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Abstract

Storage system failure is a serious concern as we ap-
proach Petascale computing. Even at today’s sub-Petascale
levels, I/O failure is the leading cause of downtimes and job
failures. We contribute a novel, on-the-fly recovery frame-
work for job input data into supercomputer parallel file
systems. The framework exploits key traits of the HPC I/O
workload to reconstruct lost input data during job execu-
tion from remote, immutable copies. Each reconstructed
data stripe is made immediately accessible in the client re-
quest order due to the delayed metadata update and fine-
granular locking while unrelated access to the same file re-
mains unaffected. We have implemented the recovery com-
ponent within the Lustre parallel file system, thus building a
novel application-transparent online recovery solution. Our
solution is integrated into Lustre’s two-level locking scheme
using a two-phase blocking protocol. Combining paramet-
ric and simulation studies, our experiments demonstrate a
significant improvement in HPC center serviceability and
user job turnaround time.

1. Introduction

In HPC settings, data and I/O availability is critical
to center operations and user serviceability. Petascale ma-
chines require 10,000s of disks attached to 1,000s of I/O
nodes. Plans for 100k to 1M disks are being discussed in
this context. The numbers alone imply severe problems with
reliability. In such a setting, failure is inevitable. I/O failure
and data unavailability can have significant ramifications to
a supercomputer center at large. For instance, an I/O node
failure in a parallel file system (PFS) renders portions of the
data inaccessible resulting in either application stalling on
I/O or being forced to be resubmitted and rescheduled.

Upon an I/O error, the default behavior of file systems
is to simply propagate the error back to the client. Usually,
file systems do little beyond providing diagnostics so that
the application or the user may perform error handling and
recovery. For applications that go through rigid resource al-
location and lengthy queuing to execute on Petascale su-

percomputers, modern parallel file systems’ failure to mask
storage faults appears particularly expensive.

Standard hardware redundancy techniques, such as
RAID, only protect against entire disk failures. Latent sec-
tor faults (occurring in 8.5% of a million disks studied [1]),
controller failures, or I/O node failures can render data in-
accessible even with RAID. Failover strategies require
spare nodes to substitute the failed ones, an expensive op-
tion with thousands of nodes. It would be beneficial to
address these issues within the file system to provide grace-
ful, transparent, and portable data recovery.

HPC environments provide unique fault-tolerance op-
portunities. Consider a typical HPC workload. Before sub-
mitting a job, users stage in data to the scratch PFS from
end-user locations. After the job dispatch (hours to days
later) and completion (again hours or days later), users
move their output data off the scratch PFS (e.g., to their lo-
cal storage). Thus, job input and output data seldom need to
reside on the scratch PFS beyond a short window before or
after the job’s execution. Specifically, key characteristics of
job input data are their being (1) transient, (2) immutable,
and (3) redundant in terms of a remote source copy.

In this paper, we propose on-the-fly data reconstruc-
tion during job execution. We contribute an application-
transparent extension to the widely used Lustre parallel file
system [2], thereby adding reliability into the PFS by shield-
ing faults at many levels of an HPC storage system from
the applications. With our mechanism, a runtime I/O error
(EIO) captured by the PFS instantly triggers the recovery of
missing pieces of data and resolves application requests im-
mediately when such data becomes available.

Such an approach is a dramatic improvement in fault
handling in modern PFSs. At present, an I/O error is prop-
agated through the PFS to the application, which has no
alternative but to exit. Users then need to re-stage input
files if necessary and resubmit the job. Instead of resource-
consuming I/O node failover or data replication to avoid
such failures, our solution does not require additional stor-
age capacity. Only the missing data stripes residing on the
failed I/O node are staged again from their original remote



location. Exploiting Lustre’s two-level locks, we have im-
plemented a two-phase blocking protocol combined with
delayed metadata updates that allows unrelated data re-
quests to proceed while outstanding I/O requests to recon-
structed data are served in order, as soon as a stripe becomes
available. Recovery can thus be overlapped with computa-
tion and communication as stripes are recovered. Our exper-
imental results reinforce this by showing that the increase in
job execution time due to on-the-fly recovery is negligible
compared to non-faulting runs. In a simulation study, us-
ing our experimental results as parametric input for recov-
ery overhead and HPC center job traces as workloads, we
demonstrate a reduction of over an order of magnitude in
the mean wait time of jobs affected by I/O errors.

Consider the ramifications of our approach. From a cen-
ter standpoint, I/O failures traditionally increase the over-
all expansion factor, i.e., (wall time + wait time)/wall time
averaged over all jobs (the closer to 1, the better). Many
federal agencies (DOD, NSF, DOE) are already request-
ing such metrics from HPC centers. From a user standpoint,
I/O errors result in dramatically increased turnaround time
and, depending on already performed computation, a corre-
sponding waste of resources. Our method significantly re-
duces this waste and results in lower expansion factors.

2. Related work

PFSs like Lustre have active Object Storage Servers
(OSSs), each managing many Object Storage Tar-
gets (OSTs) and doubling as a hot standby failover
node for other OSSs. This obviates the need for redun-
dant OSS nodes. However, upon an OSS failure, the
standby OSS node’s load practically doubles. Besides
cost and performance issues, software compatibility prob-
lems prevent the use of storage node failovers, which is
the case with Jaguar, the 23,412-core Cray supercom-
puter at ORNL (No. 7 in Top500). To the best of our knowl-
edge, due to these factors, storage node failover is not
widely adopted by supercomputers or clusters. Our ap-
proach provides an inexpensive, software-based alternative
that protects PFSs against storage node failures by utiliz-
ing the natural redundancy in job input data.

While RAID [7] protects against disk failures, it cannot
protect against I/O node failures. RAID can also be crippled
by multiple disk faults within a group, latent sector errors
and controller failure [1, 4, 9]. With increased disk capacity,
it is projected that the reconstruction time (already at dozens
of hours) will increase by 10% a year [11]. This suggests
that a second (non-recoverable) failure is more likely dur-
ing long reconstructions [11]. Our approach recovers from
I/O node failures and could even hide performance degra-
dation due to RAID reconstruction.

I/O shepherding [4] introduces a reliability infrastruc-
ture for file systems by executing I/O requests using user-

specified failure tolerance mechanisms including retries,
sanity checking, checksums, and mirrors or parity protec-
tion to recover from lost blocks or disks. This work is simi-
lar in the sense that it attempts to introduce fault-tolerant be-
havior into file systems by reliably executing I/O requests.
However, we are concerned with HPC job input data and
rely on external sources for I/O node failures recovery.

Replication is a commonly used technique for persis-
tent data availability [3, 5, 15]. Supercomputers prefer a
high-performance scratch PFS for aggregate I/O bandwidth,
which is expensive and, therefore, precious. Replicas con-
sume these precious storage resources as they persist even
after job completion. Our recent work assessed the viability
of temporally constrained replication [14], but it still comes
at the expense of PFS implementation complexity and re-
quires additional scratch space. Our other earlier work re-
covered lost stagein data offline (after job submission but
before its dispatch) [16]. The online recovery described in
this paper complements the latter approach and provides an
alternative to replication if its implementation complexity is
considered to be too high or when scratch space is scarce.

3. On-the-fly recovery

The overarching goal of this work is to address file sys-
tems’ fault tolerance when it comes to serving HPC work-
loads. The following factors weigh in on our approach.

(1) Mitigate the effects of I/O node failure: An I/O node
failure can adversely affect a running job by causing it to
fail, being requeued or exceeding time allocation, all of
which impacts the HPC center and user. Our solution pro-
motes continuous job execution that minimizes the above
costs. (2) Improve file system response to failure: File sys-
tem response to failure is inadequate. As we scale to thou-
sands of I/O nodes and few orders of magnitude more disks,
file systems need to be able to handle failure gracefully. (3)
Target HPC workloads: The transient and immutable na-
ture of job input data and its persistence at a remote location
present an unique opportunity to address data availability in
HPC environments. We propose to integrate fault tolerance
into the PFS specifically for HPC I/O workloads. (4) Be in-
clusive of disparate data sources and protocols: HPC users
use a variety of storage systems and transfer protocols to
host and move their data. It is desirable to consider external
storage resources and protocols as part of a broader I/O hi-
erarchy. (5) Be transparent to client applications: Applica-
tions are currently forced to explicitly handle I/O errors or to
simply ignore them. We promote a recovery scheme widely
transparent to the application. (6) Performance: For individ-
ual jobs, on-the-fly recovery should impose minimal over-
head on existing PFS functionality. For a supercomputing
center, it should improve the overall job throughput com-
pared to requeuing the job.

Architectural Design: To provide fault tolerance to
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Fig. 1. Architecture of on-the-fly recovery

PFS, the on-the-fly recovery component should be able
to successfully trap I/O error of a system call result-
ing from I/O node failure. In a typical parallel computing
environment, parallel jobs are launched on the numer-
ous compute nodes (tens of thousands), and each one of
those processes on the compute nodes perform I/O. Fig-
ure 1 depicts the overall design. Each compute node can
act as a client to the parallel file system. Upon captur-
ing an I/O error from any of these compute nodes, data re-
covery is set in motion. The calling process is blocked,
and so is any other client trying to access the same un-
available data. The recovery process consults the Metadata
Directory Service (MDS) of the PFS to obtain remote lo-
cations where persistent copies of the job input data
reside. (We discuss below how this metadata is cap-
tured.) It then creates the necessary objects to hold the data
stripes that are to be recovered. Using the recovery meta-
data, remote patching is performed to fetch the missing
stripes from the source location. The source location could
be “/home”, or an HPSS archive in the same HPC cen-
ter, or a remote server. The patched data is stored in the PFS,
and the corresponding metadata for the dataset in ques-
tion is updated in the MDS. More specifically, missing
stripes are patched in the client request order. Subse-
quently, blocked processes resume their execution as data
stripes become available. Thus, the patching of miss-
ing stripes not yet accessed by the client is efficiently
overlapped with client I/O operations to significantly re-
duce overhead.

Automatic Capture of Recovery Metadata: To en-
able on-demand data recovery, we extend the PFS’s meta-
data with recovery information. Staged input data has per-
sistent origins. Source data locations, as well as infor-
mation regarding the corresponding data movement pro-
tocols, are recorded as optional recovery metadata (using
the extended attributes feature) on file systems. Locations
are specified as a uniform resource index (URI) of the
dataset comprised of the protocol, URL, port and path (e.g.,
http://source1/StagedInput or gsiftp://mirror/StagedInput).
Simple file system interface extensions (e.g., extended at-

tributes) capture this metadata. We have built mechanisms
for the recovery metadata to be automatically stripped from
a job submission script’s staging commands for offline re-
covery [16] that we utilize here for online recovery. By
embedding such recovery-related information in file sys-
tem metadata, the description of a user job’s data source
and sink becomes an integral part of the transient dataset
on the supercomputer while it executes. User credentials,
such as GSI (Grid Security Infrastructure) certificates, may
be needed to access the particular dataset from remote mir-
rors. These credentials can also be included as file metadata
so that data recovery can be initiated on behalf of the user.

Impact on Center and User: Performance of online re-
covery requires further analysis. PFS at contemporary HPC
centers can support several Gbps of I/O rate. However, this
requires availability of all data and absence of failures in
the storage subsystem. When faced with a RAID recover-
able failure (e.g., an entire disk failure), file systems per-
form in either “degraded” or “rebuild” mode, both of which
incur perceivable performance losses [13]. In cases where
standard hardware-based recovery is not feasible, the only
option is to trigger an application failure.

As application execution progresses, the performance
impact (and potential waste of resources) due to failures in-
creases resulting also in substantially increased turnaround
time when a job needs to be requeued. These aspects also
impact overall HPC center serviceability.

On-the-fly recovery offers a viable alternative in such
cases. With ever increasing network speeds, HPC cen-
ters’ connectivity to high-speed links, highly tuned bulk
transport protocols are extremely competitive. For in-
stance, ORNL’s Leadership Class Facility (LCF) is con-
nected to several national testbeds like TeraGrid (a 10Gbps
link), UltrascienceNet, Lambda Rail, etc. Recent tests have
shown that a wide-area Lustre file system over the Ter-
aGrid from ORNL to Indiana University can offer data
transfer speeds of up to 4.8 Gbps [12] for read opera-
tions bringing remote recovery well within reach.

Depending on how I/O is interspersed in the application,
remote recovery has different merits. The majority of HPC
scientific applications conduct I/O in a burst fashion by per-
forming I/O and computation in distinct phases. These fac-
tors can be exploited to overlap remote recovery with com-
putation and regular I/O requests. Once a failure is rec-
ognized and recovery initiated, the recovery process can
patch other missing stripes of data that will eventually be re-
quested by the application and not just the ones already re-
quested. Such behavior can improve recovery performance
significantly.

At other times, however, we may not be able to over-
lap recovery efficiently. In such cases, instead of consuming
compute time allocation, a job might decide that being re-
queued is beneficial, thereby compromising on turnaround



time. Thus, a combination of factors, such as I/O stride, time
already spent on computation, cost of remote recovery and
a turnaround time deadline, can be used to decide if and
when to conduct remote data reconstruction. Nonetheless,
the cause of I/O errors needs to be rectified before the next
job execution. Although this is beyond the scope of this pa-
per, we have built the basis for a dynamic cost-benefit anal-
ysis. Our experiments analyze results and discuss their af-
fect on job turnaround time in light of on-the-fly recovery.

4. Implementation

In this section, we illustrate how on-the-fly recovery has
been implemented in Lustre, a modern parallel file system
prevalent in supercomputer centers. A Lustre FS comprises
of the following three key components: Client, MDS (Meta-
Data Server) and OSS (Object Storage Server). Each OSS
can be configured to host several OSTs (Object Storage Tar-
get) that manage the storage devices (e.g., RAID storage ar-
rays). Should a storage failure occur due to an OSS or OST
failure, the original input data can be replenished from the
remote data source by reconstructing unavailable portions
of files.

In supercomputers, remote I/O is usually conducted
through the head or service nodes and, therefore, these
nodes are likely candidates for the initiation of recov-
ery. In our implementation, the head node of a super-
computer doubles as a recovery node and has a Lus-
tre client installed on it. It schedules recovery in response
to the requests received from the compute nodes, which ob-
serve storage failures upon file accesses. The head node
serves as a coordinator that facilitates recovery manage-
ment and streamlines reconstruction requests in a consistent
and non-redundant fashion. Figure 2 depicts the recov-
ery scenario. Events annotated by numbers happen con-
secutively in the indicated order resulting in four distinct
phases.

Head Node Computing NodesRemote Source MDSOSTs

X
5. file/OST

3. data access

7. object renew
8. get extent lock

9. update metadata

10. unblock
clients with

new metadata

12. re-access data
will block by extent lock

6. block waiting reply
from head node

11. update local metadata

1. setup with --failout
2. staging: set URI

4. get EIO

14. fetch file data

15.  file patch

17. access file data

Phase 1

Phase 2

Phase 3

Phase 4

13. get URI

16. put extent lock

Fig. 2. Steps for on-the-fly recovery

Phase 1: FS Configuration and Metadata Setup: For
on-the-fly recovery, the client needs to capture the OST fail-
ure case immediately. Hence, we configure all OSTs in Lus-
tre’s “fail-out” mode (step 1 of Figure 2). Thus, any opera-
tion referencing a file with a data stripe on a failed OST re-
sults in an immediate I/O error without ever blocking. In
step 2, we further extend the metadata of the input files (at
the MDS) with recovery information indicating the URI of
a file’s original source upon staging (see [16]).

Phase 2: Storage Failure Detection at Compute
Nodes: To access the data of a file stored in the OST, the
application issues calls via the standard POSIX file sys-
tem API. The POSIX API is intercepted by the Lustre
patched VFS system calls.

Due to the fail-out mode, both I/O node and data disk
failures will lead to an immediate I/O error at the client
upon file access (steps 3 and 4). By capturing the I/O er-
ror in the system function, we obtain file name and index
of the failed OST or, in case of a disk failure, the location
of the affected OST. In step 5, the client sends relevant in-
formation (file name, OST index) to the head node, which,
in turn, initiates the data reconstruction. Hence, we perform
online/real-time failure detection at the client for on-the-fly
recovery during application execution, much in contrast to
prior work on offline recovery that dealt with data loss prior
to job activation [16].

Phase 3: Synchronization between Compute and
Head Nodes: Upon receiving the data reconstruction re-
quest from the client, the head node performs two ma-
jor tasks. First, it sends a request to the MDS, which
locates a spare OST to replace the failed one and cre-
ates a new object for the file data on this spare. It next
fetches the partial file data from the data source and popu-
lates the new object on the spare OST with it. When multi-
ple compute nodes (Lustre clients) access the same data of
this file, the head node only issues one reconstruction re-
quest per file per OST (even if multiple requests were re-
ceived). At this point, compute nodes cannot access the
object on the new OST as the data has not been popu-
lated. Once a stripe becomes available, compute nodes may
access them immediately. To support such semantics, syn-
chronization between the clients and OSTs is required. The
fundamental mechanism for such synchronization is pro-
vided by Lustre locks.

Lustre Intent/Extent Lock Basics: Lustre provides two
levels of locking, namely intent and extent locks. Intent
locks arbitrate metadata requests from clients to MDS. Ex-
tent locks protect file operations on actual file data. Before
modifying a file, an extent lock must be acquired. Each OST
accommodates a lock server managing locks for stripes of
data residing on that OST.

Synchronization Mechanism: We have implemented
a centralized coordinator, a daemon residing on the head



node. It consists of multiple threads that handle requests
from clients and perform recovery. Upon arrival of a new
request, the daemon launches the recovery procedure while
the client remains blocked, just as other clients requesting
data from this file/OST (step 6). Data recovery (step 7) is
initiated by a novel addition to Lustre, the (lfs objectrenew)
command. In response, the MDS locates a spare OST (on
which the file does not reside yet) and creates a new ob-
ject to replace the old one. Note that the MDS will not up-
date its metadata information at this time. Instead, the up-
date is deferred lazily to step 9 to allow accesses to proceed
if they do not concern the failed OST.

In step 8, the daemon acquires the extent lock for the
stripes of the new object. Since the (new) object informa-
tion is hidden from other clients, there cannot be any con-
tention for the lock. In step 9, the metadata information is
updated, which utilizes the intent mechanism provided by
Lustre again. In step 10, clients waiting for the patched data
are unblocked and the new metadata is piggybacked. Af-
ter clients update their locally cached metadata (step 11),
they may already reference the new object. However, any
access to the new object will still be blocked (step 12), this
time due to their attempt to acquire the extent lock, which
is still being held by the daemon on the head node.

Adjustment of the OST Extent Lock Grant Policy: In
step 8, the daemon requests extent locks for all stripes of
the recovery object. Consider the example in Fig. 3. Extent
locks for stripes 2, 6, 10 and 14 are requested from OST 5.
Upon a request for stripe 2, OST 5 grants the largest pos-
sible extent ([0,-1] where -1 denotes ∞) to the daemon.
Afterward, requests for stripes 6, 10 and 14 match with
lock [0,-1] resulting in an incremented reference count of
the lock at the client without communicating with OST 5.

Our design modifies this default behavior of coarse-
granular locking. We want to ensure that the extent lock
to the stripes will be released one-by-one immediately af-
ter the respective stripe is patched. However, with Lustre
distributed lock manager (DLM), the daemon only decre-
ments the reference count on lock [0, -1] and releases it af-
ter all the stripes are patched.

To address this shortcoming, we adjust the extent lock
grant policy at the OST server. Instead of granting the lock
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Fig. 3. File reconstruction

of [0,-1], a request from the daemon on the head node is
granted only the exact range of stripes requested. This way,
extent locks for different stripes differ (in step 8). Also, once
a stripe is patched, the respective lock can be released so
that other clients can access the patched data right away.
Meanwhile, clients blocked on other stripes to be patched
remain blocked on the extent locks. The extent lock policy is
only updated for requests from the daemon on the head node
without impacting the requests from other clients. Thus, it
imposes no penalty in the non-failure case.

Such metadata update delay and two-phase blocking of
clients provides the following properties: 1) Before any
metadata update, clients can either access their cached data
(which is consistent since stagein data is immutable) or re-
quest recovery (upon an I/O error). Either way, clients may
still access the stripes of the old objects, but the new objects
remain invisible to them until the head node has patched the
data and notified the clients to update the metadata. 2) Be-
fore patching the actual file data, the head node obtains an
extent lock for all stripes of the new object, thereby block-
ing other clients that access the data now or later. 3) After
patching the data, the extent locks per stripe are immedi-
ately released so that other clients can access partial data
(stripes). Meanwhile, the daemon continues to patch subse-
quent stripes to provide pipelined overlap between patch-
ing and application progress. 4) The extent lock is further
utilized for the second phase of blocking. Thus, data patch-
ing becomes an independent task that can be offloaded to
the OSSs to distribute the patching workload in a scalable
manner. 5) An OSS failure only affects a subset of the com-
puting nodes (the Lustre clients) even though all the clients
participate in the parallel I/O operations. Furthermore, most
of the affected clients are blocked by the extent locks with-
out any communication with the centralized coordinator on
the head node, as discussed previously. Hence, the approach
scales as communication with the centralized coordinator is
limited to few nodes.

Phase 4: Data Reconstruction: In step 13, the URI of
the remote file is obtained. In steps 14 and 15, stripes on the
new object are populated. Due to per-stripe extent locks,
stripes may be patched in any order. In our implementa-
tion, the clients subjected to I/O errors will supply the file
range to access in their reconstruction request to the head
node. The head node retains the order of the stripe requests
and patches them accordingly. This speeds up application
progress during reconstruction, particularly when files are
accessed sequentially and a failure occurs in the middle of
reading a file. In contrast, request-ignorant patching would
hamper application progress by initiating a patch starting
with the lowest indexed stripe of an OST, even though this
stripe has already been read by clients.

To this end, we have implemented a new Lustre com-
mand, lfs patch. Since phase 3 already obtains the extent
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Fig. 4. Matrix multiplication recovery overhead
lock for all the stripes, the new command can update the
data range directly. Also, we set the file position in the patch
system function instead of invoking lseek() at the user level.
This allows us to bypass the overhead associated with auto-
matic read-ahead (due to VFS caching). The extent lock for
each stripe is released immediately after patching so that
clients can access the stripe instantly (step 16).

5. Experimental framework

Our testbed comprised a 17-node Linux cluster at NCSU.
Each node was equipped with four 1.76 GHz processing
cores (2-way SMPs with dual-core AMD Opteron 265 pro-
cessors) with 2 GB of memory and connected to a Gigabit
Ethernet switch. The OS on each node was Fedora Core 5
Linux x86 64 with a Lustre-patched RHEL5 2.6.18 Linux
kernel (Lustre 1.6.3). In our experiments, the cluster nodes
were setup as I/O servers, compute nodes (Lustre clients),
or both, as indicated below. We used different data stag-
ing sources for the job input data: (1) ”/home” on the lo-
cal NFS file system at the same HPC center with patch-
ing cost at 34.41MB/sec; (2) a server at another campus ac-
cessed by a file system client, SSHFS, based on Filesys-
tems in Userspace (FUSE) and secure shell with a patching
cost of 6.31MB/sec. Other patching sources, e.g., GridFTP
servers, might incur further delay. However, since most of
the patching cost is shown to be overlapped with compu-
tation or I/O operations, changes in patching cost remain
largely hidden from applications.

6. Experimental results

We assessed overhead and patching cost of on-the-fly re-
covery using an MPI benchmark and an MPI application.

Performance of Matrix Multiplication: We first as-
sessed an MPI kernel that performs dense matrix multipli-
cation (MM) with the standard C = A × B matrix opera-
tions, where A, B and C are n × n matrices. A and B are
stored consecutively in an input file. We vary n to manipu-
late the size of the input file. Only one MPI task (the mas-
ter) reads the input file before broadcasting the data to all
the other tasks (workers). The matrix product A×B is dis-
tributed to all MPI processes. Since input occurs early dur-
ing execution and since the code is more compute intensive,

we focus on the recovery overhead, i.e., the difference in job
execution time of the jobs with and without failure.

Figure 4(a) shows the experimental results of matrix
multiplication for increasing matrix dimensions, n (total-
ing 64MB, 128MB, 256MB, 512MB and 1GB). The MPI
job runs on 16 compute nodes (one MPI task each). Fig-
ure 4(b) depicts the experimental results for varying num-
ber of compute nodes (1, 2, 4, 8 and 16) and a 256MB data
input. For both of these tests, the stripe count (stripe width)
for the input file was 4 and the stripe size was 1MB. We
configured 5 OSTs (1OST/OSS) with the file residing on
4 OSTs and the spare OST for reconstruction. Some nodes
double as both I/O and compute nodes. Since the configura-
tion is the same, both with or without our solution, this pro-
vides a fair test environment.

To assess our system’s capability to handle random stor-
age failures, we varied the point in time where a failure oc-
curred. In one experiment, we failed one of the OSTs up
front, right as the MPI job started to run. This resulted in
the master MPI task to experience an I/O error upon its first
data access to the failed OST. In another experiment, we
failed one OST mid-way during job execution. The mas-
ter captures the I/O error immediately and sends a recovery
request for the lost data to the daemon on the head node.
Figures 4(a) and 4(b) indicate that the recovery overhead,
from an application standpoint, is below 0.8 seconds for all
cases. This is consistent in the sense that patching is over-
lapped with job I/O and hidden from the application. How-
ever, the actual time overlap between the patching and the
job I/O varies. The recovery overhead for both up-front and
mid-way recovery ranges from 0.06 to 0.75 seconds. Al-
though the reconstruction cost in Figure 4(a) rises with file
size, this is hidden from the application. While the patching
cost from remote SSHFS is ∼ 5 times that of local NFS, the
recovery overhead for jobs patching from remote SSHFS
is only slightly higher than local patching. The increase is
dominated by the patching of the first stripe, which cannot
be overlapped; subsequent stripes incur little extra cost.

Performance of mpiBLAST: We also assessed the per-
formance of our solution using the mpiBLAST benchmark,
a parallel implementation of NCBI BLAST, which splits a
database into fragments and distributes the query tasks to
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Fig. 5. mpiBLAST performance
workers by query segmentation before the BLAST search
is performed in parallel.

Since mpiBLAST is more input-intensive, we discuss
the impact of failure on the overall performance. Figure
5(a) shows the job run time. Figure 5(b) depicts the recov-
ery overhead. mpiBLAST assigns one process to perform
file output and another to schedule search tasks. Hence, the
number of actual workers is the number of all the MPI pro-
cesses minus two. Each worker accesses several files.

We configured 9 OSTs and increased compute nodes
from 3 to 16 so that some double as server nodes (since
our testbed has a total of 17 nodes). We distributed each
input file to four of the OSTs by the Lustre stripe distri-
bution policy and then failed one OST. As the number of
worker processes increases, more files need to be accessed,
i.e., more files reside on the failed OST and require recov-
ery so that the recovery overhead also increases (see Figure
5(b)). The number of failed files grows at the same rate as
the workers. Compared to the overall runtime, the increase
in recovery overhead is moderate. This is due to (1) par-
allel recovery of failed files referenced by disjoint work-
ers and (2) reduced per-file patching cost for more work-
ers as file sizes decrease due to work sharing. Figure 5(b)
shows that the recovery overhead for jobs patching from re-
mote SSHFS is higher than for local patching due to the
slower data source. Also, with more workers, more failed
files exist. Consequently, recovery becomes more costly, yet
at a moderate growth rate due to the aforementioned over-
lap. For the benchmarks we used, such moderate recovery
overhead is negligible compared with the job runtime. We
expect that the same holds true for most supercomputing
jobs as large jobs tend to run much longer and as input files
are typically only read in the job initialization phase. Wall-
clock time estimates generally cover such negligible over-
head. Hence, additional time need not be budgeted for the
job due to our techniques.

7. Simulation Results

We used the benchmarking results from the previous sec-
tion in a simulation study considering job traces along with
failure traces, both collected by large supercomputer cen-
ters. This allows us to study the impact of our approach on
overall center performance in terms of the average value and

the variance of job wait times.
Setup: We simulate 512 dual-CPU compute nodes

(without failures) since we focus on I/O-node and stor-
age failures here. In addition, 72 OSSs serve as I/O nodes,
each with two OSTs connected to 8 disk drives (per OST).
We use a job trace from LANL system 20 [6], which con-
tains 489,376 job submission and completion records over
a period of 1,073 days. Based on the job trace, we gener-
ated a set of job submission events, each containing sub-
mission time, runtime and number of CPUs per job. For
parallel job scheduling, our simulator adopts the FIFO al-
gorithm with backfilling, a popular choice among super-
computing centers.

Another trace from LANL for system 20, the node fail-
ure trace, contains 2,049 failure records over a period of
1,349 days, each of which indicates the index of the failed
node, failure time and duration. In most cluster systems,
I/O nodes tend to share the same configuration as com-
pute nodes. Therefore, we extrapolate the failure statistics
observed from this trace to the additional I/O nodes. More
specifically, system 20’s node failure trace is used to calcu-
late the average node failure rate and repair times. We use
those statistics to generate a set of failure events for each I/O
node. Due to a lack of disk failure data, we derive a com-
mon annualized failure rate (AFR) for a storage drive from
related work [10, 8]. We randomly choose the failure cases
from the node failure trace according to the AFR and ap-
ply them to our simulation disks.

As the job trace is devoid of staged data information
(e.g., file size, stripe size, stripe count) for each job, we
have obtained a snapshot of the Lustre scratch space from
ORNL’s Jaguar Leadership Computing Facility supercom-
puter. This staged data trace contains details of every file
staged in the scratch PFS. We have calculated the distri-
butions of file sizes, stripe sizes and stripe counts. If I/O
operations of jobs overlap with the failure of I/O nodes or
drives, the corresponding jobs will experience an I/O error,
which triggers recovery. Since the job trace from LANL
lacks sufficient information regarding jobs’ I/O operation,
we assume the worst-case scenario: running jobs are per-
forming I/O operations each time a failure occurs. When-
ever a job encounters an I/O failure in our simulation, we
charge the patching cost obtained from the previous experi-
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Fig. 6. Simulation results of all jobs. Zero-wait jobs are omitted.
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Fig. 7. Simulation results of affected jobs
ments as recovery time for data reconstruction from /home.

Results: Our simulations compare system performance
with and without recovery for different stripe counts.
We use mean and standard deviation (SD) of job wait
times to evaluate system performance. Without recov-
ery, if a running job accesses an input file residing on
a failed OST, the job exits upon I/O error and is re-
queued at the queue’s tail. Similarly, disk or I/O node
failures typically result in job exit before being re-
queued. With our recovery, jobs will coordinate with the
head node to patch missing data and continue to run de-
spite both failure cases.

Figures 6(a) and 6(b) depict the mean and standard devi-
ation (SD) of the wait time for all jobs. Job wait times fol-
low a bimodal distribution with many short and few very
long jobs. To address this, we filtered results removing jobs
that have a zero wait time under all test configurations. The
higher the stripe count, the more OSTs the files are asso-
ciated with. This means an OST failure will affect more
jobs. In fact, the percentage of the affected jobs over all jobs
increases from 0.14% to 2.09% when the stripe count in-
creases from 2 to 32. This explains the rise of the curve
without recovery with increasing stripe counts. With our re-
covery mechanism, in contrast, the mean and SD of wait
times remain constant as stripe counts increase, indicating
a scalable solution for potentially very large Lustre server
groups. Furthermore, the recovery mechanism results in the
same mean and SD of wait times as the ideal case (with-
out any failure) for all stripe counts.

Figures 7(a) and 7(b) show the mean and SD of wait
times for those jobs affected by failures. Since these jobs
have non-zero wait times without our recovery, no job fil-
tering is applied. Without recovery, each failed job will be
requeued. On-the-fly recovery can handle both failure cases,

up-front and mid-way, as mentioned previously. Failure-
affected jobs result in slightly longer run times but finish
without requeuing. For these affected jobs, gains due to on-
the-fly recovery are significant. The mean wait times are re-
duced by more than an order of magnitude from over 100k
seconds to thousands of seconds and show a falling trend
(less noticeable due to the log-scale y-axis). In contrast,
simulation results with replication resulted in a slight in-
crease in mean wait time and SD for similar settings [14],
which underlines the potential of on-the-fly recovery with
replication.

Our experiments indicate a system CPU utilization of
70.50% and 70.54% without and with the recovery, respec-
tively. This 0.04% increase is due to the actual recovery of
failure-affected jobs. Such an insignificant change can eas-
ily be amortized by contemporary HPC systems. This is fur-
ther reinforced by the observation that under recovery, the
same mean and SD of wait times are observed (indicated by
the ideal values for all stripe counts).

8. Conclusion
We have presented the design of a novel on-the-fly recov-

ery framework as a means to address fault tolerance within
parallel file systems in HPC centers. The recovery frame-
work provides a seamless way for a running job’s input
data to be reconstructed from its remote source in case of
I/O errors. We have designed the system to take advantage
of key characteristics of HPC I/O workloads such as their
immutable input data, sequential access and persistent re-
mote copy. We have further implemented this design into
the Lustre parallel file system commonly used in supercom-
puter centers. Results with I/O-intensive MPI benchmarks
suggest that the recovery mechanism imposes little over-
head. Based on recovery measurements from a real super-



computer, simulation extrapolations of job traces show that
the recovery mechanism reduces the mean wait times of
jobs from over 100k seconds to thousands of seconds. Thus,
both HPC centers and users stand to benefit from improved
serviceability, data availability and reduced job turnaround
time in the face of storage system failure.
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