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Abstract

High-end computing is suffering a data deluge from
experiments, simulations, and apparatus that creates
overwhelming application dataset sizes. End-user
workstations—despite more processing power than ever
before—are ill-equipped to cope with such data de-
mands due to insufficient secondary storage space and
I/O rates. Meanwhile, a large portion of desktop stor-
age is unused. We propose the FreeLoader framework,
which aggregates unused desktop storage space and I/O
bandwidth into a shared cache/scratch space, for host-
ing large, immutable datasets and exploiting data access
locality. This paper presents the FreeLoader architec-
ture, component design, and performance results based
on our proof-of-concept prototype. Our experiments
show that FreeLoader is an appealing low-cost solution
to storing massive datasets, by delivering higher data
access rates than traditional storage facilities: namely,
local or remote shared file systems, storage systems,
and Internet data repositories. In particular, we present
novel data striping techniques that allow FreeLoader to
efficiently aggregate a workstation’s network communi-
cation bandwidth and local I/O bandwidth. In addition,
the performance impact on the native workload of donor
machines is small and can be effectively controlled.

Keywords: Distributed storage, storage scavenging,
storage cache, serverless storage system, scientific data
management, parallel I/O, striped storage

1 Introduction
There has been a phenomenal increase in computa-

tional power, however, the increase in application data
size is even greater [19]. This growing gap is highlighted
in desktop computing environments, which remain in-
dispensable in scientists’ everyday research activity, es-
pecially for interactive tasks such as simulation-results
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visualization and experiment data analysis. While nu-
merous applications are within the computation capabil-
ity of a moderately powerful workstation, often the ap-
plication cannot run due to the shortage of storage space.

This imbalance between computation and storage
leaves scientists with three unattractive choices. First
is direct processing on remote data. This is slow (due
to remote-end processing power and wide area network-
ing) and not always possible. Second is using a lo-
cal high-performance machine equipped with more stor-
age resources, as a computation backend for desktop
data processing. This is inconvenient, under-utilizes
the expensive machine, and requires significant extra
programming and maintenance work. The last option
is installing a local storage system (e.g., a SAN or
NAS). This is an expensive, storage-only acquisition (al-
though disks can be acquired at roughly $1000/TB, 4TB
SAN storage currently costs in the upwards of $40,000),
which is often not affordable or justifiable in academic
and government research environments.

Meanwhile, a large amount of disk space remains idle
on personal computers. Studies show that on average,
half of the disk space on desktop workstations is idle,
and the fraction of idle space increases as the disks be-
come larger [2, 14]. In addition, most workstations are
online for the vast majority of the time [7]. A desir-
able and low-cost alternative then, is to harness the col-
lective storage potential of individual workstations
much as we harness idle CPU cycles [28]. Besides ag-
gregating storage capacity, this brings performance ben-
efits as well: as networking trends suggest that a fast
LAN connection can stream data faster than local disk
I/O, a workstation can get higher data throughput by ef-
fectively performing parallel I/O on multiple worksta-
tions where its data is distributed.

We envision a distributed storage framework,
FreeLoader (Figure 1), that provides abundant, high-
performance site-local storage for scientific datasets
with very little additional expense, by aggregating idle
desktop storage resources. With FreeLoader, work-
station owners—within a local area network—donate
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some disk space, and FreeLoader stripes datasets onto
multiple such workstations (called benefactors) to en-
hance data access rates. Imagine a group of scientists
in an organization—working on a problem of mutual
interest—who regularly run their simulations on a re-
mote supercomputer to generate dozens of gigabytes of
snapshot-data per timestep. They often upload these ter-
abytes of result-data onto local machines to study us-
ing visualization tools numerous times for a period of
weeks.

On the other hand, using FreeLoader these re-
searchers can pool the idle disk space on their worksta-
tions into a transparent, shared cache and scratch space.
This enables each researcher in the group to process
the raw datasets as if they reside on a high-performance
shared file system, allowing easy collaboration and obvi-
ating expensive downloading/migration operations. As
interest fades on this batch of datasets, they will get re-
placed by new datasets that are currently “hot.”

Although there exists other work on desktop stor-
age aggregation [2, 5], FreeLoader is novel in two as-
pects. First, rather than providing a general-purpose dis-
tributed file system, FreeLoader is a lightweight soft-
ware cache/scratch space that recognizes unique char-
acteristics of interactive data-intensive computing.

� Datasets are usually write-once-read-many. Fur-
ther, they are usually shared as people within the
same organization, e.g., a research group or aca-
demic department, often have shared interest on
certain datasets [34].

� Often scientists have the primary copy of a dataset
safely stored in a remote repository, typically at
archiving or file systems attached to a parallel com-

puter, or at data collections on the web [30, 38, 40].
� A certain dataset is of interest for a limited pe-

riod, e.g., a few days or weeks. It may be fre-
quently re-visited during this period, often by mul-
tiple coworkers-workers in the collaboration [25].
However, beyond this processing duration, users
normally choose not to retain copies of the down-
loaded datasets locally.

� Workstations that are used to perform scientific
data analysis or visualization tend to have more per-
formance and resources.

As a result, FreeLoader is designed to handle transient
uses of bulk scientific data, rather than to be a general-
purpose distributed file system. It aggregates idle stor-
age to host datasets that are larger than workstations’
typical local disk space, and employs an asymmetric
striping technique to fully take advantage of local space
and I/O bandwidth at workstations that process data
from FreeLoader space.

Second, because FreeLoader aggregates workstation
storage where users also conduct their day-to-day activ-
ities, it is vital to control the performance impact on do-
nated nodes. This paper reports initial experimentation
measuring the performance impact of disk scavenging,
which suggests that FreeLoader induces reasonable and
containable impact on a variety of native workloads. A
prior publication addresses controlling the impact on the
benefactors native workload [39].

The rest of the paper presents the design, implemen-
tation, and evaluation of our FreeLoader prototype.

2 Related Work
Tens of networked and distributed file systems exist

as shared storage (e.g., NFS [33]), LOCUS [35], CODA
[24], etc.). These systems either use centralized servers
(as in NFS) or a few distributed replicated file servers (as
in CODA). Several serverless file systems are designed
to achieve higher availability and scalability (e.g., Far-
site [2] and Kosha [5]). However, all the above sys-
tems serve as file systems and target general-purpose
file system usage patterns. Additionally, GFS [18] is
a distributed storage system designed for data-intensive
tasks, but is proprietary, uses dedicated disks, and is spe-
cialized for Web searches. In contrast to these exist-
ing systems, FreeLoader is an open-source, lightweight,
highly decentralized storage cache built on scavenged
disk spaces. It aims to host large replicated datasets for
data-intensive science, where concerns for file/directory
management and concurrency control are much less sig-
nificant.

Parallel file systems (e.g., GPFS [37], Lustre [9],
and PVFS [6]) target large datasets, provide sustained
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high I/O throughput, and are tightly integrated with
supercomputers. These systems are widely used by
FreeLoader’s target customers: scientists engaged in
high performance computing. FreeLoader applies par-
allel file system techniques, such as file striping and par-
allel I/O, in desktop storage settings, and complements
these high-end systems. By replicating datasets at scien-
tists’ local sites, FreeLoader improves data availability,
facilitates local data sharing, and reduces the I/O and
network workload at those remote file systems. Mean-
while, by serving as a data cache, FreeLoader achieves
high space utilization and avoids wasting or fragment-
ing (due to space quotas) its capacity. Also, while
data striping has been widely adopted in the above sys-
tems and certain distributed systems (e.g., Zebra [22]),
it is usually done in a uniform or symmetric way with
the relatively homogeneous settings of these systems.
FreeLoader explores overlapping network data transfer
and local I/O with a novel asymmetric striping tech-
nique.

To some extent, FreeLoader can be viewed as coop-
erative caching [13, 17, 36] extended to another layer:
it pools secondary storage in a LAN environment to re-
duce access misses that require wide-area data transfer
from remote sources. However, a cooperative cache is
part of the storage hierarchy of every node, whereas
FreeLoader space is donated voluntarily and can be ag-
gregated to enable the local desktop processing of large
datasets.

Finally, multiple large scale P2P [12] systems exist
(e.g., Gnutella [29], Kazaa [31], Freenet [8] and Bit-
Torrent [10]). PAST [15] and OceanStore [16] facilitate
wide-area distributed data storage by providing persis-
tence and reliability. Also akin to our approach is Squir-
rel [26], a decentralized P2P web cache, that exploits
locality in web data object references by sharing desk-
top browser caches. There are two major differences be-
tween P2P systems and FreeLoader. First, P2P systems
are usually designed for WAN settings and emphasize
scalable resource and replica discovery, routing proto-
col, and consistency. In contrast, FreeLoader focuses on
aggregating space and bandwidth in a corporate LAN
setting. It adopts a certain degree of centralized con-
trol in data placement and replication, for better data
access performance. Second, P2P storage systems are
designed for content sharing, while FreeLoader has an
additional goal of space aggregation. Although P2P sys-
tems can be deployed in LAN environments, individual
workstations that have such a system installed still man-
age their own storage spaces. This is also true for P2P
web caching. In contrast, FreeLoader has total control
over scavenged space and can therefore aggregate space
effectively to host large and hot datasets: a workstation

may host a dataset that its owner never downloads or
uses, or lose a dataset without its owner explicitly delet-
ing it. Moreover, the access pattern of scientific datasets
[34], differs significantly from that of P2P file sharing
systems [20], often designed toward multimedia data
consumption.

Table 1 compares FreeLoader with some of the re-
lated existing systems. In summary, compared to exist-
ing systems, FreeLoader possesses a novel combination
of several techniques: it deploys space scavenging to ag-
gregate storage resources in non-dedicated commodity
workstations in a LAN environment and performs ag-
gressive and asymmetric data striping for better data ac-
cess performance. Instead of being a general-purpose
file system, it works as scratch/cache space to exploit
data access locality, as well as to enhance space utiliza-
tion in data-intensive scientific computing.

3 Architecture

FreeLoader aggregates donated storage into a single
storage system. The basic architecture consists of two
layers. The management layer maintains the metadata
and performs high-level operations, such as replication
and cache replacement. The storage layer consists of
benefactor nodes that donate space along with I/O and
network bandwidth. Data storage and retrieval are ini-
tiated by client nodes that interact with managers and
benefactors to access data. A client node may or may
not be a benefactor itself.

FreeLoader is a storage system, not a file system. It
stores large, immutable datasets by fragmenting them
into smaller, equal-sized chunks called morsels, which
are scattered among the benefactors. This allows easy
load balancing and striping between benefactors for bet-
ter overall throughput. The morsel size presents a trade-
off between flexibility and overhead. Our preliminary
experiments with 1MB morsels have proven practical for
FreeLoader managing hundreds of GBs to TBs of space.

3.1 Management Layer

The management layer maintains metadata (such as
dataset names) and performs lookup services to map a
client-requested dataset to morsels on benefactors. This
layer does not touch any data in the dataset. Because
the amount of metadata is significantly smaller than real
data, the management layer can run on one or a handful
of dedicated machines—this fact is exploited in a sim-
ilar way by Google FS, at a system scale of thousands
of nodes [18]. Clients communicate with a manager
node to obtain morsel mapping, then directly contact the
benefactors for morsel transfer.

Besides morsel location lookups, the management
layer stores client-specific metadata for added function-
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Systems General-purpose FS Cache Striping Desktop Storage Scavenging Wide-area

FreeLoader No Yes Yes Yes No
Parallel file systems

GPFS [37], Lustre [9], PVFS [6] Yes No Yes No No
Distributed file systems

Frangipani [41]+Petal [27], Zebra [22] Yes No Yes No No
NFS [33], AFS [23], Coda [24] Yes No No No Yes

Google FS [18] Yes No No No No
FARSITE [2] Yes No No No No

IBP+exNode [3] No No Yes No Yes
P2P Storage

Kosha [5] Yes No No Yes No
BitTorrent [10] No No Yes No Yes

Gnutella [29], Kazaa [31], Freenet [8] No No No Yes Yes
Squirrel [26] No Yes No No No

Cooperative caching
xFS [13], GMS [17], hints [36] No Yes No No No

Table 1. Comparison with related file and storage systems. The column “General-purpose FS” indicates whether a system is designed
to present general file system interfaces and functionalities. The column “Cache” indicates whether the system is intended to be used as a
cache space, instead of whether the system uses caching (many of them do emphasize caching for performance improvement). “Striping”
denotes the use of data placement optimizations. “Desktop storage scavenging” indicates the use of space contributions either in part or
whole. “Wide-area” column denotes use as wide-area storage.

ally, such as per-morsel fingerprint checksums for in-
creased dataset integrity. Such services, including en-
cryption/decryption, are optional client-side filters that
have little storage overhead at the management layer.
Moreover, the computational costs are paid by clients
(not benefactors) who elect to use them.

For aggregating I/O bandwidth, FreeLoader adopts
software striping [22] by distributing morsels to multi-
ple benefactors. In addition to aggregating disk and net-
work transfer bandwidth, striping has one unique benefit
in FreeLoader: it lowers performance impact on bene-
factors by spreading out data requests.

When distributing data to remote benefactors,
FreeLoader adopts a simple round robin striping ap-
proach, where stripe width is the number of benefac-
tors that a dataset is striped onto, and stripe size is the
number of contiguous morsels assigned to a benefactor
in each round of striping. For each individual dataset,
determining these two parameters is a complex decision
based on a set of factors: network connectivity of the
client, free space and bandwidth of available benefac-
tors, reliability and native workload on these benefac-
tors, etc. Section 5 shows the impact of these striping
parameters on FreeLoader’s data access rates.

Moreover, recognizing the fact that the user who im-
ports or creates a dataset is most likely the one who vi-
sualizes or analyze it often, we designed an asymmetric
striping approach that assigns more data to this bene-
factor workstation, to optimize its future accesses to the
dataset by overlapping remote data retrieval and local
I/O. Section 4.1 discusses asymmetric striping in more
detail.

Several other features, not presented at length in this

paper, are currently under development. In short, re-
liability and availability is addressed by recovery and
data replication mechanisms. Manager recovery is based
on periodical metadata checkpointing and fail-over tech-
niques. Benefactor failures, including sudden death (due
to crashes) and planned leave (due to space withdrawal),
are handled using a combination of cache replacement
and replication mechanisms. To this end, FreeLoader
collects and uses data access patterns and benefactor
performance capabilities extensively.

3.2 Storage Layer

The storage layer, which runs on benefactor nodes,
manages all the morsels in the system. The primary
function of this layer is servicing get and put morsel re-
quests. Because FreeLoader stores read-only datasets
and accesses to scientific datasets have temporal locality
[34], get requests will dominate traffic.

A benefactor node is an ordinary user machine that
has donated certain idle disk space and has installed the
FreeLoader benefactor component as a daemon process,
which services get/put morsel requests. The benefactors
will also perform several aggregate or meta operations at
the direction of the manager. For example, in the case of
data relocation, the manager gives the source benefactor
a list of morsels to move out and their destination bene-
factors. The source benefactor initiates the transfers and
reports back to the manager.

FreeLoader makes no assumption on the availability
of individual benefactor nodes. Soft-state registration
is performed by having each benefactor regularly sends
heartbeat or “I’m alive” messages to the manager(s).

Another important task of the storage layer is perfor-
mance impact control on benefactors’ native workloads.
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Aside from servicing requests, the impact of the dae-
mon is negligible. When it comes to servicing morsels,
the performance impact depends on the bandwidth or re-
quest frequency, as well as on the native workload’s re-
source usage pattern.

Typical impact control strategy for resource stealing
systems is all-or-nothing: a scavenger has all the re-
sources at its disposal if there are no native tasks, and
no resources otherwise [1, 28]. Such a strategy is not
only over conservative [21, 32], but also infeasible for
FreeLoader by incurring intolerably long data access
latencies whenever benefactor owner activities are de-
tected. Therefore FreeLoader is designed to have the
benefactor daemon’s data serving co-exist with native
workloads, with active control of the performance im-
pact. FreeLoader contains impact to a pre-specified
threshold by performance impact benchmarking, real-
time monitoring of the native workload’s resource con-
sumption, and throttling the benefactor daemon’s execu-
tion. Interested readers are referred to our paper [39].

In this paper, we develop a high-level approach such
as increasing the stripe width to control benefactor im-
pact. Stripe width increase naturally performs impact
control by reducing the per-benefactor data request size
and complements aforementioned local impact control.
Section 5 demonstrates our empirical performance im-
pact study and control through striping.

4 Prototype Implementation
Our FreeLoader proof-of-concept prototype (Fig-

ure 2) implements major functionalities described in
Section 3 and verifies the following rationales.

� Harnessing workstation storage delivers aggregate
data retrieval rates at least comparable to those cur-
rently possible using existing local or remote stor-
age systems.

� Software striping delivers both high aggregate data
access throughput and scalability with regard to
stripe width in a LAN environment. In particular,
with asymmetric striping, a client can combine its
network data transfer with local disk I/O.

� Data serving activities exert a tolerable impact on
workstation’s native workload and this impact is
controllable.

� The overhead of the FreeLoader framework, not
considering bulk data transfer, is acceptably low
and reduces as stripe width increases.

4.1 Manager
This prototype deploys a management layer con-

sisting of a single manager. However, it is designed
for multiple managers. For simplicity, this section
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retrieve()
delete()

store()

reserve()
cancel()

APPLICATION

      FL_write()

Retrieve_dset_info()
Create_dset()

Figure 2. Modules and interfaces in prototype

discusses a single manager because that is what was
tested. The manager provides a set of services for stor-
age resource scavenging and data accesses: global free
space management, space reservation/cancellation, data
striping and metadata serving in the process of dataset
store/retrieve operations. Below, we discuss these ser-
vices at length.

The manager keeps track of space donations—both
available and occupied—at each benefactor, in number
of morsels. A client needs to make a space reservation
with the manager before storing a dataset in FreeLoader.
This provides space guarantees before expensive data
imports, and acts as a serialization point for concurrency
control between multiple client requests.

During a store or retrieve operation, the client obtains
morsel distribution from the manager. This informa-
tion is organized as an array of �benefactor ID, morsel
ID� pairs, specifying for each morsel-sized block in the
dataset, the benefactor storing this block and the local
morsel ID assigned by that benefactor. This format al-
lows for flexibility in striping data and future data relo-
cation in case of benefactor failures. Such metadata is
cached in the manager’s memory and further backed up
in its secondary storage.

Upon a store, the manager performs file striping
across benefactors by choosing a stripe width and size,
as well as the subset of benefactors on which the dataset
will be placed. In this prototype, we have the client spec-
ify these two parameters for a dataset to be stored, allow-
ing easy experimentation on combinations of stripe pa-
rameters. An intelligent striping algorithm should man-
age space efficiently while also factoring in performance
capabilities of benefactors. We have implemented two
data striping strategies: round-robin to benefactors ex-
cluding the client that stores the dataset, and asymmet-
ric that stripes to both benefactors and this client (called
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host client of the dataset in question).
Round-Robin striping: FreeLoader’s data place-

ment optimization problem, which we call Stripe Fit,
can be formalized as follows. A sequence of � datasets
� = ��, ��, ..., ��, where �� is of size �� and requests a
stripe width ��, arrive to be stored at a set of � bene-
factors � � ���� ��� 	 	 	 � ���, where �� comes with an
initial free space size 
�. The problem then is to stripe as
long a prefix as possible of � to �. This is the point
where FreeLoader has to perform cache replacement.
We have shown that a known NP-hard problem, Mini-
mum Bin Packing, can be reduced to the off-line version
of this Stripe Fit problem.1

FreeLoader has to make on-the-fly decisions as
datasets arrive. For this purpose, we implemented a
greedy algorithm, where the manager sorts the benefac-
tors by their current free space sizes. Each dataset, � �, is
striped to the top �� benefactors on the sorted list. If a
dataset is too large to be accommodated at any � � bene-
factors, the above sorting and striping are repeated for
the overflow part, until the entire dataset is stored. This
way, we automatically perform load balancing between
benefactors, ensure that each dataset is accessed simul-
taneously from only �� benefactors, and minimize the
total number of benefactors involved with each dataset
for better data availability.

Asymmetric Striping: The above striping technique
does not exploit the capabilities and access patterns of
the host client that imported the dataset. In reality, the
owner of the host client workstation is likely to access it
first and more frequently. In addition, workstations that
are used to performing bulk scientific data processing
(visualization and/or analysis) tend to have higher con-
figurations in memory size, bus bandwidth, network in-
terface, and disk space. To better utilize the resources of
the host client of each dataset stored in FreeLoader, we
have developed an asymmetric data placement strategy
that, in addition to striping data on a width of � � bene-
factors (as in round-robin), also treats the local down-
loading client as a benefactor by placing part of the
dataset locally.

This approach serves two purposes. First, it aggre-
gates throughput from the width of benefactors as well
as overlap that with local disk I/O. The upshot is a po-
tential throughput gain that is substantially larger than
either storing the dataset locally or on a width of bene-
factors in isolation. Second, with a predisposition to-
wards host clients while placing datasets, overall net-
work traffic can be reduced due to the aforementioned
access locality.

Thematic to this approach, however, is the lo-

1For detailed proof, see http://www.csm.ornl.gov/vazhkuda/-
Morsels/proof.html.

cal:remote data ratio. This ratio determines how many
morsels will be stored locally and remotely (on the � �

remote benefactors) respectively in each stripe cycle.
We have confirmed that the optimal ratio to obtain good
data retrieval performance roughly corresponds to the
local I/O rate and aggregate network transfer rate from
the remote benefactors. However, the local:remote data
ratio is subject to capacity constraints as well. We
approach this in our implementation with a two-phase
technique. First, we determine the optimal ratio, check
whether the host client has enough donated space to
accommodate such data locally, and adjust the ratio if
there is not sufficient local space. For data striped to the
other benefactors, we use the round-robin striping pro-
cess as described above. With a given local:remote ratio,
the local morsels are distributed uniformly with remote
morsels, so that local I/O requests are scattered between
benefactor accesses.

Another aspect to consider with asymmetric striping
is the cost it incurs on other clients: while a prejudice
in data placement works to the advantage of the host
client, it may create load imbalance when the dataset is
accessed by another client. Our results (see Section 5.2)
show that this cost is not significant. Moreover, asym-
metric striping is implemented as a user option, which
is set when the dataset is first stored in FreeLoader de-
pending on anticipated access pattern. For example, a
scientist may turn asymmetric striping on when import-
ing simulation results that she expects to study alone,
and turn it off when importing a biological sequence
database against which all group members routinely per-
form searches.

4.2 Benefactor

The benefactor is a user-level daemon consisting of
four major components: a communication library, a
scavenger device, a morsel service layer and a monitor-
ing layer. Figure 2 highlights a few APIs for each of the
components.

A reliable communication library, built atop UDP,
services requests, and transfers metadata and other sta-
tus information between nodes. UDP, with its low over-
head, is better positioned to serve these short and tran-
sient messages. Message types and their associated han-
dlers are registered with the library. Upon receiving a
message, an associated handler is invoked.

The scavenger device component manages metadata
that maps datasets and their morsels onto local files. It
keeps track of local free space using a bitmap. Morsels
from the same dataset are stored in order in a single file,
which reduces seek time considering the prevailing se-
quential accessing pattern in scientific data processing.

The morsel service layer transfers raw data to and
from the benefactor, through the get and put interfaces,
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as shown in Figure 2. It also performs support oper-
ations such as local space allocation (new) and release
(free). We choose to transfer morsels using TCP, be-
cause bulk transfers benefit from the reliability and con-
gestion/flow control mechanisms that TCP has to of-
fer. In one dataset store/retrieve operation, the TCP con-
nections between the client and appropriate benefactors
are cached and re-used for subsequent morsel transfers.
Thus, only the first morsel transferred incurs a slow-start
phase in TCP.

The monitor layer, currently only supported under
Linux, is used in performance impact control. Using
the /proc file system, it observes changes in usage of the
CPU, memory, network, and disk. Such real-time infor-
mation can help the benefactor throttle its data service
rate and “yield” to native workloads, as suggested by re-
sults in Section 5.

4.3 Client

The major goal of the client component is to effi-
ciently parallelize data transfers across benefactors. In
this paper, we focus our discussions on dataset retrieval
performance because datasets stored in FreeLoader are
write-once-read-many, and the storing speed is often
bound by retrieval rates from remote data sources (such
as using FTP).

Data retrieved from FreeLoader is either stored on the
client’s disks or stream processed by a program. Both
local processing tasks benefit from assembling morsels
retrieved into long, sequential segments. We use an ef-
ficient buffering strategy to overlap data transfers from
multiple benefactors, overlap network data transfer with
local processing, and perform data assembling. The
client requests morsels from benefactors, and maintains
a fixed buffer pool of size at least ��� ������ morsels.
This way, a generalized double buffering scheme al-
lows network and I/O activities to proceed in parallel.
We implemented a pair of nonblocking morsel retrieval
interfaces, getMorsel and waitAny, to enable the
client to multiplex efficiently between benefactors and
maintain �� outstanding morsel requests. The morsel
buffer pool is shared between these �� TCP connections
through a cyclic queue, allowing benefactors to pro-
ceed at different speeds. The client outputs filled morsel
buffers for local processing between sending morsel re-
quests and performing waitAny. It promotes sequen-
tial processing by waiting for filled morsels in the buffer
pool to form contiguous blocks (i.e., without “holes”).

We implemented a client wrapper library for standard
I/O function calls (e.g., open, close, read, write) in C, as
a prelude to a kernel file system module. This library
creates familiar interfaces for client programs to access
datasets stored in FreeLoader. The open call’s seman-
tic is interesting in that it sets the stage for subsequent
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Figure 3. FreeLoader testbed

reads/writes by querying the manager for a dataset’s
morsel distribution information. The read and write
calls are translated into FreeLoader morsel transfer oper-
ations, with additional processing such as data trimming
and concatenation. The close call performs cleanup.
Section 5 demonstrates a widely-used application us-
ing these interfaces in processing a biological sequence
database stored in FreeLoader.

5 Results
This section presents results of our prototype im-

plementation in three parts: client-side perceived
FreeLoader data access performance, running an ex-
ample application which streams data from FreeLoader
space, and the performance impact that a benefactor dae-
mon places on a donated machine.

5.1 Testbed Configuration
Our testbed (Figure 3) depicts a scientist’s HPC re-

search environment with a powerful, well-connected lo-
cal client machine, with access to parallel/archival file
systems and high-speed data movement tools. We in-
stalled the FreeLoader storage cache in this setting as
shown in Figure 3 to study its use by a researcher in
his HPC setting. Our testbed spreads across both Oak
Ridge National Laboratory (ORNL) and North Carolina
State University (NCSU), and comprises of the follow-
ing: (1) FreeLoader cloud at ORNL: Aggregate stor-
age of 400GB, 15 benefactors (donating 7-60GBs each)
and one manager. Benefactor config: Dual Pentium III,
Linux 2.4.20-8 kernel and 100 Mb/sec Ethernet. (2)
The PVFS parallel file system [6] on the ORNL Tera-
Grid Linux cluster outside ORNL firewall with several
terabytes of storage (accessed through GridFTP [4]).(3)
The HPSS archival storage system [11] at ORNL with
365PB of tape storage and several hundreds of giga-
bytes of high-speed disk caches (accessed through hi-
erarchical storage interface (hsi) client). (4) The NFS
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FreeLoader 15 Benefactors, 1 Manager and 1 client
(Data set size) 256MB,512MB,1GB,2GB,4GB,16GB,32GB,64GB
(Morsel size) 1MB
(Stripe size) 1MB, 2MB, 4MB, 8MB, 16MB, 32MB

(Stripe Width) 1, 2, 4, 6, 8, 9

PVFS GridFTP, GSI authent., 1MB TCP buffer

NFS GridFTP, GSI authent., 1MB TCP buffer

HPSS hsi with DCE authentication
(Hot) Data maintained in disk caches of HPSS
(Cold) Fetch from tape: data purged from caches before fetch

NCBI wget from http://www.ncbi.nlm.nih.gov

Table 2. Throughput test setup

shared file system at the NCSU HPC center’s blade clus-
ter (accessed through GridFTP). (5) A client machine
at ORNL: Dual AMD Opteron, Linux 2.4.21 and GigE.
The client is at most five hops away from any of the
benefactor nodes in the FreeLoader cloud, the PVFS
and the HPSS. This machine runs the FreeLoader client
component. (6) A gigabit subnet at ORNL to which the
FreeLoader storage cloud, PVFS, HPSS and the client
machine are connected, which is in turn connected to an
OC-12 link for external connectivity.

5.2 FreeLoader Performance
First, we analyze the performance of the FreeLoader

storage cloud and compare it against alternative data
sources (NFS, PVFS, HPSS and Internet scientific
repositories [30]) frequently used by scientists. We con-
ducted several transfers experiments over a week (see
summary in Table 2) and report average results.

Figure 4 compares the “best of class” performance
using FreeLoader (asymmetric striping: client + 8 bene-
factors) and other data sources. For all dataset sizes,
FreeLoader performs better than GridFTP-based PVFS
and hsi-based HPSS “cold” accesses. We observed up
to a threefold throughput advantage with FreeLoader
for larger datasets and a much higher difference for
smaller datasets (2GB or less). This is because, both
PVFS and HPSS are highly optimized for bulk data
transfers. FreeLoader’s performance was comparable to
HPSS “hot” accesses. HPSS hot access simulates a near
optimal throughput obtained due to transfers entirely
from high-speed disk caches, on a gigabit subnet by two
GigE connected entities (the client and HPSS). How-
ever, the majority of HPC users do not have access to on-
site HPSS, and HPSS’s disk cache is shared by a much
larger group of users than a typical FreeLoader instance
will have. FreeLoader matches such a GigE-transfer by
aggregating throughput from low-end individual bene-
factors. For the largest dataset size (64GB) in our exper-
iment, FreeLoader throughput decrease is because we
were unable to sustain a stripe width of 8 for the entire
dataset (��=8 up to 48GB, after which �� drops to 3).
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Figure 4. ”Best of class” comparison of data retrieval
throughput, with 95% confidence ranges. FreeLoader through-
put is an asymmetric striping on eight benefactors. wget-ncbi
datasets were unavailable for larger sizes. In the rest of exper-
iments, FreeLoader’s performance variance is similar to that
depicted in this figure and error bars are omitted.

This was due to storage capacity ceiling on the benefac-
tor contributions. Scientific datasets, however, are usu-
ally large collections of smaller files and can be accom-
modated and scalably serviced by the FreeLoader frame-
work with reasonable contributions from several donor
machines. Not surprisingly, when compared to remote
data sources, such as the NFS at NCSU and the NCBI
website, FreeLoader has a over an order of magnitude
throughput advantage.

These results show that, in addition to benefits such
as space aggregation and data sharing, FreeLoader has
significant performance advantages. By utilizing col-
lective workstation storage in a networked environment,
which is likely to be used by a much smaller group of
users compared to file/archival systems attached to large
clusters or web servers, FreeLoader can become an at-
tractive alternative to scientists.

Next, we study the effect of striping parameters. By
increasing the stripe width (Figure 5(a) with stripe size
of 1MB morsel), we see an almost linear throughput im-
provement, due to better utilization of the residual band-
width available at the client and extra I/O bandwidth.
By varying the stripe size, however, we see no notice-
able improvements in our experiments (throughput re-
sults are therefore omitted due to space concern).

In the following discussion on asymmetric strip-
ing, we refer to the client uploading the dataset into
FreeLoader space as the “host” client and all other
clients accessing the datasets as “other” clients. Fig-
ure 5(b) and 5(c) show the effect of asymmetric strip-
ing in retrieving a 16GB dataset striped to the host client
and 8 remote benefactors, with a GigE- and 100Mb/s-
connection machine as the host client respectively. The
� axis shows varying local:remote data ratio (��
� � �
��
��). Obviously, the ratio 0:8 stands for round-robin
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Figure 5. FreeLoader striping results

striping on benefactors only, with throughput ���� �.
Similarly, the ratio 1:0 stands for local I/O only, with
throughput �����. To evaluate how well local-area net-
work data accesses can be overlapped with local I/O,
we plot in the figures using dotted line a simple model
for the host client’s overall throughput: ����������� �
���
�� � ��
�������� 	�
��

��
��
� 	�
��
��
��

�. In addition, we
show data retrieval throughput measured from the host
client and two other clients that do not store any parts
of the dataset, again with GigE and 100Mb/s interface
respectively.

In both settings, the host client’s dataset access rate
follows the trend of the idealized model, achieving nice
overlap between remote data access and local I/O. The
measured access rate does reach the peak value slightly
earlier than the model, most likely due to better file sys-
tem prefetching effect when the local I/O requests are
slowed down by the host client’s handling remote ac-
cesses. The GigE and 100Mb/s host clients need very
different optimal local:remote ratio, which can be de-
rived approximately at store time using our throughput
model, or with a diagnostic test similar to these experi-
ments when a workstation joins FreeLoader. In particu-
lar, in both cases the peak throughput with asymmetric
striping is significantly higher than the local I/O rate,
motivating the use of FreeLoader even when users do
have enough local disk space, for higher access rates.

When it comes to other clients, accessing datasets
optimally-placed for host clients, the two settings show
different impact of asymmetric striping. For the client
with 100Mb/s interface, its bottleneck is the network
connection and its access rate remains flat despite the
biased data distribution on benefactors (flat line on both
Figures 5(b) and 5(c)). The GigE client, however,
benefits from the GigE host client serving more data
and shows a similar rate curve as the host client (Fig-
ure 5(b)). On the other hand, it experiences severe
throughput drop as more data gets stored on the 100Mb/s
host client (Figure 5(c)). The above behavior is not sur-
prising since all the other benefactors in this case have

100Mb/s connection. In summary, the positive or nega-
tive impact asymmetric striping incurs on a “3rd party”
client depends on the client’s and the benefactors’ con-
figuration, but is predictable. At the store time of a
dataset, these factors could be evaluated in conjunction
with the expected access pattern for an optimized strip-
ing plan.
5.3 Sample Application

Besides client APIs for storing/retrieving entire
datasets, we have also implemented a small subset of
file system interfaces to access datasets in FreeLoader
space. This allows us to stream-process data cached
by FreeLoader. We evaluate this FreeLoader service by
running a data-intensive application: formatdb from the
NCBI BLAST toolkit, which preprocesses a raw biolog-
ical sequence database to create a set of sequence and
index files. These output files are used in subsequent se-
quence alignment searches. Since the input raw database
is normally larger than all the formatdb output files com-
bined, and can be formatted in different ways, it is the
ideal type of data that users may want to cache/share in
the FreeLoader space.

Stripe width
Local NFS 1 2 4

Throughput (MB/s) 1.71 1.75 1.71 1.82 1.84

Table 3. Overall throughput, in MB/s, for formatdb to pro-
cess a 1GB sequence database

Table 3 shows formatdb execution time with three in-
put data sources: local file-system, network file-system
(NFS), and FreeLoader. For FreeLoader, we tested stripe
widths of 1, 2, and 4. This example is a proof-of-
concept; it shows that an application can transparently
use FreeLoader and receive some benefit. The overall
throughput demanded by formatdb is small. However,
because it comes in bursts, the performance increases
as we stripe across benefactors. With one benefactor,
FreeLoader performs about the same as the local file-
system and 2% slower than NFS. With 4 benefactors,
FreeLoader is 5% faster than NFS. We do not see much
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improvement beyond 4 benefactors due to network and
client saturation.

5.4 Performance Impact on Benefactor Nodes
We have shown that FreeLoader can be an attrac-

tive storage choice from clients’ view point. What
about from space donors’ view point? This section
evaluates the performance impact on benefactors’ native
workloads, by measuring the slowdown factor of three
typical types of activities: computation, network, and
disk, caused by morsel-serving. In each test, a bench-
marking client requests morsels at various rates, from 0
morsels per second to the maximum sustainable band-
width (which varies depending on user workload). Tests
were conducted on a benefactor node that represents
an “average” desktop machine, not too powerful or too
weak, with a 2.8GHz Pentium 4, a SATA disk, 512MB
of memory, and a 100Mb/s network connection. Results
show averages and 95% confidence intervals from mul-
tiple runs.

For the computation impact test, we performed two
tests: (1) the EP application from the NAS benchmark,2

and (2) a Linux kernel compile. The latter is not com-
pletely CPU-bound, but represents typical computation-
intensive user tasks. Figure 6(a) shows their normal-
ized execution time as the benefactor servicing load in-
creases. In general, the impact is low. Even when serv-
ing morsels at full speed, EP is slowed down by 14% and
compilation by 21%, compared to without FreeLoader
benefactor running. Currently, we are unable to explain
the anomalous behavior of “compile” at 1MB/s.

Our network activity test simulates a user down-
loading several different sized web pages from differ-
ent servers, located from 3 to 19 hops away from the
benefactor. Consequently, the latency to fetch each page
varies depending on the size and location of the server.
Each page was requested using wget hundreds of times
back to back, to make it (hopefully) cached by the web
server but not by the web client on the benefactor. Fig-
ure 6(b) shows very small to moderate impact on these
downloads, depending on the page size and location.
With the exception of one data point, the latency in-
crease is at most 37%, and for loads of 6MB/s or less,
23%. The exception occurs for a large, remote file (19
hops) and only near the maximum sustainable bene-
factor load. The benefactor’s data serving is not im-
pacted much, because it stresses the uploading rather
than downloading network bandwidth.

Our disk activity test simulates a user reading/writing
a 1GB file. We flush the memory when necessary to re-
move the file-system cache effect. While desktop users
do not typically read/write such large files, it stresses I/O
and delivers a worst-case contention at the disk when the

2http://www.nas.nasa.gov/Software/NPB/

native workload is reading un-cached data. Figure 6(c)
shows a steady decrease in the user disk read through-
put, until 20% of its original throughput when the morsel
request rate is 4MB/s. Meanwhile, the maximum sus-
tainable throughput at the FreeLoader benefactor side
is less than 5MB/s. On the other hand, the user write
throughput stays constant under any load, with a maxi-
mum FreeLoader benefactor bandwidth of slightly more
than 9MB/s. This asymmetry is because the OS delays
and combines write requests. Compared to blocking
read operations, writes are more resilient to concurrent
disk activities.

In summary, Figure 6 shows that FreeLoader’s per-
formance impact on typical native workloads is fairly
low. More importantly, it reveals that in most cases, its
performance impact grows smoothly with the morsel re-
quest rate, allowing FreeLoader to actively perform im-
pact control, as demonstrated below.

Recognizing that I/O contention brings the highest
performance impact, and that users are mostly affected
in interactive tasks, we built an I/O intensive compos-
ite workload to simulate interactive user activities with
intervals. A static idle period of 1-3 seconds was set
between executing the following operations: 1) Writing
25 MB of randomly-generated data to files in a specific
directory. This simulates unzipping a downloaded file
into a local directory. 2) Browsing arbitrary system di-
rectories in search of a file. 3) Compressing the written
data from the first part of the simulation with bzip into a
file and transferring this file across the network to a data
repository. 4) Browsing a few more local directories. 5)
Finally removing all data files from the beginning of the
simulation. The following operations were executed in
a tight loop a few times, taking a total of 115 seconds
without any other concurrent user workload on our cho-
sen benefactor.

We ran the above composite workload on one of the
benefactors concurrently with the client’s retrieval of a
2GB dataset. This will impact both the composite native
workload and the client’s perceived aggregate data ac-
cess throughput. Figure 7 depicts such an impact from
both sides with varying stripe width (asymmetric strip-
ing is not used in this test). At the benefactor, it shows
the percentage of slowdown compared with the time
to completion of the composite native workload when
executed alone (115 seconds). At the client, it shows
the percentage of throughput loss compared with the
client aggregate data retrieval throughput using the cor-
responding stripe width without the composite workload
on any of the benefactors. As stripe width increases,
the benefactor side impact goes down steadily. From
stripe width 1 to 2, the data retrieval time is longer than
the composite workload, and the decrease in benefactor
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Figure 7. High-level benefactor impact control by increas-
ing the striping width. Primary y-axis plots benefactor slow
down and client throughput loss ratio. Secondary y-axis plots
actual client throughput.

impact comes from reduced data request rate from the
client. Beyond that point, another factor comes into play
due to increased stripe width: the total dataset retrieval
time keeps decreasing, so that the endurance of perfor-
mance impact on the native workload is shortened. This
factor also contributes to the growth of client-side im-
pact, as larger portions of the retrieval is affected by the
slowed-down benefactor. This effect is overcome when
the stripe width increases to over 6. Meanwhile, the
absolute client aggregate throughput grows steadily as
stripe width increases. This shows that striping serves
both purposes as benefactor bandwidth aggregation and
impact control. Again, more aggressive impact control
can be performed at the benefactors [39].

6 Conclusions

This paper demonstrates the design of the FreeLoader
storage aggregation framework. Our experiment results
show that FreeLoader is an attractive storage alterna-
tive for scientists to cache and share their datasets lo-
cally, with good performance and low, controllable per-
formance impact on storage resource donors. Our major
contributions are listed below.

� We proposed and built a novel framework for
aggregating idle, existing commodity storage re-

sources, that complements high-end storage sys-
tems in caching large scientific datasets.

� Validated distributed software striping in
FreeLoader, and developed novel approaches
to perform asymmetric data placement in order to
optimize client achievable throughput.

� Measured the performance impact of storage scav-
enging on space donors’ native workloads.
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