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Problem Statement: Checkpointing is an indispensable fault tolerance tool, commonly used by high-
throughput applications that run continuously for hours or days at a time. Applications periodically save 
their own state and in the event of a failure recover by rolling-back the execution state to some previous 
timestep. Checkpointing, however critical it may be for applications, is pure overhead from an application 
standpoint, as it is time spent away from useful computation. Consider a massively parallel application 
running on tens of thousands of computing cores (such as the Cray XT3/4 leadership computing facility, 
LCF, at ORNL). Thousands of processes, performing intensive I/O, simultaneously at regular intervals can 
create millions of files, amounting to TBs of data and huge I/O workloads. This I/O wait time required to 
save the checkpoint images is the key driver for the checkpoint time and can overwhelm any storage system 
despite high-speed interconnects. Even at the lower end, in most clusters (hundreds of nodes) or a desktop 
grid (loosely connected CPU cycle aggregation system), checkpointing is cumbersome. Thus, what is 
needed is a way to alleviate this I/O bandwidth bottleneck. 
 
Current State-of-the-art: It is common practice for jobs running on the individual nodes in a desktop grid 
or a cluster to checkpoint to a shared, central file server. Shared parallel file systems are usually crowded 
with I/O requests, have limited space and are stymied by the server-side bottleneck. Further, the hundreds 
of nodes in the desktop grid or a cluster—on which processes of the parallel job are running—can flood the 
central server with their simultaneous checkpointing I/O operations. Alternatively, cnodes can also 
checkpoint to their respective node-local storage. Node-local storage is dedicated and is not vulnerable to 
contention from network file system I/O traffic. However, node-local storage, and consequently the 
checkpoint data, is bound to the volatility of the compute node itself. For large-scale supercomputers 
without local disks on the compute nodes (such as the LCF at ORNL), local memories present an 
alternative to node-local storage. However, this is unreliable and does not tolerate a global failure. 
 
An Opportunity: In light of the limitations of current checkpoint storage techniques, most prior work has 
focused on reducing the I/O needs of checkpointing [1-4]. This article focuses on the complimentary 
problem of improving storage systems to provide better support for this operation. The storage hierarchy in 
supercomputing centers presents a unique opportunity, making available vast amounts of under-utilized 
storage resources, and consequently, untapped residual bandwidth. For instance, the LCF at ORNL will 
potentially have hundreds of TBs of aggregate main memory. An exascale machine could have on the order 
of hundreds of PBs of memory (as discussed at the recent Exascale Townhall meeting). A survey of Tier 1 
applications (Fusion, Climate, Astrophysics and Combustion) for the LCF suggests that most applications 
seldom use all the memory per core, leaving significant amounts of memory available for checkpoint 
storage. Furthermore, most clusters have hundreds of gigabytes of node-local storage (order of tens of TBs 
in aggregate) and in desktop grids similarly large amounts of disk space remain idle on the individual 
computers [5]. In addition, the interprocessor, cluster interconnect, LAN and WAN connectivity to these 
resources is rapidly increasing. Moreover, current checkpointing solutions for a desktop grid, a cluster or a 
massive supercomputer are already using node-local storage or local memories (as noted earlier), albeit not 
collectively but in isolation. What is needed is a novel solution that brings to bear these storage resources 
and their collective bandwidth potential on the bandwidth crisis faced in checkpointing HPC applications. 
 
A Checkpoint Storage System: We propose that storage resources at all levels of the storage hierarchy be 
aggregated and presented as a dedicated checkpoint storage system for parallel applications (Figure 1). For 
instance, in a desktop grid, the storage system can even be built atop unreliable resources, much like how a 
computational desktop grid itself is based on an unreliable substrate. Similarly, node-local storage in 
clusters and local memories in a massive supercomputer can be aggregated. Aggregation of storage 



virtualizes access to a set of storage devices and in addition allows us to expose their collective potential in 
terms of capacity, I/O and network bandwidth, all of which are obtained at no additional hardware cost.  
 We have built a storage system based on FreeLoader [6] that is optimized for checkpointing in a 
desktop grid environment [7]. It stores large, immutable datasets by fragmenting them into smaller, equal-
sized chunks, which are then striped onto multiple storage nodes to enhance data access rates. This enables 
applications to access data as if they reside on a high-performance shared file system. A dedicated manager 
node maintains metadata such as node status, chunk distribution map, and dataset attributes. Actual transfer 
of data chunks occurs directly between the storage nodes and the client in parallel. Our results indicate that 
a Gb/sec client can easily saturate its read/write throughput from this storage system. We propose to extend 
this baseline implementation to aggregate node-local storage and local memories, while presenting it as a 
dedicated checkpoint storage. Such a storage can offer on the order of GBs/sec of I/O bandwidth. 

A checkpoint storage system should support the 
following desired functionality.  
High-speed writes: The checkpoint storage system should 
provide excellent write performance and several 
asynchronous write optimizations so applications can 
expeditiously perform the checkpoint operation. As 
mentioned before, checkpointing is a necessary—but time 
consuming—operation, the results of which will only be 
used in the event of failure. Thus, it is desirable to provide 
high-speed write performance so the application can swiftly 
return to performing useful computation. Our aggregation 
approach performs parallel I/O across a network of storage 
devices and is thus well-positioned to offer high write 
bandwidth. Further, we propose to optimize the system by 
reducing file system overhead associated with large writes, 
metadata management and synchronization, thereby relaxing 
POSIX semantics. Thus, an application can checkpoint at a 
significantly higher rate than with extant solutions. 
Checkpointing to our prototype in a desktop grid offered an 
application release bandwidth of 135MB/sec [7]. 
Cache-like behavior: Checkpoint data is transient in nature 
and is usually not maintained beyond the lifetime of an 

application run. Unlike a regular file system, a checkpoint storage system can be aware of this 
characteristic and purge files based on usage or aging. This improves application performance by making 
available additional storage and reducing overheads due to reduced availability of RAM. 

Figure 1: Checkpoint storage at each 
level of the storage hierarchy 

Incremental checkpointing: Often, in a checkpointing environment, subsequent snapshots of the same 
process generate partially similar files. This property of incremental change can be used to improve the 
write throughput of our aggregate storage system: blocks that do not change from one file version to 
another need not be written to disk again. The problem, however, is identifying common data blocks. The 
solution is content addressability in the file system. One way to implement this is to name data blocks 
using a sha1 hash of the block’s data, thus uniquely tying the block content to its name. 
Easy to use interfaces: The storage system should provide interfaces, enabling easy integration with 
applications. Specialized libraries and interfaces, however optimized, cannot match the simplicity of file 
system interfaces. Our prototype used FUSE [8], a Linux kernel module, to provide file system-like 
interface. 
Impact control: A key issue to address is the impact on competing workloads. For instance, amassing 
node-local storage or memory resources can sometimes hinder the processing of another application, using 
the corresponding nodes. In our previous work [9] in desktop grid storage, we throttled data access on 
donor nodes to control the impact on native processes. In the future we propose to investigate other 
schemes, such as striping data only onto the storage or memory of relatively free processing elements. 
 
Summary: A checkpoint application-specific storage system can be constructed at all levels of the storage 
hierarchy and can help alleviate the I/O bandwidth bottleneck of HPC applications. The storage system can 
offer a competitive, low-cost alternative to checkpointing to a traditional file system, which can be freed to 
cater to other user needs.  
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