping.

Another challenge posed by caching data on distributed, unreliable workstations

is data availability. The storage nodes in our target environment are ordinary work-
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stations that are subject to shutdowns, reboots, and failures. Striped data placement,

combined with the sequential data access pattern, complicates caching when one or

more storage nodes fail and recover dynamically. In other words, “partial cache miss”

has to be dealt with.

Existing work on storage systems has addressed the data availability in distributed

and unreliable environments by adding redundancy. However, data redundancy reduces

the effective cache size, which decreases the overall data availability. Scientific data

caches built atop distributed workstations, on the other hand, can take advantage of the

existing data redundancy external to the local network environment. Scientific datasets

usually have primary, immutable copies archived at external data repositories. These

include mass storage systems, shared file systems at supercomputers, data centers (such

as SDSS [46]), and websites (such as the NCBI Genbank [33]). Unlike personal files

stored on the general-purpose file systems, data availability guarantee for the local

copies of scientific datasets is not a crucial requirement. Data availability, in such

cases, translates into a performance issue: in response to a data miss — caused by

new accesses, cache eviction operations, or donor node failures — remote accesses are

conducted to fetch the missing data portions.

In this paper, we investigate the performance impact of data availability in dis-

tributed caches built on unreliable workstations. More specifically, we consider our

major contributions as below.

– We have designed and implemented cache management strategies that handle

striped datasets and the failure/recovery of individual storage nodes.

– We proposed RPDR (remote partial data recovery from external repositories), an

approach that reduces the partial data miss penalty in a distributed, dynamic, and

unreliable cache. We further augmented RPDR with two techniques: prefix caching

and collective downloads. We also investigated two redundancy-based approaches

(replication and erasure coding) in the data striping, distributed caching context.

– We performed trace-driven simulation to evaluate the effectiveness of the above

three data recovery approaches. We co-played real-world scientific data access traces

with real-world node availability traces, and computed the data access cost using

partial data recovery performance parameters measured from an aggregate storage

system implementation. The results revealed that our proposed RPDR approach

and a combination of RPDR and erasure coding perform the best in most of the test

cases, with a performance advantage of up to 38% and 54% over the redundancy-

based approaches for the two data access traces respectively.

The individual elements of this study, such as partial data caching, striping, fault-

tolerance in distributed storage, and patching data from remote sites, are themselves

not new. However, the key novelty of our work lies in the combination of these elements,

i.e., the examination of recovery strategies for striped data cached on unreliable nodes.

This combination of the above techniques is motivated by real needs of scientific data

processing, and evaluated with scientific workloads.

2 Background

2.1 FreeLoader: An Aggregate Storage System Prototype

Our simulation-based study is motivated by, and parameterized with the FreeLoader

storage aggregation prototype [56], built atop scavenged storage resources. It aggregates

unused disk space in a LAN setting into a unified cache and scratch space for storing
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Fig. 1 The FreeLoader environment overview and sample performance

scientific datasets. In our prototype, participating workstations donate idle disk space

and data is striped on multiple such storage nodes in fixed-size chunks.

A dedicated manager node maintains metadata such as node status, chunk distri-

bution, and dataset attributes including the primary copy location (URI, protocol/tool

used to retrieve/import the dataset, and authentication related metadata). Since this

system is positioned to cache popular scientific datasets with primary copies at ex-

ternal data repositories, aforementioned metadata concerning dataset import enables

transparent recovery of datasets from their primary copies. Further, this consumes

no additional metadata storage than what is required to store a dataset. Figure 1(a)

illustrates the system design.

Figure 1(b) demonstrates FreeLoader’s data access performance by showing the

client-side dataset retrieval rates using different stripe widths and dataset sizes. The

experiments were performed on a client workstation with a Gbit/s network interface

and a group of storage nodes with mixed interfaces (Gbit/s or 100Mbit/s). The client’s

Gb/sec network configuration is meant to capture scientists’ high-end desktop worksta-

tions with good connectivity for scientific data processing. The storage nodes’ configu-

ration (100Mb/sec connectivity) is meant to show how FreeLoader can reap significant

throughput even in the face of modest connectivity. Figure 1(b) shows that in such an

environment, the benefits due to storage aggregation through striping are manifold.

First, it provides larger capacity by utilizing other workstations’ unused disk space.

Second, it also provides a performance benefit by aggregating I/O and network band-

width available at the distributed machines. Third, even when a user can accommodate

her datasets at her own workstation, storing such data in an aggregated cache (such

as the one prototyped) will deliver an I/O throughput (as high as 88MB/s with a

stripe width of 10) significantly better than local disk I/O rate (typically 30-50 MB/s).

Finally, our prior results revealed that striping is also an effective way to reduce the

impact on space donors’ native workloads.

2.2 Related Work

In this section, we will survey related work with reference to prefix caching, collective

download and data availability.

Prefix caching [23,48] techniques have been proposed and implemented for multi-

media streaming protocols such as the IETF Real-Time Streaming Protocol [45] that

is built on HTTP. Our work applies prefix caching to scientific data storage/access,
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and leverages the parallel transfer capability offered by tools such as GridFTP [3,4],

HSI [21], and LoRS [38].

Middleman cache for video files on the Web is similar to our effort [1]. It is a

cooperative proxy cache built from client workstations. However, it only exploits col-

laborating workstations for aggregate space and not for improved bandwidth. Another

similar project on Internet streaming uses a combination of network bandwidth esti-

mation between the client, cache and server to optimize media delivery [25]. We use

similar information to determine the ideal prefix size.

Scientific data caches like IBP [39] and DPSS [55] all provide techniques to ac-

celerate data accesses by offering dataset caching. However, they support only entire

dataset caching and perform cache management by enforcing user quotas. Moreover,

users explicitly have to create space for new incoming data by deleting datasets that

they no longer require. In brief, cache replacement is not dynamic and is left to user

discretion. Our proposed approach can potentially be used by the above systems for

better cache space utilization, especially when parallel data transfer is available in

retrieving uncached data.

Our collective download approach resembles the collective I/O technique exten-

sively studied in the parallel I/O field and widely used in parallel simulations [8,27,

34,47,53]. Collective I/O attacks the I/O performance problem caused by a mismatch

of data distribution in memory and in files by consolidating small, scattered I/O re-

quests into large, sequential ones. Although collective I/O has been used in conjunction

with wide-area data migration [29,28], it was applied to the local staging step only.

We extend this approach to parallel download, by issuing a small number of large,

sequential partial file transfer requests, in order to achieve better overall downloading

performance.

Predictive prefetching is a widely researched topic to improve WWW as well as

cache performance [36,26]. This can also be applied to data caches when hints about

user access patterns are available a priori or when such patterns can be automatically

detected. In this paper, however, we focus on sequential access patterns.

Data availability and fault tolerance in storage and file systems have been studied

extensively. Creating hardware/data redundancy has been a traditional approach to

address these problems. Common hardware solutions include, among others, many

versions of RAID systems [37] and node failover strategies [?,44]. Several software

approaches to data availability have also been deployed, especially in distributed and

peer-to-peer environments. In particular, replication is widely used and investigated

[2,6,7,9,11,20,50]. Similarly, there are many existing studies on erasure coding, and

an increasing interest in deploying it in storage and peer-to-peer systems [10,40–42].

This paper studies these existing mechanisms in a distributed cache with data-striping,

and compares them with a new data recovery method that does not rely on local data

redundancy. Our trace-driven evaluation, based on workstation availability data in a

LAN setting, complements a previous study performing theoretical comparison [58].

Our work is also related to several areas of research on caching. Our proposed

scientific data caching can be viewed as extended cooperative caching [13,17,19,43]:

it pools secondary storage in a LAN environment to reduce access misses that require

wide-area data transfers from external data sources. In addition, datasets in the cache

are likely to be from different external data repositories. Therefore, they are likely

to have different downloading costs and may benefit from cost-aware caching [18,59].

Again, our effort complements the above work and recent research in scientific data
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caching [35] by investigating the combination of striping and caching on unreliable

distributed workstations.

This paper targets distributed caches built by amassing donated disk space, and is

closely related to storage aggregation systems [2,9] and more generally, resource scav-

enging systems [31,49]. However, existing storage aggregation systems are typically

designed to act as general-purpose file systems and require high data availability. For

instance, both FARSITE [2] and Kosha [9] replicate each dataset at least three times.

In contrast, our system is positioned as a best-effort cache for better data access per-

formance. In our target scenario, “six nines” of data availability is not required. We

treat both events—losing data to cache eviction or to node failure—as an acceptable

norm that our system will respond to.

Downloading distributed chunks of data is a common practice to expedite data

accesses. This has been combined with erasure coding to be more fault tolerant (e.g.,

OceanStore [16], Digital Fountain [10]). As mentioned earlier, prefix caching of Internet

media files has been widely deployed and used. Striping or performing collective I/O to

improve performance is a well accepted norm in the parallel I/O community. However,

the amalgamation of several aforementioned techniques—into a novel, partial data

recovery scheme—is unique in this paper. Further, this is applied to the emerging

problem of caching bulk scientific data.

3 Striping-Enabled Cache Management

To store datasets in a striped fashion on the aggregate storage, we manage the entire

space as a single cache. This section presents our striping algorithm.

Striping is dependent on the space contributions on the individual storage nodes.

An appropriate stripe width (i.e., the number of storage nodes a client communicates

with concurrently to retrieve the dataset) allows the client to fully utilize its network

bandwidth, and allows the aggregated storage system to reduce metadata management,

distribution costs, and impact on donor nodes. Successful striping of incoming datasets

implies the ability to distribute data across a desired stripe width as uniformly as

possible. This ensures good retrieval rates as well as a fair usage of space across all

donors. Therefore, we adopt a greedy algorithm that sorts the current available space

on storage nodes in descending order, and performs striping on w storage nodes, where

w is the target stripe width. The sorting-striping process is repeated if one of the

storage nodes (the one with the smallest available space) runs out of space before the

dataset is completely striped. Note that when there are fewer than w storage nodes

with space available, a smaller stripe width has to be adopted.

Below, we sketch the GreedyStriping(D,w, N) algorithm, where D is the dataset to

be striped, w is the target stripe width, and N is the set of storage nodes participating

in the aggregated storage system. D has length(D) chunks. Each storage node N [i] (1 ≤

i ≤ |N |) has avail(N [i]) chunks of currently available space. When GreedyStriping

is performed, the sum of avail(N [i]) has to be greater than or equal to length(D).

Otherwise, cache eviction will be carried out first.

We perform cache eviction at the granularity of datasets and within datasets,

at the granularity of chunks. When cache replacement is needed, we calculate how

many chunks must be reclaimed to store the incoming dataset. We then select victim

dataset(s) from those cached, using a cache management strategy such as LRU. Within

each victim dataset, the eviction of chunks starts from the tail end since most large

scientific data accesses are sequential. Therefore, if only part of the last dataset needs
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Algorithm 1 GreedyStriping(D,w, N)

chunk = 0
while chunk < length(D) do

sort N by value of avail in descending order
nodes = number of storage nodes with avail > 0
width = min(nodes, w, length(D) − chunk)

rounds = min(⌊
length(D)−chunk

width
⌋, avail(N [width]))

for i = 1 to rounds do
for j = 1 to width do

chunk = chunk + 1
assign chunk D[chunk] to storage node N [j]

end for
end for

end while

to be evicted, a prefix of that dataset will still remain in the cache. For each data chunk

evicted, we increase the number of available chunks for the corresponding storage node

by one. Note that the status of the concerned storage nodes are checked during the

replacement process: if a chunk—marked for eviction—resides on a storage node that is

currently unavailable, the chunk will be marked as “evicted” in the manager metadata.

The storage node needs to reconcile (synchronize metadata) with the manager once

it comes back to service. The space occupied by these evicted chunks on a returning

node will be considered as “available”. In this manner, it is ensured that at the end of

eviction, the number of available chunks on a subset of storage nodes is commensurate

to the space required by the new dataset. Finally, the aforementioned GreedyStriping

algorithm will be applied to stripe the new dataset on to these storage nodes.

With our striping-enabled cache management strategy, there are three types of

cache misses. (1) Total miss: This occurs when the dataset in question has never been

imported, has been evicted in its entirety, or all the storage nodes hosting it are cur-

rently unavailable (which is not very likely with a reasonable stripe width). (2) Partial

miss: This happens when the dataset is cached, but some of the storage nodes hosting

it are unavailable. (3) Tail miss: This occurs when the dataset is cached, all the storage

nodes hosting it are available, but a suffix of it is missing due to cache eviction. In a

subsequent section, we will discuss the cost of these misses in conjunction with several

data recovery methods studied in this paper.

4 Recovery of Distributed, Striped Data

Striping data over nodes with transient availability often causes a cache hit to become

a partial cache miss, when one or more storage nodes, hosting segments of a cached

dataset, fail to serve requested data. In the storage aggregation context, nodes are

individually-owned PCs donating a portion of their local disk space. Hence collective

node availability cannot be scheduled or planned. As a result, sudden benefactor shut-

down/crash/withdrawal might render the distributed storage system with little to no

time for corrective measures such as data relocation.

In this paper, we examine three data recovery strategies. First, we explore direct

partial data recovery from external data sources. We then consider two existing al-

ternatives, namely replication and erasure coding, and discuss their functioning in a

distributed, unreliable cache. We integrate all three approaches into our cache man-

agement scheme and derive cost models to calculate cache miss penalty for each type

of miss.
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4.1 RPDR: Remote Partial Data Recovery

4.1.1 Methodology

We propose Remote Partial Data Recovery (RPDR), which “patches” a partially un-

available dataset by fetching missing data portions from a remote primary copy in an

on-demand fashion. This approach takes advantage of the following two trends. First,

scientific datasets cached locally tend to have remote primary copies stored at systems

such as mass storage and data centers with relatively high availability. Second, bulk sci-

entific data movement tools such as HSI, GridFTP [3,4], and LoRS [38] are increasingly

supporting “extended retrieve” features. Of particular interest to us is their ability to

fetch partial copies of a dataset, which enables the retrieval of a section of the dataset,

defined by its starting offset and extent.

Note that RPDR is designed to work in conjunction with local caching of scien-

tific datasets. Therefore the I/O and network workload generated by recovery will not

exceed those of the original data access pattern without local caching. Meanwhile, we

have shown that the negative performance impact of data fetching/serving on donated

storage is modest [56] and can be well controlled [51].

RPDR augments the basic striping-aware cache replacement policy with mecha-

nisms to handle full or partial data misses in a unified manner. This is achieved as

follows. When a dataset D is accessed, the manager node searches for the dataset in

the cache. If D is found, the manager checks the current status of storage nodes that

host this dataset. For each contiguous segment of D striped in a round-robin fashion

on the same set of storage nodes N1, N2, ..., Nk (where k≤w and w is the target stripe

width), the manager identifies the length of the segment l (each node hosts l chunks)

and the number of unavailable nodes f (f≤k). If f > 0, f×l data chunks have to be

recovered. Before data can be recovered, sufficient space needs to be created through

eviction. Cache replacement is invoked to evict f×l chunks, followed by the invocation

of the striping algorithm to reallocate this space to the data being fetched from D’s

primary copy at an external source.

This reallocation is accomplished by first sorting the storage nodes on available

space, then performing the greedy striping process for the missing chunks of D with

an initial stripe width of f . This way, the number of storage nodes communicating

with the client simultaneously is controlled to be close to the target stripe width, w.

Chunks of D on the f unavailable storage nodes are marked by the manager as dirty. If

these nodes become available again, they will synchronize the status of their local data

chunks during their first interaction with the manager. At that point, these chunks

become free and may be allocated to other datasets.

Once sufficient room has been made for the missing chunks of D, RPDR retrieves

these chunks from the dataset’s primary storage location (typically at a remote site

such as an archival system) to “patch” the cached copy of D. FreeLoader assumes that

a remotely-accessible dataset has a web address or URI, which is used as a unique

identifier for the dataset in the aggregate storage namespace. The protocol and the

command used to download the dataset are also managed by FreeLoader as a part of

the dataset metadata.

It can be seen that with this policy, a full miss is treated as a special case of partial

misses, only with additional operations such as registering the dataset and creating

metadata entries. In this case, eviction has to be performed to accommodate the entire

dataset, D, and the greedy striping starts with the target stripe width. Tail misses are

handled in a similar fashion, although the dataset entry is already in the cache.
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With RPDR, a partially cached dataset can still be accessed while being patched,

therefore we adopt a modified cache management policy from the one defined in Sec-

tion 3. Eviction is performed at the chunk level rather than at the dataset level. Thus,

instead of evicting chunks from only one dataset at a time, a round-robin method is

used to evict tail chunks from datasets with the same heat index. In doing so, we ex-

ploit the fact that a tail patch operation can be easily overlapped with client-serving

of the cached chunks.

4.1.2 Coupling RPDR with Prefix Caching and Collective Download

Remote partial data recovery can also be coupled with a combination of two techniques

that we applied previously to FreeLoader [32], namely prefix caching and collective

download, for more efficient—and more sophisticated—cache management.

As mentioned earlier, RPDR uses remote accesses to patch disjoint “holes” or a

suffix in a dataset, caused by node unavailability, cold miss, or partial data eviction.

One obvious approach is to have multiple storage nodes download their target stripes

directly from the remote source. With data striping (where stripe sizes typically range

from several hundred KBs to dozens of MBs), however, this would result in numerous

small requests. A more efficient alternative is to let each node download a large, con-

tiguous data segment and perform local data shuffling to exchange data stripes. We

refer to this as collective download, following similar concepts of collective I/O [8,27,34,

47,53]. The downloaded data is simultaneously shuffled locally for a rearranged layout,

conforming to the smaller stripe size used in the distributed cache. It is not difficult

to pipeline the data shuffling with data download, so the cost of the faster operation

is hidden. Further, parallel data download and data shuffling can be interleaved with

serving data stripes to the client.

To leverage the partial data transfer capability of popular scientific data migration

tools such as GridFTP [3,5] and HSI [21], we used Expect [30], a tool specifically geared

towards automating interactive applications. We have instrumented the FreeLoader

patching framework with Expect so that authentications and subsequent partial re-

trieval requests to a remote source can be performed over a single stateful session.

More design and implementation details can be found in our previous publication [32].

Next, we couple collective download and prefix caching together with RPDR for

better space utilization. With prefix caching, only a prefix of the dataset is cached on

initial import. It allows us to “bootstrap” the data download process with the in-cache

prefix, as a lazy method in the sense that complete retrievals are not initiated until

datasets are actually accessed. Upon the access request arrival, the cached prefix is

served to the client while the missing suffix is fetched and patched transparently from

the primary data source. Even then, the retrieved suffix is stored in, but streamed

through the cache. By overlapping in-cache data access with remote data retrieval,

prefix caching helps in maximizing space utilization and increasing cache hit ratio by

offering a virtual cache that appears to be larger than the physically available cache

space. Compared to caching entire datasets, users enjoy higher hit rate without suffering

degraded data retrieval performance while accessing cached datasets.

To hide the cost of suffix patching, a sufficiently large prefix of the dataset should

cached. The desired prefix size is determined based on four parameters: the size of

the dataset, the in-cache data access rate, the suffix patching rate, and the suffix

patching initial startup latency. Consequently, the ideal prefix depends on the internal

and external environments. The following model determines the size of the prefix,

Sprefix, necessary to ensure that the uncached suffix will be fetched in time to deliver
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the same local access performance as if the entire dataset were cached. It assumes

sequential access from the client, which as explained earlier, is often true for scientific

data processing.

Suppose the dataset size is S and the in-cache client access rate afforded by the

distributed cache is Rclient. The cost of parallel patching from the external data source

is formulated into two parts: the initial size-independent overhead L (which includes

the costs of creating the connection, authentication, tape system file loading, etc.), and

the size-dependent cost of parallel data transfer at the aggregate rate Rcollective. We

assume that Rcollective < Rclient, which means the client fetches data from the local

cache faster than directly from the external data source—implying the need for a cache.

The equation below equates client access time and the time of the two components of

patching,
S

Rclient

= L +
S − Sprefix

Rcollective

.

Solving for the prefix size, we get

Sprefix = S

(

1 −
Rcollective

Rclient

)

+ LRcollective.

With this model, the appropriate prefix size can be calculated for each individual

dataset, taking into account the external source storing its primary copy. Parameters

such as L and Rcollective for each data source can be stored at the cache manager as

a part of the metadata. As the total number of scientific repositories for a dataset is

limited, the time and effort required to benchmark and save such parameters should

not be significant. In addition, these parameters can be derived from actual dataset

imports and suffix patches, enabling the prefix size prediction to adapt to changes in

the remote storage systems and in networking hardware/software.

Note that after the re-access, the patched tail is discarded after the re-access. When

the cache is full and more space is needed for a new dataset, chunks are evicted from

the tail of the cached prefix just like in the base version of RPDR. This results in a

tail miss with a visible performance penalty while accessing that particular dataset.

In Section 5.3, we will evaluate both the base RPDR strategy and the enhanced

version with prefix caching and collective download.

4.2 Striping-enabled Local Recovery through Data Redundancy

A storage aggregation system built on an unreliable distributed storage fabrics can

also improve data availability through local data recovery, typically by storing redun-

dant data. We examine two commonly used local recovery mechanisms, replication and

erasure coding, in the distributed cache setting and compare them with our proposed

strategies.

Replication is widely used in parallel or distributed file systems [20,44] and stor-

age aggregation systems [2,9,16]. With replication, a dataset is duplicated a number

of times in a storage system, to prepare for disk/network failure. The advantage of

replication is its simplicity and ability to achieve high data availability. For example, a

study has shown that a 99.99% data availability can be obtained by replicating all files

three times in a distributed file system built on top of unreliable donated disk space

[9]. This study was based on the same Microsoft node availability trace used in this

paper (see Section 5.1 for more details). The apparent disadvantage of replication is

its space overhead. While this is an acceptable overhead for distributed file systems,
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a cache built from space contributions works differently. The cache space is a finite

amount of storage based on desktop space donations. For a distributed cache storing

“hot” data items, replicating each dataset n times basically cuts the cache space to 1/n

of its original size. This results in further cache misses, which is another form of data

unavailability and may cause more performance penalty in data accesses compared to

partial dataset loss due to temporal node unavailability.

Erasure coding [41,42] is a general scheme for error correction and data recovery,

first proposed for network communication and more recently used in peer-to-peer sys-

tems and distributed storage systems. For each n blocks of the original data, an erasure

code can encode m additional redundant blocks, allowing the original data to be recon-

structed from any n out of the n + m blocks. Obviously, with a moderate m, erasure

codes can deliver comparable or better data availability than replication [58], while

consuming a fraction of extra space as required by the latter. This makes erasure cod-

ing more appealing in data caches built out of aggregated space. However, the major

concern with it is the extra encoding and decoding overhead. In a storage aggregation

system, space donors may hesitate to donate any more resource than they already do.

Thus, any computationally intensive encoding or decoding will need be performed at

the client, which imports or subsequently accesses a dataset.

To conduct performance comparisons between the different data recovery approaches,

we need to first determine the replication and erasure coding strategies in a data-

striping environment too, as briefly outlined below.

For replication-k, where k is the degree of replication, we perform striping of k

copies of each dataset using our greedy striping algorithm defined in Section 3. If the

cache is too small to fit in k replicas, we create as many replicas as allowed by the

cache size. If, during a subsequent access, we find there is additional space to create

more replica(s) for the dataset being accessed (this is possible due to the unreliable

nature of the storage nodes, the total available cache size may vary), such replica(s) will

be stored. The k replicas are managed individually by the chosen cache replacement

policy. The access-history-based heat index of each dataset is adjusted by a factor of

the number of its replicas, so that dataset with more replicas are more likely to be

evicted in cache replacement. At dataset retrieval time, data chunks can be selected

from multiple replicas. If there are chunks missing from all in-cache replicas due to

node failures and/or tail eviction, the access is considered a miss.

For erasure coding, we encode the w (where w is the stripe width) data chunks

into m redundant chunks, and stripe the dataset with a stripe width of (w +m). Extra

care is taken to make sure that the stripe width does not “shrink”, so that each round

of chunks actually occupy (w + m) different nodes. Note this may call for additional

cache eviction in search of enough nodes. Therefore, the space overhead of this method

will end up being larger than m/w, since excessive amounts of data chunks may be

evicted, rendering a smaller effective cache space.

4.3 Data Recovery Cost Model

To evaluate the performance of the three recovery approaches, we need to model the

cost of data recovery for the various types of cache misses. Since most scientific data

processing applications access data in sequential or approximately sequential styles,

we model the client’s data access as a sequential scan to retrieve a dataset’s chunks in

order.

First, we analyze the data recovery cost for RPDR. In this case, the storage nodes

involved in importing or patching a dataset D will download data chunks in parallel,
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Dataset’s Recovery Method
Caching Status RPDR REPL

Hit Tlocal Tlocal

Partial Miss Tpatch min(Ttail−patch, Tclient)
Tail Miss max(Tlocal, Ttail−patch) min(Ttail−patch, Tclient)
Total Miss min(Ttail−patch, Tclient) min(Ttail−patch, Tclient)

Dataset’s Recovery Method
Caching Status EC

Hit Tlocal

Partial Miss max(Tlocal, Tdecode)
Tail Miss max(min(Ttail−patch, Tclient), Tencode)
Total Miss max(min(Ttail−patch, Tclient), Tencode)

Table 1 Cost of data accesses with different recovery methods

sending these chunks to the client while saving them to their local disks. Since the

manager can perform cache replacement and decide in very short time which storage

nodes need to fetch missing data from a remote site, we allow all these nodes to start

downloading together, while the client requests data chunks from the nodes according

to the chunk map. Since different rounds of striping may involve a different subset of

nodes, “holes” in a partially available dataset may start or end at arbitrary positions.

Let Rn be the download throughput of each patching node, when n such nodes

are retrieving interleaved data chunks simultaneously. Since we select the target stripe

width, w, to be large enough to saturate the client’s incoming network connection, the

expected data serving throughput for each storage node is Re = RC

w , where RC is the

maximum client network read rate. The question is whether the download throughput

at the patching nodes can catch up with Re. When Rn≥Re, the remote data retrieval

at a patching node is faster than the rate that node is supposed to deliver data to

the client, partial data recovery does not have a client-visible performance impact.

Otherwise, a cache miss penalty may be observed.

With the chunk map, for each patching node Pi, we can compute si, the number

of chunks that Pi is responsible for fetching remotely, as well as the expected point in

time Te,i,j when the jth missing chunk from Pi needs to be delivered at the client. By

aligning the missing chunks together from all patching nodes, we compute the point in

time Tp,i,j when the jth missing chunk is retrieved from the remote primary copy:

Tp,i,j =

j
∑

k=1

chunk size

Rnk

,

where nk is the number of patching nodes fetching data concurrently when Pi is fetching

its kth chunk. Then the cache miss penalty, Tpenalty , is calculated as

max
i,j

(Tp,i,j − Te,i,j),

the maximum latency of data patching among patching nodes. The total access cost,

Tpatch, is then defined as (Tlocal + Tpenalty).

The above RPDR recovery scheme and corresponding cost computation are based

on observations collected from parallel partial data recovery benchmarking experi-

ments. From our experiments we have found that most data sources show good down-
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load bandwidth scalability when we increase the number of patching nodes, each fetch-

ing noncontiguous (or contiguous when performing collective download) data chunks.

Hence, we let all patching nodes start downloading their data chunks at the beginning

of a client data access. This will allow the missing data to be fetched early, with-

out affecting the rate that “urgent” data chunks are downloaded and served to the

client. More details about the design and results of related benchmarking tests will be

discussed in Section 5.2.

A tail miss—or a total miss, for that matter—is conceptually same as a partial

miss. However, with collective download, they can be implemented in a much more

efficient way. As discussed in Section 4.1.2, for a large missing segment in a dataset,

it is efficient to have multiple nodes downloading contiguous sections of that segment,

while also performing local data exchange to achieve a desired striping pattern. Suppose

the collective download (including the shuffling process) can be performed at a rate of

Rcollective, the tail patching cost Ttail−patch is calculated as size(D)/Rcollective.

Finally, the above total miss cost model may need to be adjusted depending on the

client’s direct access rate from the target external source. With certain data sources,

a direct download of the entire dataset by the client may yield better aggregate access

rates. With the benchmarking results, it is easy to determine whether the client down-

load rate Rclient is indeed higher than the aggregate patching rate for a total miss

wRw (where w is the stripe width). If this is the case, we calculate the cost of a total

miss as the duration of a client download, which can be overlapped with striping data

chunks to storage nodes. 1

The recovery cost for the other two approaches, replication and erasure coding,

is much more straight-forward. Table 1 summarizes how we characterize the cost of

accessing a dataset in an unreliable distributed cache with data striping, for the three

data recovery methods we study: remote partial data recovery (RPDR), replication

(REPL), and erasure coding (EC). These models are used in our trace-driven simula-

tions to calculate the total access time for a sequence of accesses. Note that different

methods will generate different distributions of accesses, falling into the cache status

categories.

When the dataset being accessed is in-cache and all its chunks are available, the

cost of access is the same across all three methods: the local data transfer time between

the storage nodes and the client (Tlocal).

When the dataset is a total miss, with RPDR or REPL the access cost is the down-

loading time to bring the missing dataset into the cache. This is done either through the

storage nodes (Ttail−patch) or directly between the external data source or the client

(Tclient), depending on which one is faster. Again we assume that the cost of striping

data to the appropriate storage nodes can be hidden by the downloading time. In cal-

culating REPL’s total miss cost, we do not count the dataset size k times, considering

that the replication can occur between the storage nodes themselves without involving

the client. For EC, although the encoding has to be performed at the client, if the client

downloading rate is very low, data can still be downloaded in parallel by the storage

nodes and streamed into the client for encoding. The three activities (parallel down-

loading, client encoding, and striping the encoded data) can again be pipelined. Hence

the total miss cost is the larger of the downloading time (min(Ttail−patch, Tclient))

and the encoding time (Tencode).

1 This did not happen with the four external data sources that we benchmarked.
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A tail miss is treated as a total miss for REPL and EC. But for RPDR, since the

tail patching can be hidden behind the prefix access, the total access time is the larger

of Tlocal and Ttail−patch.

Finally, when there is a partial data miss, with RPDR the access cost is Tpatch.

With REPL, there is essentially no partial miss: if a data chunk is missing from all

replicas, the entire dataset is treated as a total miss. With EC that encodes n original

data chunks into m redundant chunks, if data needs to and can be reconstructed, the

partial miss cost is the cost of the slower process between client data retrieval and

decoding, assuming the two can be perfectly overlapped.

5 Performance Results

5.1 Simulation Overview

We perform trace-driven simulations to evaluate our proposed striping-enabled cache

management and partial data recovery strategies.

Our simulator takes as input two traces: a node availability trace and a dataset

access trace. The node availability trace logs the status of a group of nodes within an

institution over a period of time and reflects the availability of storage nodes partici-

pating in a storage aggregation system. The dataset access trace logs external scientific

dataset access information (such as file name, size, access time, client host name, etc.)

within an institution and reflects the distributed scientific data cache users’ access

pattern. Our simulator combines these two traces to examine data availability, cache

behavior, and recovery performance in a realistic setting.

We used the desktop availability trace from Microsoft that consists of “up/down”

measurements of 50,000 desktop workstations in their campus, for a period of 840

hours [2]. This trace (called MS trace for brevity) was collected by recording the results

of periodic “ping” operations to each workstation: a machine is marked as either “up”

or “down” for each of the 840 hours. Note that this requires the coarsening of access

time in processing the dataset access trace. I.e., while we preserve the original order

and access times of dataset access trace entries, a relevant storage node is considered

available or unavailable according to the availability trace for each entire hour.

In order to verify that the collective node behavior portrayed by the MS trace is

also reflective of academic settings, we performed a similar data collection experiment

using 600+ workstations at the Department of Computer Science in North Carolina

State University. The experiments were conducted for a duration of over 4 months.

Both traces show similar availability trends, with over 60% of the nodes available for

over 90% of the time.

In using the MS trace, we performed multiple tests, each of which used a group

of randomly selected 50 nodes from the node pool (50,000) as storage nodes partici-

pating in the aggregate cache. Since this paper does not focus on heterogeneity issues,

we assume similar I/O rates, network capabilities, and space contributions across the

storage nodes.

For dataset accesses, we obtained two real-world traces, Jasmine and ARM. Jasmine

contains the Jefferson Laboratory researchers’ access logs to the high-energy physics

data hosted at the Jefferson Lab Asynchronous Storage Manager (JASMine). ARM

contains the Oak Ridge National Laboratory (ORNL) researchers’ access logs to the

Atmospheric Radiation Measurement (ARM) archive hosted at the HPSS mass storage

system at ORNL. Table 2 summarizes statistics about the two access traces. One

might argue that the dataset sizes in these traces do not look large enough to exceed a
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Trace ARM Jasmine

Duration 157.5 19.1
days days

No. entries 3709 4000
No. unique 382 1686

datasets
Average 253.7 2047.0

dataset size MB MB

Table 2 Data access trace statistics

ORNL Subnet Remote Data Sources 

ORNL HPSS HSI,3hops,  

0.3 ms 
Gb Subnet

FreeLoader

TeraGrid

PSC          ORNL 

GridFTP, 

Loc1: 11hops, 31.7ms 

Loc2: 5hops, 0.6 ms 
Client

Linux 2.4.21, AMD 

NCSU HTTP 

Serverwget,12hops, 

29.2 ms 
Parallel get() 

Transparent 

Patching

OC-12 

1Gb/sec

Fig. 2 Benchmarking testbed

workstation’s local capacity. However, scientific users often access collections of datasets

[35], each of which is on the order of a few GBs, for better portability among file

systems. In addition, as we pointed out earlier, accessing data in a striped fashion from

a distributed cache has a performance advantage, which justifies the use of this cache

for these traces.

To reduce the simulation time, we filtered the original Jasmine trace to retain only

accesses to larger datasets (those above a size threshold of 2000MB). Table 2 shows the

number of entries in the filtered trace (the original trace contains 644,132 entries). We

consider the trimming reasonable since scientists would be more interested in using a

distributed cache for their large datasets.

5.2 Parameterizing the Simulator

This section presents performance parameters (such as Re and Rn as described in

Section 4.3 and the client download rate Rclient) obtained from our aggregate storage

prototype using multiple external data sources. These results are used in the access

time calculation in our simulation.

5.2.1 Benchmarking Testbed Configuration

Our testbed (Figure 2) depicts a scientist’s local research environment, where his/her

powerful client machine has access to external data sources such as parallel/archival

file systems and Web data repositories, using various data movement tools.

We installed the FreeLoader aggregated storage cache in this setting to study

its ability to transparently patch datasets from external data sources. Our testbed

spreads across Oak Ridge National Laboratory (ORNL), North Carolina State Univer-

sity (NCSU), and the TeraGrid (a Nationally deployed Grid infrastructure). It com-

prises of the following components.

1. Remote data sources where scientists store and/or share primary copies of their

datasets (identified by the protocol name and the location of the source): (i) the

HPSS [12] archival storage system (HSI) at ORNL, accessed through the Hierarchi-

cal Storage Interface [21] client software, (ii) a web repository at NCSU (wget-R)

accessed through the wget interface, and (iii) two GridFTP servers, enabling ac-

cess to parallel file systems on the TeraGrid sites, ORNL (GridFTP-L) and PSC

(GridFTP-R). We used the UberFTP client interface to access the GridFTP servers.
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Figure 2 also shows the connectivity of these remote data sources to the ORNL

subnet, which results in varied patch bandwidth.

2. The aggregate storage cache at ORNL: an aggregate storage of 0.5TB with 15 stor-

age nodes (donating 7-60GBs each) and one manager. Donors have dual Pentium

III, Linux 2.4.20-8 kernel, and 100Mb/sec or 1Gb/sec Ethernet. The storage nodes

are equipped to patch from the remote sources using appropriate protocols as well.

3. A client machine at ORNL with Dual AMD Opteron, Linux 2.4.21 and GigE,

running the aggregate storage client component. It is at most five hops away from

any of the storage nodes in the aggregate storage cloud.

5.2.2 Benchmarking Results

In order to obtain the downloading rate of the entire dataset from the external source,

(Rclient), client access rate of in-cache data (RCw
, where w is the stripe width), and

partial data recovery rate (Rn, where n is the number of nodes concurrently patching),

we conducted a series of tests based on our prototype implementation of the aggre-

gate storage framework. Our bandwidth benchmarking and simulation tests used a

target stripe width of 10, since we observed that for our testbed, the client access rate

saturated at that width (see Figure 1(b)).

To study recovery, we mimic node failures and have substitute nodes patch, from

the external source, the “holes” due to the loss of stripes. When n nodes are patching

concurrently, each is retrieving one stripe, chunk by chunk. The total amount of data

retrieved is then n/10 of the entire dataset’s size. Therefore, when n = 10, the whole

dataset is downloaded in parallel. Through our tests, we have found that for the data

sources and protocols used, the patching rate per node Rn does not vary much as we

increase n, the number of nodes patching concurrently. The decrease in bandwidth

ranges between 0 (GridFTP-L) and 4.7% (wget-L) when n grows from 1 to 10. This is

most likely due to the strided data access pattern. Therefore, we simplify the partial

data recovery model in Section 4.3 and substitute Rn with a single R parameter, which

is conservatively chosen as R10.

Similarly, we examined whether the per-node patching rate could be affected by

the patching node’s concurrent data serving to the client, since the network interface is

shared. Again, we found the impact to be very small, ranging from 0 (GridFTP-L) to

10% (wget-L). We select the lower R number, pessimistically, assuming the patching

activity fully overlaps with serving data to the client.

In addition, we measure the collective downloading rate for patching a tail miss

and importing entire datasets, when 10 nodes are fetching a contiguous region of a

dataset. The rate is calculated by including the cost of both the parallel downloading

and the inter-node data shuffling activities. We further measure the rate that an entire

1GB dataset is downloaded by the GigE client, Rclient, as an alternative to fetching

the data in case of a total miss.

Data Source wget-R GridFTP-L GridFTP-R HSI

Rclient 2.3 20.5 3.5 11.5
R 1.1 3.8 1.41 0.91

Rcollective 2.0 7.5 2.02 1.3

Table 3 Throughput parameters benchmarked, in MB/s, using a 1GB dataset. All numbers
are per-node rates.

Table 3 summarizes our results. The results reveal two facts. First, the downloading

rates are significantly lower than allowed by the storage nodes’ network interface. In the
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Fig. 3 Jasmine trace hit/miss rates

case of protocols like GridFTP, which are optimized for large transfers, the overhead

of multiple small accesses, including authentication and connection establishment each

time around, results in an overall low patch rate despite high-speed networks. This

suggests that we can minimize the cost of patching by performing large remote I/O and

local data reorganization. With the wget tests, however, latency incurs a major cost.

Second, as mentioned above, with the scalability we observed, having 10 storage nodes

collectively download the dataset and exchange stripes (at 10 × Rcollective) is faster

than having the GigE client download the whole dataset (at Rclient). This appears to

be true for all data sources.

To get a rough estimate of Re, the expected chunk delivery rate from each storage

node to the client, we divided the FreeLoader client access rate (89MB/s for a stripe

width of 10 for a 1GB dataset) by the stripe width.

Finally, to estimate the encoding/decoding cost for erasure coding, we bench-

marked the parity check throughput using an efficient implementation by James Plank

(http://www.cs.utk.edu/~plank/plank/gflib/parity test.c). The parity check through-

puts we measured on multiple workstations are all higher than 100MB/s, and hence

will not be a performance bottleneck since the encoding/decoding cost will be hidden

by the data transfer between the client and the storage nodes.

5.3 Simulation Results

5.3.1 Jasmine Trace Results

First, we examine the cache behavior with data striped on unreliable nodes. The stripe

width used is 10.2 All experiments were repeated 5 times. Since the variance in the

results were reasonably small (<10%), we show the average numbers without error

bars. A uniform space donation is used across the 50 nodes.

Figure 3(a) shows the caching performance using the Jasmine trace. We varied

the total cache size from 100GB to 4000GB. For each cache size, the performance

of four strategies is shown side by side: REPL, EC, RPDR, and CB. CB stands for

“combination”, where we use RPDR as a backup for EC. In other words, a partial data

2 In our experiments we have varied the stripe width and the results across different widths
did not show significant difference. Therefore we omit the other stripe widths due to space
limitation.
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miss that cannot be repaired by local redundancy using EC, is patched using RPDR.

In this case, both RPDR and CB use the base version, without prefix caching. For each

test, we measure the percentage of accesses (by size) in each hit/miss category: hit,

partial hit, tail miss, and partial miss. The rest are total misses. “Partial hit” denotes

a miss that can be recovered locally through REPL or EC. With replication or the

fast EC decoding we measured, there is no performance penalty. “Partial miss”, on the

other hand, denotes a miss that requires remote accesses. For RPDR, this means that

there are holes missing in the requested dataset. For REPL, EC, and CB, this means

that the cached dataset cannot be completely recovered with local redundant chunks.

As mentioned earlier, a tail miss with RPDR or CB is patched using collective

download and the patch operation can be easily overlapped with the in-cache access

of the dataset. Hence, for these two strategies, we categorize the cached part of those

datasets as a “hit” and the missing part as a “tail miss”. This does not apply to REPL

or EC because there any dataset that cannot not be recovered locally is a total miss.

As expected, for all four strategies, both the hit rate and the partial hit rate in-

creases as the cache size grows. The partial miss rate also increases due to the fact

that more datasets are cached. The tail miss bar is visible only for RPDR and CB

since these two strategies allow partial data recovery and cache eviction may select

the tails of multiple datasets simultaneously. This rate first grows then shrinks as the

cache gets larger, because the cache saturates before reaching 4TB and the reduced

space shortage causes fewer tail misses.

Figure 3(a) indicates that RPDR and CB clearly outperform REPL and EC. RPDR

has significantly higher hit rate than the combined hit/partial hit rates achieved by

adding local data redundancy. CB has a lower hit rate than RPDR due to its space over-

head, but compensates that with its partial hit rate due to erasure coding. This result

indicates that by fetching data from external sources, RPDR is able to achieve better

cache space utilization than REPL and EC. Meanwhile, by allowing data patching from

external sources as a fall-back approach when local data redundancy is inadequate, CB

appears to be equally appealing. CB incurs the same space overhead as EC. However,

reconstructing a partially cached dataset that was otherwise not recoverable through

decoding makes it more space-efficient.

Although not shown in the chart, we found that most of the partial data unavailabil-

ity caused by node failure involves a single failing storage node. Therefore, by storing

only two replicas, REPL results in a small partial miss rate (which will be treated as

a total miss in calculating the miss penalty). EC has more partial miss, as a result of

being able to cache more datasets. Overall, EC’s caching performance is better than

REPL considering both the “hit” and “partial hit” categories.

Figure 3(b) compares different versions of RPDR and CB, with and without the

prefix caching enhancement. The versions with prefix caching are denoted as “RPDR-

P” and “CB-P”, respectively. With prefix caching, we only cache a prefix of each

dataset. The prefix size is determined by calculating the maximum length of the missing

tail such that the patching cost can be hidden by the prefix access time. When more

cache space is needed, however, chunks from the cached prefix will be evicted, causing

a remote patching penalty. Therefore, we divide the tail miss data into two parts:

“invisible tail”, whose recovery can be hidden by the prefix access, and “tail”, whose

fetching cost is visible to the client.

As can be seen from Figure 3(b), prefix caching significantly increases the total

amount of tail miss (“invisible tail” plus “tail”). However, the combined size of cache

hit and invisible tail miss is greater compared to when not using prefix caching. This is
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Fig. 4 Jasmine trace access times

true for both RPDR and CB. The improvement is more obvious for medium cache sizes,

0.5TB and 1TB, where a considerable portion of hot datasets is cached but the total

cache space is still insufficient. The base version (without prefix caching) also evicts

chunks from the tail of victim datasets. With prefix caching, however, the initial, in-

cache prefix is decided by the size of each individual dataset and the remote recovery

cost. Therefore, a larger portion of the access falls into the “invisible tail” category.

This trend becomes more obvious when the cache size is larger, where there is fewer

visible tail miss and many invisible ones.

Figure 4 depicts, for each external data source, the total access time for the Jasmine

trace calculated from the above tests using our cost models. For each cache size, the

total access time is computed by adding the access time of each trace entry. Since

Figure 3(b) shows that the versions with prefix caching work better than the base

versions of RPDR and CB, we only plot the performance of RPDR-P and CB-P.

Our results show that once again CB and RPDR clearly outperform REPL and EC

in most cases. The only exception is with small to medium cache size with our fastest

source (GridFTP-L). In this case, the collective download rate is high (7.5 MB/s per

node, making 75MB/s when 10 nodes are concurrently downloading). This way, the

higher rate of a total miss caused by REPL and EC becomes less expensive, while the

“hole patching” of RPDR and CB appears relatively slow. In all other cases, RPDR-P

and CB-P outperform approaches using local data redundancy, especially with medium

to large cache sizes. RPDR-P outperforms REPL by up to 37% and EC by up to 36%,

while CB-P outperforms REPL by up to 38% and EC by up to 36%.

Despite their large difference in space usage, EC and REPL have very similar

performance. In most cases EC performs slightly better, which is consistent with the

caching performance result (Figure 3(a)). Meanwhile, neither of RPDR-P and CB-P

appears to be a clear winner and they have very similar performance.
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Fig. 5 ARM trace access times

5.3.2 ARM Trace

Due to space limitations, we present just the access time results for the ARM trace.

Since this trace is significantly smaller compared to the Jasmine trace in the total

dataset size, the cache sizes that we used are also much smaller. Also, due to the

smaller dataset sizes, we use the base versions of RPDR and CB rather than those

with prefix caching.

Figure 5 portrays the access time results with the ARM trace for the four ex-

ternal data sources. Here, CB appears to be a consistent good choice. In this set of

experiments, CB outperforms REPL by up to 54% and EC by up to 12.2%.

6 Conclusion

In this paper we studied data availability and recovery issues with distributed caches

built on unreliable, donated desktop space. We proposed a striping-aware cache man-

agement strategy for this unique environment, upon which we studied three data re-

covery approaches (remote partial data recovery, replication, and erasure coding).

We demonstrated, with real-world scientific data access traces and performance

parameters measured from a distributed cache prototype, that our proposed approaches

based on direct data recovery from remote data sources perform significantly better

than the ones totally relying on the local data redundancy. In particular, the CB

approach, which combines erasure coding with remote partial data recovery, delivers

the best performance in the majority of test cases.
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